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Abstract 
This paper considers a mean-field type stochastic control problem where the 
dynamics is governed by a forward and backward stochastic differential equa-
tion (SDE) driven by Lévy processes and the information available to the con-
troller is possibly less than the overall information. All the system coefficients 
and the objective performance functional are allowed to be random, possibly 
non-Markovian. Malliavin calculus is employed to derive a maximum prin-
ciple for the optimal control of such a system where the adjoint process is ex-
plicitly expressed. 
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1. Introduction 

In contrast to the stochastic control problem (e.g. [1] [2]) which is studied in the 
complete information case (and [1] with the Brownian motion case only), the 
performance functional that we will investigate involves the mean of functionals 
of the state variables (hence the name mean-field). Problems of this type occur in 
many applications; for example in a continuous-time Markowitz’s mean-variance 
portfolio selection model where the variance term involves a quadratic function 
of the expectation. The inclusion of this mean term introduces some major 
technical difficulties, which include among others the time inconsistency leading 
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to the failure of dynamic programming approach. Recently, there has been 
increasing interest in the study of this type of stochastic control problems; see 
for example [3] [4] and [5]. 

On the other hand, since we allow the coefficients ( , , , ,b g fσ γ  and 2h  as 
follows) to be the stochastic processes and also because our control must be 
partial information adapted, this problem is not of Markovian type and hence 
cannot be solved by dynamic programming even if the mean term were not 
present. We instead investigate the maximum principle, and will derive an 
explicit form for the adjoint process. The approach we employ is Malliavin 
calculus which enables us to express the duality involved via the Malliavin 
derivative. Our paper is related to the recent paper [6] and [7]. In [6], they 
consider a mean-field type stochastic control problem where the dynamics is 
governed by a controlled forward SDE with jumps and the information available 
to the controller is possibly less than the overall information. Malliavin calculus 
is employed to derive a maximum principle for the optimal control of such a 
system where the adjoint process is explicitly expressed. [7] presents various 
versions of the maximum principle for optimal control (not mean-field type) of 
forward-backward stochastic differential equations with jumps and a Malliavin 
calculus approach which allow us to handle non-Markovian system. The 
motivation of [7] is risk minimization via g-expectation. 

This paper can be considered as the continuation of [6] and [7]. We consider 
a mean-field type stochastic control problem where the dynamics is governed by 
a forward and backward stochastic differential equation (SDE) driven by Lévy 
processes and the information available to the controller is possibly less than the 
overall information. All the system coefficients and the objective performance 
functional are allowed to be random, possibly non-Markovian. Malliavin 
calculus will be employed to derive a maximum principle for the optimal control 
of such a system where the adjoint process is explicitly expressed. 

As in the paper [6], we emphasize that our problem should be distinguished 
from the partial observation control problem, where it is assumed that the 
controls are based on the noisy observation of the state process. For the latter 
type of problems, there is a rich literature (see, e.g. [1] [8] [9] [10] [11] [12]). 
Note that the methods and results in the partial observation case do not apply to 
our situation. On the other hand, there are several existing works on stochastic 
maximum principle (either completely or partially observed) where adjoint 
processes are explicitly expressed (see, e.g. [8] [10] [12] [13]). However, these 
works all essentially employ stochastic flow technique, over which the Malliavin 
calculus has the advantage in terms of numerical computations (see, e.g. [14]). 

Now let’s state our problem as follows: 
Suppose the state process ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , ,u uA t X t A t X tω ω= ; [ ]0,t T∈ , 

ω∈Ω , of our system is described by the following coupled forward-backward 
system of SDEs. 

Forward system in the controlled process ( )A t : 
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( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) [ ]

( )
0

d , , d , , d

, , , d ,d ; 0, ,

0 .

A t b t A t u t t t A t u t B t

t A t u t z N t z t T

A a

σ

γ

 = +
 + ∈


= ∈

∫ 





        (1.1) 

Backward system in the unknown processes ( )X t , ( )Y t , ( ),K t z : 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) [ ]

( ) ( )
0

0

d , , , , d d

, d ,d ; 0, ,

, where is a given constant.

X t g t A t X t Y t u t t Y t B t

K t z N t z t T

X T cA T c

 = − +
 + ∈


= ∈

∫ 





        (1.2) 

Here { }0 \ 0=  , ( ) ( ),B t B t ω=  and ( ) ( ),t tη η ω= , given by 

( ) ( )
00

d ,d ; 0, ,
t

t zN s z tη ω= ≥ ∈Ω∫ ∫ 


               (1.3) 

are a 1-dimension Brownian motion (see [15] Theorem 13.5) and an independent 
pure jump Lévy martingale, respectively, on a given filtered probability space 

{ }( )0
, , ,t t

P
≥

Ω F F . Thus 

( ) ( ) ( )d ,d : d ,d d dN t z N t z z tν= −                  (1.4) 

is the compensated jump measure of ( )η ⋅ , where ( )d ,dN t z  is the jump 
measure and ( )dzν  is the Lévy measure of the Lévy process ( )η ⋅ . The process 
( )u t  is our control process, assumed to be tF -adapted and have values in a 

given open convex set U ⊂  . The coefficients [ ]: 0,b T U× × ×Ω→  , 
[ ]: 0,T Uσ × × ×Ω→  , [ ] 0: 0,T Uγ × × × ×Ω   and 
[ ]: 0,g T U× × × × ×Ω→     are given tF -predictable processes. 

Let 0T >  be a given constant. For simplicity, we assume that 

( )
0

2 d .z zν < ∞∫                        (1.5) 

Suppose in addition that we are given a subfiltration 

[ ], 0,t t t T⊆ ∈E F  

representing the information available to the controller at time t and satisfying 
the usual conditions. For example, we could have 

( ) [ ]; 0, , 0 is a constant,t t
t T

δ
δ+−

= ∈ >E F  

meaning that the controller gets a delayed information compared to tF . 
Let = EA A  denote a given family of controls, contained in the set of tE - 

predictable controls ( )u ⋅  such that the system (1.1)-(1.2) has a unique strong 
solution. If u∈ EA , then we call u an admissible control. Let U ⊂   be a 
given convex set such that ( )u t U∈  for all [ ]0,t T∈  a.s., for all u∈ EA . 

Suppose we are given a performance functional of the form 

( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )( )

0 00

1 2 0

, , , , , , , , , d

0 , , ; ,

T

J u

E f t A t E f A t X t E h X t Y t K t u t t

h X h A T E g A T u

ω

ω

    = ⋅   
 + + ∈  

∫

EA

(1.6) 
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where E  denotes expectation with respect to P , 0 :f →  , 0 :h →   
and 0 :g →   are given functions such that ( )( )0E f A t  < ∞  , 

( )( )0E h X t  < ∞   for all t and ( )( )0E g A T  < ∞  , and 
[ ]: 0,f T U× × × × × × × ×Ω→        and 2 :h × ×Ω→    are given 

tF -predictable processes and 1h  is a given function with 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )( )

0 00

1 2 0

, , , , , , , , d

0 , , for all .

T
E f t A t E f A t X t E h X t Y t K t u t t

h X h A T E g X T u

     ⋅   
 + + < ∞ ∈  

∫

EA
 (1.7) 

The control problem we consider is the following: 
Problem 1.1 (Partial information optimal control). Find Φ ∈E  and 

*u ∈ EA  (if it exists) such that 

( ) ( )* .sup
u

J u J u
∈

Φ = =
E

E
A

                       (1.8) 

2. A Brief Review of Malliavin Calculus for Lévy Processes 

In this section, we recall the basic definitions and properties of Malliavin 
calculus for Brownian motion ( )B ⋅  and ( )d ,dN s z  related to this paper, for 
reader’s convenience. 

Let ( )2 ,TL PF  be the space of all  -valued TF -measurable, and 
square-integrable random variables. Let ( )2 nL λ  be the space of deterministic 
real functions f such that 

( ) [ ] ( )( )2

1 2
2

1 2 1 20,
, , , d d d ,n n n nL T

f f t t t t t t
λ

= < ∞∫             (2.1) 

where ( )dtλ  denotes the Lebesgue measure on [ ]0,T . 
Let ( )( )2 nL λ µ×  be the space of deterministic real functions f such that 

( )( )

[ ]( ) ( ) ( ) ( ) ( )( )
2

0

1 2
2

1 1 2 2 1 1 2 20,
, , , , , , d d d d d d

.

n

n

L

n n n nT

f

f t z t z t z t z t z t z

λ µ

µ µ µ

×

×
=

< ∞

∫  


 (2.2) 

( )2L Pλ ×  can be similarly denoted. 
A general reference for this presentation is [16] [17] and [18]. See also the 

book [19]. 

2.1. Malliavin Calculus for ( )B ⋅  

A natural starting point is the Wiener-Itô chaos expansion theorem (See [18] 
Theorem 1.1.2), which states that any ( )2 ,TF L P∈ F  can be written as 

( )
0

,n n
n

F I f
∞

=

= ∑                         (2.3) 

for a unique sequence of symmetric deterministic functions ( )2 n
nf L λ∈ , where 

λ  is Lebesgue measure on [ ]0,T  and 
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( ) ( ) ( ) ( )2
1 10 0 0

! , , d dnT t t
n n n n nI f n f t t B t B t= ∫ ∫ ∫              (2.4) 

(the n-times iterated integral of nf  with respect to ( )B ⋅ ) for 1, 2,n =   and 
( )0 0 0I f f=  when 0f  is a constant. 
Moreover, we have the isometry 

( ) ( )2 2
222

0
! .nnL P L

n
E F F n f

λ

∞

=

  = =  ∑                (2.5) 

Definition 2.1 (Malliavin derivative tD ). Let ( )
1,2

B  be the space of all 
( )2 ,TF L P∈ F  such that its chaos expansion (11) satisfies 

( ) ( )2
1,2

22

1
: ! .B nn L

n
F nn f

λ

∞

=

= < ∞∑
                 (2.6) 

For ( )
1,2

BF ∈  and [ ]0,t T∈ , we define the Malliavin derivative of F  at t  
(with respect to ( )B ⋅ ), tD F , by 

( )( )1
1

, ,t n n
n

D F nI f t
∞

−
=

= ⋅∑                   (2.7) 

where the notation ( )( )1 ,n nI f t− ⋅  means that we apply the ( )1n − -times 
iterated integral to the first 1n −  variables 1 1, , nt t −  of ( )1 2, , ,n nf t t t  and 
keep the last variable nt t=  as a parameter. 

One can easily check that 

( ) ( ) ( )2
1,2

2 2 2

0
1

d ! ,Bn

T
t n L

n
E D F t nn f F

λ

∞

=

  = =   ∑∫ 
             (2.8) 

so ( ) ( ), tt D Fω ω→  belongs to ( )2L Pλ × . 
Some other basic properties of the Malliavin derivative tD  are the following: 
1) Chain rule ([18], page 29) 
Suppose ( )

1 1,2, , B
mF F ∈   and that : mψ →   is 1C  with bounded 

partial derivatives. Then 
( ) ( )

1 1,2, , B
mF Fψ ∈   and 

( ) ( )1 1
1

, , , , .
m

t m m t i
i i

D F F F F D F
x
ψ

ψ
=

∂
=

∂∑               (2.9) 

2) Integration by parts/duality formula ([18], page 35) 

Suppose ( )h t  is tF -adapted with ( )2
0

d
T

E u t t  < ∞  ∫  and let ( )
1,2

BF ∈ . 

Then 

( ) ( ) ( )
0 0

d d .
T T

tE F h t B t E h t D F t   =      ∫ ∫             (2.10) 

2.2. Malliavin Calculus for ( )N ⋅  

The construction of a stochastic derivative/Malliavin derivative in the pure jump 
martingale case follows the same lines as in the Brownian motion case. In this 
case, the corresponding Wiener-Itô chaos expansion theorem states that any 

( )2 ,TF L P∈ F  (where in this case N
t t= 

F F  is the σ-algebra generated by  

( ) ( )
00

: d ,d ;0
s

s zN r z s tη = ≤ ≤∫ ∫ 


) can be written as 
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( ) ( )( )2

0

ˆ; ,n
n n n

n
F I f f L λ ν

∞

=

= ∈ ×∑                  (2.11) 

where ( )( )2ˆ nL λ ν×  is the space of functions ( ) [ ]1 1, , , , ; 0,n n n if t z t z t T∈ , 

0iz ∈  such that ( )( )2 n
nf L λ ν∈ ×  and nf  is symmetric with respect to the 

pairs of variables ( ) ( )1 1, , , ,n nt z t z . 
It is important to note that in this case the n-times iterated integral ( )n nI f  is 

taken with respect to ( )d ,dN t z  and not with respect to ( )d tη . Thus, we 
define 

( ) ( ) ( ) ( )2

0 0 0
1 1 1 10 0 0

! , , , , d ,d d ,d ,nT t t
n n n n n n nI f n f t z t z N t z N t z= ∫ ∫ ∫ ∫ ∫ ∫  

  

  
(2.12) 

for ( )( )2 n
nf L λ ν∈ × . 

Then Itô isometry for stochastic integrals with respect to ( )d ,dN t z  gives the 
following isometry for the chaos expansion: 

( ) ( )( )2 2
22

0
! .nnL P L

n
F n f

λ ν

∞

×
=

= ∑                   (2.13) 

As in the Brownian motion case, we use the chaos expansion to define the 
Malliavin derivative. Note that in this case there are two parameters ,t z , where 
t represents time and 0z ≠  represents a generic jump size. 

Definition 2.2 (Malliavin derivative ,t zD ) ([16] [17]) Let ( )
1,2

N  be the space 
of all ( )2 ,TF L P∈   such that its chaos expansion (2.11) satisfies 

( ) ( )( )2
1,2

22

1
! .nN n L

n
F nn f

λ ν

∞

×
=

= < ∞∑


                (2.14) 

For ( )
1,2

NF ∈


 , we define the Malliavin derivative of F at ( ),t z  (with respect 
to ( )N ⋅ ), ,t zD F , by 

( )( ), 1
1

, , ,t z n n
n

D F nI f t z
∞

−
=

= ⋅∑                  (2.15) 

where ( )( )1 , ,n nI f t z− ⋅  means that we perform the ( )1n − -times iterated 
integral with respect to N  to the first 1n −  variable pairs ( ) ( )1 1, , , ,n nt z t z , 
keeping ( ) ( ), ,n nt z t z=  as a parameter. 

In this case we get the isometry. 

( ) ( ) ( )( ) ( ] ( )2
0 1,2

2 2 2
,0

1
d d ! .n N

T
t z n L

n
E D F z t nn f F

λ ν
ν

∞

×
=

  = =   ∑∫ ∫  
    (2.16) 

(Compare with (2.8)). 
The properties of ,t zD  corresponding to the properties (2.9) and (2.10) of 

tD  are the following: 
1) Chain rule ([17] [20]) 

Suppose ( )
1 1,2, , N

mF F ∈


   and that : mφ →   is continuous and bounded. 

Then ( ) ( )
1 1,2, , N

mF Fφ ∈


   and 

( ) ( ) ( ), 1 1 , 1 , 1, , , , , , .t z m t z m t z m mD F F F D F F D F F Fφ φ φ= + + −      (2.17) 
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2) Integration by parts/duality formula ([17]) 

Suppose ( ),t zΨ  is tF -adapted and ( ) ( )
0

2
0

, d d
T

E t z z tν Ψ < ∞  ∫ ∫  and 

let ( )
1,2

NF ∈


 . Then 

( ) ( ) ( ) ( )
0 0

,0 0
, d ,d , d d .

T T
t zE F t z N t z E t z D F z tν   Ψ = Ψ      ∫ ∫ ∫ ∫

 
   (2.18) 

We let 1,2  denote the set of all random variables which are Malliavin 
differentiable with respect to both ( )B ⋅  and ( ),N ⋅ ⋅ . 

3. The Stochastic Maximum Principle 

We now return to Problem 1.1 given in the introduction. We make the following 
assumptions: 

Assumptions 3.1. (3.1) The functions ( ) [ ], , , : 0,b t x u T Uω × × ×Ω→  , 
( ) [ ], , , : 0,t x u T Uσ ω × × ×Ω→  , ( ) [ ] 0, , , , : 0,t x u z T Uγ ω × × × ×Ω→   , 
( ) [ ], , , , , : 0,g t a x y u T Uω × × × × ×Ω→    , 
( ) [ ]0 0, , , , , , , , : 0,f t a a x x y k u T Uω × × × × × × × ×Ω→       ,  
( )0 0 :f a →  , ( )0 0 :h x →  , ( )0 0 :g x →  , ( )1 0 :h x →  ,  
( )2 0, , :h a a ω × ×Ω→    are all continuously differentiable ( 1C ) with 

respect to the arguments (if depending on them) x∈ , 0x ∈ , a∈ , 

0a ∈  and u U∈  for each [ ]0,t T∈  and a.a. ω∈Ω . 
(3.2) For all [ ], 0,t r T∈ , t r≤ , and all bounded tE -measurable random 

variables ( )θ θ ω=  the control 

( ) ( ) ( ] ( ) [ ], ; 0,t rs s s Tθβ θ ω χ= ∈  

belongs to EA . 
(3.3) For all ,u β ∈ EA  with β  bounded, there exists 0δ >  such that  

( )for all , .u y yβ δ δ+ ∈ ∈ −EA  

Furthermore, if we define 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( )

1 1 0 0

0 0

0 0
0

0

, , , , , , , ,

: , , , , , , , ,

, , , , , , , ,

,

f t f t A t E f A t X t E h X t Y t K t u t

f t A t E f A t X t E h X t Y t K t u t
a

fE t A t E f A t X t E h X t Y t K t u t
a

f A t

   = ⋅   
∂    = ⋅   ∂

 ∂    + ⋅    ∂ 
′×

 

(3.1) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( )

2 2 0 0

0 0

0 0
0

0

, , , , , , , ,

: , , , , , , , ,

, , , , , , , ,

,

f t f t A t E f A t X t E h X t Y t K t u t

f t A t E f A t X t E h X t Y t K t u t
x

fE t A t E f A t X t E h X t Y t K t u t
x

h X t

   = ⋅   
∂    = ⋅   ∂

 ∂    + ⋅    ∂ 
′×

 

(3.2) 
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( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( ) ( )( )

0

2 2
0 0 0

0

,

: , , ,

h A T E g A T

h hA T E g A T E A T E g A T g A T
a a

  

 ∂ ∂    ′= +     ∂ ∂ 



(3.3) 

then the family 

( ) ( )( ) ( ) ( )( )({
( ) ( ) ( ) ( )) ( ) ( )(

( )( ) ( ) ( )( )
( ) ( ) ( ) ( )) ( )} ( )

1 0 0

0 0

,

, , , , ,

d, , , , ,
d

, , ,

, , ,

u y u y u y u y

u y u y u y u y

u y u y u y

u y u y

y

f t A t E f A t X t E h X t

fY t K t u t y t A t t A t
y u

E f A t X t E h X t

Y t K t u t y t t

β β β β

β β β β

β β β

β β

δ δ

β

β β

+ + + +

+ + + +

+ + +

+ +

∈ −

      
∂

⋅ + ∗ +
∂

      

⋅ + ∗



   (3.4) 

and 

( ) ( )( ) ( ) ( )( )({
( ) ( ) ( ) ( )) ( ) ( )(

( )( ) ( ) ( )( )
( ) ( ) ( ) ( )) ( )}

( )

2 0 0

0 0

,

, , , , ,

d, , , , ,
d

, , ,

, , ,

u y u y u y u y

u y u y u y u y

u y u y u y

u y u y

y

f t A t E f A t X t E h X t

fY t K t u t y t X t t A t
y u

E f A t X t E h X t

Y t K t u t y t t

β β β β

β β β β

β β β

β β

δ δ

β

β β

+ + + +

+ + + +

+ + +

+ +

∈ −

   
   

∂
⋅ + ∗ +

∂

   
   

⋅ + ∗



   (3.5) 

are Pλ × -uniformly integrable and the family  

( ) ( )( )( ) ( )
( )

0
,

d,
d

u y u y u y

y

h A T E g A T A T
y

β β β

δ δ

+ + +

∈ −

     
        (3.6) 

is P-uniformly integrable. 
(3.4) For all ,u β ∈ EA , with β  bounded, the processes  

( ) ( )
0

d
d

u y

y

t A t
y

βα +

=

= , ( ) ( )
0

d
d

u y

y

t X t
y

βξ +

=

= , ( ) ( )
0

d
d

u y

y

t Y t
y

βη +

=

=  and  

( ) ( )
0

d, ,
d

u y

y

t z K t z
y

βζ +

=

=  exist and satisfy the equations 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

d d

d

, , d ,d ,

b bt t t t t t
a u

t t t t B t
a u

t z t t z t N t z
a u

α α β

σ σ
α β

γ γ
α β

∂ ∂ = + 
∂ ∂ 
∂ ∂ + + 
∂ ∂ 

∂ ∂ + + 
∂ ∂ ∫





       (3.7) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

d d

d , d ,d ,

g g g gt t t t t t t t t t
a x y u

t B t t z N t z

ξ α ξ η β

η ζ

 ∂ ∂ ∂ ∂
= − − − − 

∂ ∂ ∂ ∂ 
+ + ∫ 



   (3.8) 

where we used the simplified notation 

( ) ( ) ( )( ), , etc.b bt t A t u t
a a
∂ ∂

=
∂ ∂

                   (3.9) 

(3.5) For all u∈ EA , with definition (3.1), (3.2) and (3.3), the following process: 
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( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0

0

21, : exp d d
2

ln 1 , d ,d

ln 1 , , d d ,

s s

t t

s

t

s

t

bG t s r r r r B r
a a a

r z N r z
a

r z r z z r s t
a a

σ σ

γ

γ γ ν

  ∂ ∂ ∂  = − +   ∂ ∂ ∂   
∂ + + ∂ 

 ∂ ∂  + + − >  ∂ ∂   

∫ ∫

∫ ∫

∫ ∫







     (3.10) 

exists and we now define the adjoint process ( )p t , ( )q t , ( ),r t z , ( )tλ  as 
follows: 

( ) ( ) ( ) ( )0: , d
T

t

Hp t t s G t s s
a

κ
∂

= +
∂∫                  (3.11) 

( ) ( ): tq t D p t=                          (3.12) 

( ) ( ),, : ,t zr t z D p t=                         (3.13) 

with 

( ) ( ) ( )( )( ) ( ) ( )0 1: , d
T

t
t h A T E g A T c T f s sκ λ = + +  ∫         (3.14) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0

0

,

, , , : , , , ,

, , , d , , , .
s

s z

H s a x u s b s a u D s s a u

D s s a u z z g s a x u s

κ κ σ

κ γ ν λ

= +

+ +∫
   (3.15) 

The above processes all exist for 0 t s T≤ ≤ ≤ , 0z∈ . Above and in the 
following, we use the shorthand notation ( ) ( ) ( ) ( )( )0 0 , , ,H s H s A s X s u s= . 

We now define the Hamiltonian for this problem: 

[ ] ( ) ( )2 2: 0,H T L U Lν ν× × × × × × × × × ×Ω→        

is defined by 

( )( )
( )( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( )
0

0 0

, , , , , , , , , ,

, , , , , , , , , , , , ,

, , , , , , , , , , d .

H t a x y k u p q r

f t a E f A t x E h X t y k u g t a x y u

b t a u p t a u q t a u z r z z

λ ω

ω ω λ

ω σ ω γ ω ν

⋅

   = +   

+ + + ∫

 (3.16) 

The process ( )tλ  is given by the forward equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( )
0

0 0
0

0

1
1

d , , , , , , , , , , , d

, , , , , , , ,

d

, , , , , , , , , , , d

, , , , , , , , , , , d ,d

d0 0
d

k

Ht t A t X t Y t K t u t t p t q t r t t
x

fE t A t E f A t X t E h X t Y t K t u t
x

h X t t

H t A t X t Y t K t u t t p t q t r t B t
y

H t A t X t Y t K t u t t p t q t r t N t z

hh X

λ λ

λ

λ

λ

∂
= ⋅ ⋅
∂

 ∂    + ⋅    ∂ 
′×

∂
+ ⋅ ⋅
∂

+ ∇ ⋅ ⋅

′= =

∫ 



( )( )0 ,X
x
















 
   

(3.17) 

for [ ]0,t T∈ . 
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We can now formulate our stochastic maximum principle: 
Theorem 3.1 (Partial information equivalence principle) Suppose u∈ EA  

with corresponding solutions ( )A t , ( )X t , ( )Y t , ( ),K t z , ( )tλ , of (1.1), 
(1.2) and (3.17). Assume that the random variables 

( ) ( ) ( )( )( ) ( )0: ,F T h A T E g A T c Tλ = + 
 , ( ) ( ) ( )0, : ,

Ht s s G t s
a

∂
Φ =

∂
 and 

( )1f t  belong to 1,2  for all 0 t s T≤ ≤ ≤  and that 

( ) ( ) ( )

( ) ( ) ( ) ( )
0

2 2
2

0

2 2
2, , d d ,

T
E s s s

a u

s z s s z z s
a u

σ σ
α

γ γ
α ν

  ∂ ∂   +    ∂ ∂    
 ∂ ∂      + + < ∞     ∂ ∂         

∫

∫

       (3.18) 

( )( ) ( )( )( ) ( ){ }0

22

1 , 10 0
d d d ,

T T
s s zE D f t D f t z s tν + < ∞  ∫ ∫ ∫ 


       (3.19) 

( )( ) ( )( ) ( ){ }
0

22
,0 0

, , d d d .
T T

r r zE D t s D t s z r sν Φ + Φ < ∞  ∫ ∫ ∫       (3.20) 

Then the following are equivalent: 

i) ( )
0

d 0
d y

J u y
y

β
=

+ =  for all bounded β ∈ EA . 

ii) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
, , , , , , , , , , , 0tu u t

E H t A t X t Y t K t u t t p t q t r t
u

λ
=

∂ ⋅ ⋅ = ∂ 
E , for 

a.a. ( ), [0, ]t Tω ∈ ×Ω . 

Proof. (i) ⇒ (ii): Assume that (i) holds and note that 

( ) ( )
0

d0 0
d

u y

y

A
y

βα +

=

=                      (3.21) 

and 

( ) ( ) ( ) ( )
0 0

d 1 d 1 .
d d

u y u y

y y

T A T X T T
y c y c

β βα ξ+ +

= =

= = =          (3.22) 

Then 

( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )( ) ( )

0

0

00
0

0
0

2
1 0

d0
d

, , d d

0 0 ,

y

T

k

J u y
y

f f fE t t t E f A t t t t
a a x

f ft E h X t t t t
x y

ff t z t z z t t t
u

hh X A T E g A T T
a

β

α α ξ

ξ η

ζ ν β

ξ α

=

= +

 ∂ ∂ ∂ ′= + +   ∂ ∂ ∂ 
∂ ∂ ′+ + ∂ ∂

∂ + ∇ + 
∂ 

∂  ′+ +  ∂

∫

∫
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( ) ( )( )( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )( ) ( )
0

2
0 0

0

00
0

0
0

2
1 0

,

, , d d

0 0 ,

T

k

h A T E g A T E g A T T
a

f f fE t t E t f A t t t t
a a x

f fE t h X t t t t
x y

ff t z t z z t t t
u

hh X A T E g A T T
a

α

α α ξ

ξ η

ζ ν β

ξ α

∂    ′+    ∂ 
   ∂ ∂ ∂ ′= + +   ∂ ∂ ∂  
 ∂ ∂′+ + ∂ ∂ 

∂ + ∇ + 
∂ 

∂  ′+ +  ∂

∫

∫


 

( ) ( )( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( )

0

2
0 0

0

1 20

1 0

,

, , d d

0 0 ,

.

T

k

hE A T E g A T g A T T
a

fE f t t f t t t t
y

ff t z t z z t t t
u

h X h A T E g A T T

c T T c T T

α

α ξ η

ζ ν β

ξ α

λ α λ α

 ∂   ′+   ∂   
  ∂

= + + ∂
∂ + ∇ + 
∂ 
 ′+ +  

+ − 

∫

∫


 



         (3.23) 

By the duality formulae (2.10), (2.18) and with 
( ) ( ) ( )( )( ) ( )0,F T h A T E g A T c Tλ = + 

 , we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

0

0

d

d

, , d ,d

T

T

b bE F T T E F T t t t t t
a u

t t t t B t
a u

t z t t z t N t z
a u

α α β

σ σα β

γ γα β

  ∂ ∂ = +      ∂ ∂ 
∂ ∂ + + 
∂ ∂ 

∂ ∂  + +  ∂ ∂  

∫

∫

∫




 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0

0

, , , d d .

T

t

t z

b bE F T t t t t
a u

D F T t t t t
a u

D F T t z t t z t z t
a u

α β

σ σα β

γ γα β ν

  ∂ ∂ = +  ∂ ∂ 
∂ ∂ + + ∂ ∂ 

∂ ∂  + +   ∂ ∂   

∫

∫


 (3.24) 

Similarly using the Fubini theorem in the following last equality, we have 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

10

10 0

0

0

10 0

d

d

d

, , d ,d

T

T t

t

t

T t

E f t t t

b bE f t s s s s s
a u

s s s s B s
a u

s z s s z s N s z
a u

b bE f t s s s s
a u

α

α β

σ σ
α β

γ γ
α β

α β

 
  
  ∂ ∂ = +   ∂ ∂ 

∂ ∂ + + 
∂ ∂ 

∂ ∂  + +  ∂ ∂  
   ∂ ∂ = +   ∂ ∂  

∫

∫ ∫

∫

∫ ∫

∫ ∫
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

0

0

1

, 1

10

1

, 1

, , d d d

d

d

d , , d

s

s z

T T

s

T
ss

T
s zs

D f t s s s s
a u

D f t s z s s z s z s t
a u

b bE f t t s s s s
a u

D f t t s s s s
a u

D f t t s z s s z s
a u

σ σ
α β

γ γ
α β ν

α β

σ σ
α β

γ γ
α β ν

∂ ∂ + + ∂ ∂ 
∂ ∂  + +   ∂ ∂    

  ∂ ∂ = +  ∂ ∂ 
∂ ∂ + + ∂ ∂ 

∂ ∂ + + ∂ ∂ 

∫

∫ ∫

∫

∫ ∫













 ( ) d .z s


 
 

 (3.25) 

Changing the notation s t↔ , this becomes 

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )
0

10

1

, 1

d

d

d , , d d .

T T

t

T
tt

T
t zt

b bE f s s t t t t
a u

D f s s t t t t
a u

D f s s t z t t z t z t
a u

α β

σ σ
α β

γ γ
α β ν

  ∂ ∂ = +  ∂ ∂ 
∂ ∂ + + ∂ ∂ 

∂ ∂  + +   ∂ ∂   

∫ ∫

∫

∫ ∫








    (3.26) 

Combing (3.24) and (3.26) and using (3.14) we get 

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

1 00

0

,

d ,

, , d d

using that .

T

T

t

t z

fE f t t t t t h A T E g A T T
u

b bE t t t t t
a u

D t t t t t
a u

fD t t z t t z t z t t t
a u u

E T T c T T

α β α

κ α β

σ σ
κ α β

γ γ
κ α β ν β

λ ξ α ξ

 ∂    + +   ∂  
  ∂ ∂ = +  ∂ ∂ 

∂ ∂ + + ∂ ∂ 
∂ ∂ ∂  + + +   ∂ ∂ ∂   

− =  

∫

∫

∫


 

  (3.27) 

Then by the Itô formula and (3.17), 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

1

0 0

0 0

0 0 0 0

d d

d , , d d

T T

T T
k

E h X E

E T T t t t t

H t t t H t z t z z t
y

ξ λ ξ

λ ξ λ ξ ξ λ

η ζ ν

 ′ =    
= − −

∂
− − ∇ ∂ 

∫ ∫

∫ ∫ ∫


 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )
0

0

0

00
0

0 0

d d

d

d , , d d .

T

T

T

T T
k

g gE T T t t t t t
a x

g g Ht t t t t t t t
y u x

ft E t h X t t
x

Ht t t H t z t z z t
y

λ ξ λ α ξ

η β ξ

ξ

η ζ ν

 ∂ ∂= − − − ∂ ∂
∂ ∂ ∂

− − −
∂ ∂ ∂

 ∂ ′−  ∂ 
∂

− − ∇ ∂ 

∫

∫

∫

∫ ∫ ∫


      (3.28) 
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Now by (3.16) we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ), , .k k

H f gt t t t
x x x
H f gt t t t
y y y
H t z f t z

λ

λ

∂ ∂ ∂
= +

∂ ∂ ∂
∂ ∂ ∂

= +
∂ ∂ ∂

∇ = ∇

                (3.29) 

Hence, we conclude 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0

2 10

0

d 0 0

, , d d .

T

T

k

E f t t t h X

g gE T T t t t t t
a u

f t t f t z t z z t
y

ξ ξ

λ ξ λ α β

η ζ ν

 ′+  
  ∂ ∂ = + +  ∂ ∂ 

∂
− − ∇  ∂  

∫

∫

∫




     (3.30) 

Combining (3.23), (3.27) and (3.30) we get 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

,

d0
d

, , d

d

y

T

t

t z

J u y
y

b bt t t t t
a u

D t t t t t
a u

D t t z t t z t z
a u

f g gt t t t t t t t
u a u

β

κ α β

σ σ
κ α β

γ γ
κ α β ν

β λ α β

=

= +

  ∂ ∂ = +  ∂ ∂ 
∂ ∂ + + ∂ ∂ 

∂ ∂ + + ∂ ∂ 
∂ ∂ ∂  + + +   ∂ ∂ ∂  

∫

∫




 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

,

,

, d

, d

d .

T
t

t z

t t z

bt t D t t
a a

gD t t z z t t t
a a

bt t D t t D t t z z
u u u

f gt t t t t
u u

σ
κ κ

γ
κ ν λ α

σ γ
κ κ κ ν

λ β

  ∂ ∂= +  ∂ ∂
∂ ∂ + + ∂ ∂ 

∂ ∂ ∂+ + + ∂ ∂ ∂
∂ ∂ + + ∂ ∂  

∫

∫

∫







   (3.31) 

This holds for all β ∈ EA . In particular, if we apply this to  

( ) ( ) ( ] ( ), ,t t hs sθ θβ β θ ω χ += =  

where ( )θ ω  is tE -measurable and 0 t t h T≤ ≤ + ≤ , we get, by (3.7) 
( ) ( ) for 0s s tθβα α= ≤ ≤  

and (3.31) can be written 

( ) ( )1 2 0,L h L h+ =                     (3.32) 

where 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0

1

, , d d

T
st

s z

bL h E s s D s s
a a

gD s s z z s s s s
a a

σ
κ κ

γ
κ ν λ α

 ∂ ∂= + ∂ ∂
∂ ∂ + +  ∂ ∂  

∫

∫


     (3.33) 

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0

2

, , d d .

t h
st

s z

bL h E s s D s s
u u

f gD s s z z s s s s
u u u

σ
θ κ κ

γ
κ ν λ

+ ∂ ∂= + ∂ ∂
∂ ∂ ∂ + + +  ∂ ∂ ∂  

∫

∫


   (3.34) 

Note that with ( ) ( )s sθβα α=  we have, for s t h≥ + , 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

d d d , d ,d .bs s s s s B s s z N s z
a a a

σ γ
α α

∂ ∂ ∂ = − + + 
∂ ∂ ∂ ∫



   (3.35) 

Hence, by the Itô formula 

( ) ( ) ( ), ; ,s t h G t h s s t hα α= + + ≥ +             (3.36) 

where G is defined in (3.10). Note that ( ),G t s  does not depend on h. Then 

( ) ( ) ( )0
1 d ,

T

t

HL h E s s s
a

α
∂ =  ∂ ∫                (3.37) 

where 0H  is defined in (3.15). Differentiating with respect to h  at 0h =  
gives 

( ) ( ) ( ) ( ) ( )0 0
1

0 0

d d0 d d .
d d

t h T

t t h
h h

H HL E s s s E s s s
h a h a

α α
+

+
= =

∂ ∂   ′ = +   ∂ ∂   ∫ ∫  (3.38) 

Since ( ) 0tα =  we see that 

( ) ( )0

0

d d 0.
d

t h

t
h

HE s s s
h a

α
+

=

∂  = ∂ ∫               (3.39) 

Therefore, by (3.36) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0
1

0

0

0

0

0

d0 , d
d

d , d
d
d , d .
d

T

t h
h

T

t
h

T

t
h

HL E s t h G t h s s
h a

HE s t h G t h s s
h a

HE s G t s t h s
h a

α

α

α

+
=

=

=

∂ ′ = + + ∂ 
∂ = + + ∂ 
∂ = + ∂ 

∫

∫

∫

        (3.40) 

By (3.7) we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0

d d , d ,d

d d , d ,d .

t h

t

t h

t

bt h r r r B r r z N r z
u u u

br r r r B r r z N r z
a a a

σ γ
α θ

σ γ
α

+

+

∂ ∂ ∂ + = + + 
∂ ∂ ∂ 

∂ ∂ ∂ + − + + 
∂ ∂ ∂ 

∫ ∫

∫ ∫









(3.41) 

Therefore, by (3.40) and (3.41) 
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( )1 1 20 ,L′ = Γ + Γ                        (3.42) 

where 

( ) ( ) ( )

( ) ( ) ( ) ( )
0

0
1

0

d , d
d

d , d ,d d

T t h

t t

h

H bE s G t s r r
h a u

r B r r z N r z s
u u

θ

σ γ

+

=

∂ ∂Γ =  ∂ ∂
∂ ∂ + + ∂ ∂ 

∫ ∫

∫




         (3.43) 

and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

0
2

0

d , d
d

d , d ,d d .

t h t h

t t

h

H bE s G t s r r r
h a a

r B r r z N r z s
a a

α

σ γ

+ +

=

∂ ∂Γ = −  ∂ ∂
∂ ∂ + + ∂ ∂ 

∫ ∫

∫




        (3.44) 

Recall that ( ) ( ) ( )0, ,
Ht s s G t s
a

∂
Φ =

∂
. By the duality formula (2.10) and (2.18), 

we have 

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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0
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bE r t s r D t s
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r z D t s z r s
u

bE t t s t D t s
u u

t z D t s z s
u

σ
θ

γ
ν

σ
θ

γ
ν

+

=

 ∂ ∂Γ = Φ + Φ ∂ ∂
∂ + Φ  ∂  

 ∂ ∂= Φ + Φ ∂ ∂
∂ + Φ ∂ 

∫ ∫

∫

∫

∫





        (3.45) 

Since ( ) 0tα = , we see that 

2 0.Γ =                            (3.46) 

We conclude from (3.42)-(3.46) that 

( )1 10 .L′ = Γ                          (3.47) 

Moreover, we see directly that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0

2

,

0

, d .

t

t z

bL E t t D t t
u u

f gD t t z z t t t
u u u

σ
θ κ κ

γ
κ ν λ

 ∂ ∂′ = + ∂ ∂
∂ ∂ ∂ + + + ∂ ∂ ∂ 

∫


     (3.48) 

By differentiating (3.32) with respect to h  at 0h = , we thus obtain the 
equation  

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
0

,

, d , d

, d , d 0.

T T
tt t

T
t z t

bE t t s s t D t t s s t
u u

f gD t t s s t z z t t t
u u u

σ
θ κ κ

γ
κ ν λ

 ∂ ∂ + Φ + + Φ ∂ ∂
∂ ∂ ∂ + + Φ + + =∂ ∂ ∂ 

∫ ∫

∫ ∫


 (3.49) 

Using (3.11), equation (3.49) can be written 

https://doi.org/10.4236/jamp.2018.61014


Q. Zhou, Y. Ren 
 

 

DOI: 10.4236/jamp.2018.61014 153 Journal of Applied Mathematics and Physics 
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){
( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )}
( )0

0 0

,

, , , , , , , ,

, , , , , ,

, , , , , d 0.t t z
u u t

E f t A t E f A t X t E h X t Y t K t u
u

p t b t A t u t g t A t X t Y t u

D p t t A t u D p t t A t u z z

θ

λ

σ γ ν
=

∂     ⋅    ∂
+ +


+ + =


∫


 (3.50) 

Since this holds for all tE -measurable θ  we conclude that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
, , , , , , , , , , , | 0.tu u t

E H t A t X t Y t K t u t p t q t r t
u

λ
=

∂ ⋅ ⋅ = ∂ 
E (3.51) 

(ii) ⇒ (i): Conversely, suppose (3.51) holds for some u∈ EA . Then we can 
reverse the argument to get that (3.32) holds for all θβ β= . Then (3.32) holds 
for all linear combinations of such θβ . Since all bounded β ∈ EA  can be 
approximated by such linear combinations, it follows that (3.32) hold for all 
bounded β ∈ EA . Hence, by reversing the remaining part of the argument 
above, we conclude that (ii) ⇒ (i).                                      

4. Conclusion 

In this paper, we consider a mean-field type stochastic control problem where 
the dynamics is governed by a forward and backward stochastic differential 
equation driven by Lévy processes and the information available to the 
controller is possibly less than the overall information. All the system 
coefficients and the objective performance functional are allowed to be random, 
possibly non-Markovian. Malliavin calculus is employed to derive a maximum 
principle for the optimal control of such a system where the adjoint process is 
explicitly expressed. 
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