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Abstract 
In this paper, a third-order exponential time differencing scheme, named 
ETDRK3, was investigated for large time stepping in the computation of 
hypersonic non-equilibrium flow. The second-order Harten-TVD scheme was 
used for the spatial discretization. The efficient implementation of the scheme 
with diagonalization of Jacobin matrix was established and carried out for the 
semi-cylindrical around flow. Current observations showed that the numeri-
cal results were in good agreement with those obtained by the classical explicit 
three-stage Runge-Kutta scheme (RK3) and implicit LU scheme. Efficiency 
assessments promised the effectiveness of the ETDRK3 scheme. The rational-
ity of the application of this scheme was proved by its preferable accuracy and 
efficiency. 
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1. Introduction 

With the development of hypersonic vehicle, the numerical simulation of 
hypersonic flow field has been the frontier of aerodynamics research, of which 
hypersonic non equilibrium flow is one of the typical representatives. In recent 
years, significant development of high accuracy spatial discretization schemes 
has been made for computational fluid dynamics (CFD). Although these spatial 
schemes perform well in the simulation of hypersonic flow field and can be im-
plemented efficiently by parallel techniques, their computational expense on 
time marching direction is still high. For time marching computation, the expli-
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cit schemes are widely used because of their ease of application. However, in the 
presence of highly stretched grids, the Courant-Friedrichs-Lewy (CFL) condition 
leads to the usage of a tiny time-step, consuming a large CPU time. The implicit 
scheme is theoretically proved insensitive to the CFL condition. Nevertheless, 
the usage of implicit scheme needs to solve a large linear system at each iteration 
step, making the computation expensive. Recently, mathematicians have been 
developing an explicit method with large time step known as exponential time 
differencing [1] [2] [3]. Methods of this type offer very high accuracy and stabil-
ity free from the severe time step restriction other explicit schemes present. For a 
recent review, see [4] and the references therein. Despite this alternative strategy 
has attracted increased attention in a number of diverse fields and obvious ad-
vantages have been found, there are few applications in computational fluid dy-
namics (CFD). That probably because the efficiency of the traditional algorithm 
for evaluating the exponential of Jacobin matrix in this class of methods is in-
adequate [5]. In order to avoid this limitation, we modified the existing schemes 
[6] by using a diagonalization method for the Jacobin of non-viscous flux in the 
governing equation. The performance, accuracy and efficiency, of exponential time 
differencing scheme in the simulation of hypersonic chemical non-equilibrium 
flow was then assessed in this paper. 

2. Governing Equations and Numerical Method 
2.1. Governing Equations 

The governing equation is the two-dimensional N-S equation with chemical 
reaction source term in general coordinates 
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in the proceeding expressions, , 1,2,...,k k nsρ =  is the density of the species.  
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=∑  is the total density, ,u v  are the speed in the general direction, e  is  

the energy, P  is the pressure, sD  denotes the diffusion coefficient and sY  is 
the mass fraction of specie s .  
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The quantity J  is the coordinate transformation matrix. 
The chemical source terms sw  represent the production of species from fi-

nite rate chemical reactions [7]. In the study, a five-species air chemistry model 
is used, that are 2 2, , , ,N O N O NO . 

2.2. Exponential Time Differencing Scheme 

The start point of our derivation is the spatial discretization. In the study, we 
used the second-order Harten-Yee TVD scheme [8] to discrete the non-viscous 
flux ,F G , the viscous flux ,v vF G  were approximated by the central difference. 
Then the original Equation (1) can be converted to ordinary differential equa-
tions (ODE) 

d ( )
dt

=
Q

QR ,                           (3) 

with ( ),Q Q t= x  is the exact solution, R  is the right hand term obtained by 
the spatial discretization above. 

Splitting the right hand term of Equation (3) into 

( ) ( ),n n Q Q tα β= + +R A B N ,                   (4) 

where, 1α β= =  are adjustable parameters and  
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In Equation (5), the terms ,F GA B
Q Q
∂ ∂

= =
∂ ∂

 denote the Jacobin matrix of the  

non-viscous flux F  and G , the term ( ) ( ), n nN Q t R A B Qα β= − +  is a 
non-linear remainder. For notation simplification, we note n nK A Bα β= +  and 

( ),n nQ Q t= x . Then the Equation (3) can be written as 

( ( ) ) ( ( ))n n
dQ R K Q t Q N Q t
dt

= + − +                  (6) 

Multiplying the both sides with Kte−  and then integrating over a single time 
step [ , ]n nt t h+ , we can obtain the basic expression of exponential time diffe-
rencing method [3] 
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Various ETD schemes come from the approximation of the integral in (8) [4]. 
In our study, we use a two-stage third-order scheme named ETDRK3 [9] to 
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compute the hypersonic chemical non-equilibrium flow, which is expressed as  
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2.3. Evaluation of the Exponential Function of Jacobi 

In the practical implementation, diagonalize K  in  
1R R−= ΛK ,                           (10) 

In the expression (10), R  and 1R−  are the right and left eigenvector matrix, 
Λ  is the characteristic matrix with the diagonal elements 
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Founding that for a related exponential function ϕ  we have  

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 2 3 4, , ,R R R R Rdiag Rϕ ϕ ϕ λ ϕ λ ϕ λ ϕ λ− − − Λ = Λ =   .   (13) 

The evaluation of the exponential related function of Jacobin ϕ  can be con-
verted to the evaluation of the related exponential function of the diagonal ele-
ments of Λ , the efficiency of implementation will be much improved. 

3. Comparison Parameter  

The first comparison parameter used in this paper is the CFL number defined as 

max t
CFL

x
λ ∆

=
∆

,                         (14) 

In expression (13) maxλ  is the maximum of the eigenvalues. Greater CFL 
number indicates larger time step and better efficiency. Classical explicit schemes 
such as the various Runge-Kutta schemes are usually inefficient to solve complex 
flow problems because of the restriction of CFL number. However, the exponen-
tial time differencing scheme do not suffer from this limitation and can run a 
larger CFL number. To assess the efficiency of the ETDRK3 scheme developed, 
the baseline solutions computed by the third-order TVD Runge-Kutta scheme 
noted as RK3 scheme and implicit LU scheme [10] were given for the perfor-
mance comparison. 

In order to assess the accuracy of the scheme, a first norm residual defined as 
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the maximum of the pressure difference between current time step and previous 
time step on the mesh was used and expressed as 

1 1max ,L n nR P P+= −                       (15) 

A residual of quantity 10−3 can be regarded as the convergence condition. 

4. Numerical Results and Analysis 

The test case is a hypersonic two-dimensional cylindrical round flow problem at 
Mach number 20 which represents a typical external flow application. The free 
stream conditions are given as follow: 

3 31.0269 10 kg/m ,ρ −
∞ = ×  

270.65 K,T∞ =  

Mass fraction 2 0.7655N =  
Mass fraction 2 0.2345O =  
The boundary conditions used in the calculations were as follows: Along the 

inflow plane, free stream values are maintained. Along the outflow plane, values 
are obtained by extrapolation. A constant temperature of 1000 K was maintained 
on the body surface that was assumed to be non-catalytic. Nonslip and zero 
pressure gradient conditions were enforced. The 180 × 200 grid given by the al-
gebraic generation method is shown in Figure 1. 

Figure 2 gives the residuals evaluation during 45,000 evaluations of ETDRK3 
scheme at CFL = 0.7, which is the best CFL number for ETDRK3. The conver-
gence performance was further compared with the errors obtained by the RK3 
scheme at a maximum allowable CEL number 0.3 and fully implicit LU scheme 
at the same CFL 0.7. All of the three schemes can convergence at a low residual 
at about 10−3. The ETDRK3 scheme has a similar convergence performance to 
the LU scheme, which indicates the ETDRK3 scheme has the same accuracy as 
the LU scheme.  

 

 
Figure 1. Calculation grid. 
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Figures 3-6 represent separately the pressure distribution, the temperature 
distribution, the mass fraction of N2 and the mass fraction of O2 computed by 
ETDRK3 (CFL0.7), RK3 (CFL0.3) and LU (CFL0.7) at 45,000 steps. We can see a 
clear shock wave in the three figures. After the shock wave the pressure and 
temperature augmented, chemical reaction happened significantly which leads  
 

 
Figure 2. Residuals evaluation during 45000 iterations for RK3 at CFL 
0.3, ETDRKS at CFL 0.7 and LU at CFL 0.7, the three schemes can all 
convergence and have a similar convergence performance. 

 

 
Figure 3. Pressure distribution/Pa obtained by (a) ETDRK3 at CFL = 0.7; (b) LU at 
CFL = 0.7 and (c) RK3 at CFL = 0.3. 
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Figure 4. Temperature distribution/K obtained by (a) ETDRK3 at CFL = 0.7; (b) 
LU at CFL = 0.7 and (c) RK3 at CFL = 0.3. 

 

 
Figure 5. Mass fraction distribution of N2 obtained by (a) ETDRK3 at CFL = 0.7; 
(b) LU at CFL = 0.7 and (c) RK3 at CFL = 0.3. 

 
great change of species. The results above coincide with the theory [11]. Fur-
thermore, the results of contour comparison obtained by the three schemes 
agree very well with each other. The ETDRK3 scheme performs very well with-
out losing time accuracy even at a larger CFL number. 
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After the accuracy assessment above, the efficiency of the three schemes were 
compared by counting the Wall time at 45,000 iterations and the CPU time for a 
i7-2600 CPU 3.40 GHz. Table 1 gives the CPU time and wall time of each 
scheme. The result shows obviously that the CPU time of ETDRK3 is much 
more less than RK3 and LU. Moreover, it was also observed that ETDRK3 
scheme is the fastest one in term of wall time. With the equitable convergence 
steps, the efficiency comparison of the three schemes proved a preferable effi-
ciency of the ETDRK3 scheme. 

5. Concluding Remarks 

In this paper, we used the ETDRK3 scheme in the computation of hypersonic 
non-equilibrium flow. This scheme was compared with explicit RK3 scheme and 
implicit LU scheme. The numerical results were parallel with that of theory. The 
convergence comparison revealed that the ETDRK3 scheme could achieve the  
 

 
Figure 6. Mass fraction distribution of O2 obtained by (a) ETDRK3 at CFL = 0.7; (b) LU 
at CFL = 0.7 and (c) RK3 at CFL = 0.3. 
 
Table 1. Efficiency comparison of the three schemes. 

Scheme name 
CFL number, wall time and CPU time for 45,000 steps 

CFL Wall time/s CPU time/min 

RK3 0.3 5.08 922.5 

LU 0.7 11.3 577.8 

ETDRK3 0.7 12.3 319.9 

a. wall time and CPU time of the three schemes for 45000 steps. 
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same accuracy as LU scheme. Efficiency assessment showed that ETDRK3 
scheme cost much less CPU time than the two other schemes while outperforms 
in term of wall time. We can conclude from the assessments that the ETDRK3 
scheme is reasonable an alternative time marching scheme in hypersonic chem-
ical non-equilibrium flow. Further study will focus on larger CFL number for 
ETD schemes. The application of ETD schemes on three-dimensional problems 
will also be investigated in the future work. 
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