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Abstract 
We present here some general fractional Schlömilch’s type and Rogers-Hölder’s 
type dynamic inequalities for convex functions harmonized on time scales. 
First we present general fractional Schlömilch’s type dynamic inequalities and 
generalize it for convex functions of several variables by using Bernoulli’s in-
equality, generalized Jensen’s inequality and Fubini’s theorem on diamond-α 
calculus. To conclude our main results, we present general fractional Rog-
ers-Hölder’s type dynamic inequalities for convex functions by using general 
fractional Schlömilch’s type dynamic inequality on diamond-α calculus for 

1ip >  with 
1

1 1
n

i ip=

<∑ . 
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1. Introduction 

In the following, we present a result proved by Mitrinović and Pečarić as given 
in [1] and ([2], p. 235). 

Theorem 1. Let ( ),  ∈i ig G f k  for ( )1,2=i  be a class, where ( )if x  for  
( )1,2=i  are continuous functions and ( )2 0f x >  implies ( )2 0g x >  for every 

[ ],x a b∈  and [ ]: ,ig a b →  are represented by  

( ) ( ) ( ) [ ]: , d ,   , ,  1, 2,
b

i i
a

g x k x y f y y x a b i= ∀ ∈ =∫  

where ( ),k x y  is nonnegative arbitrary kernel. Consider ( ) 0w x ≥  for every 

[ ],x a b∈ . Let [ )0: 0,+ = ∞ →F    be a convex and increasing function, then 
the following inequality holds  
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( ) ( )
( )

( )
( ) ( )1 1

2 2

d d ,
b b

a a

g x f y
w x F x F s y y

g x f y

   
≤      

   
∫ ∫              (1) 

where,  

( ) ( ) ( ) ( )
( ) [ ] ( )2 2

2

,
: d ,   , ,   0.

b

a

w x k x y
s y f y x y a b g x

g x
= ∀ ∈ ≠∫  

Next we present a result on diamond-α calculus, as given in [3]. 
Theorem 2. Let 1 , 2  be two time scales, and 1,a b∈ ; 2,c d ∈ ; ( ),k x y  

is a kernel function with [ ]
1

,x a b∈ 
, [ ]

2
,y c d∈ 

; k is continuous function from 
[ ] [ ]

1 2
, ,a b c d× 

 into [ )0 0,+ = ∞ . Consider  

( ) ( ) [ ]
1

: , ,  , .
d

c

K x k x y y x a bα= ◊ ∀ ∈∫   

We assume that ( ) > 0K x , [ ]
1

,x a b∀ ∈ 
. Consider [ ]

2
: ,f c d →   continuous, 

and the α◊ -integral operator function  

( ) ( ) ( ) [ ]
1

: , ,  , .
d

c

g x k x y f y y x a bα= ◊ ∀ ∈∫   

Consider also the weight function [ ] 01
: , Tw a b +→ , which is continuous.  

Define further the function ( ) ( ) ( )
( ) [ ]

2

,
: , ,

b

T
a

w x k x y
s y x y c d

K x α= ◊ ∀ ∈∫ . Let I denote  

any of ( )0,∞  or [ )0,∞ , and :F I →  be a convex and increasing function. 
In particular, we assume that  

[ ]( )
2

, .Tf c d I⊆  

Then  

( )
( )
( ) ( ) ( )( ) .

b d

a c

g x
w x F x s y F f y y

K x α α

 
◊ ≤ ◊  

 
∫ ∫             (2) 

We extend these results on time scale calculus. In this paper, it is assumed that 
all considerable integrals exist and are finite and   is a time scale, ,a b∈  
with a b<  and an interval [ ],a b   means the intersection of a real interval 
with the given time scale. 

2. Preliminaries 

We need here basic concepts of delta calculus. The results of delta calculus are 
adapted from [4] [5] [6]. 

Time scale calculus was initiated by Stefan Hilger as given in [7]. A time scale 
is an arbitrary nonempty closed subset of the real numbers. It is denoted by  . 
For t∈ , forward jump operator :σ →   is defined by  

( ) { }: inf : .t s s tσ = ∈ >  

The mapping [ )0: 0,µ +→ = ∞   such that ( ) ( ):t t tµ σ= −  is called the 
forward graininess function. The backward jump operator :ρ →   is de-
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fined by  

( ) { }: sup : .t s s tρ = ∈ <  

The mapping [ )0: 0,ν +→ = ∞   such that ( ) ( ):t t tν ρ= −  is called the back-
ward graininess function. If ( )t tσ > , we say that t is right-scattered, while if 
( )t tρ < , we say that t is left-scattered. Also, if supt <   and ( )t tσ = , then t 

is called right-dense, and if inft >   and ( )t tρ = , then t is called left-dense. 
Points that are right-dense and left-dense at the same time are called dense. If   
has a left-scattered maximum M, then { }k M= −  . Otherwise k =  . 

For a function :f →  , the derivative f ∆  is defined as follows. Let kt ∈ , 
if there exists ( )f t∆ ∈  such that for all 0> , there exists a neighborhood U 
of t, such that  

( )( ) ( ) ( ) ( )( ) ( ) ,f t f s f t t s t sσ σ σ∆− − − ≤ −  

for all s U∈ , then f  is said to be delta differentiable at t, and ( )f t∆  is called 
the delta derivative of f  at t. 

A function :f →   is said to be right-dense continuous (rd-continuous), 
if it is continuous at each right-dense point and there exists a finite left limit in 
every left-dense point. The set of all rd-continuous functions is denoted by 

( ),rdC   . 
The next definition is given in [4] [5] [6].  
Definition 1. A function :F →   is called a delta antiderivative of 
:f →  , provided that ( ) ( )F t f t∆ =  holds for all kt∈ , then the delta 

integral of f  is defined by  

( ) ( ) ( ).
b

a

f t t F b F a∆ = −∫  

The following results of nabla calculus are taken from [4] [5] [6] [8]. 
If   has a right-scattered minimum m, then { }k m= −  . Otherwise  

k =  . The function :f →   is called nabla differentiable at kt∈ , if 
there exists ( )f t∇ ∈  such that for any 0> , there exists a neighborhood V 
of t, such that  

( )( ) ( ) ( ) ( )( ) ( ) ,f t f s f t t s t sρ ρ ρ∇− − − ≤ −  

for all s V∈ . 
A function :f →   is left-dense continuous (ld-continuous), provided it 

is continuous at left-dense points in   and its right-sided limits exist (finite) at 
right-dense points in  . The set of all ld-continuous functions is denoted by 

( ),ldC   . 
The next definition is given in [4] [5] [6] [8]. 
Definition 2. A function :G →   is called a nabla antiderivative of :g →  , 

provided that ( ) ( )G t g t∇ =  holds for all kt∈ , then the nabla integral of g  is 
defined by  

( ) ( ) ( ).
b

a

g t t G b G a∇ = −∫  
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Now we present short introduction of diamond-α derivative as given in [4] [9]. 
Let   be a time scale and ( )f t  be differentiable on   in the ∆  and ∇  

senses. For k
kt∈ , where k k

k k=    , diamond-α dynamic derivative ( )f tα◊  
is defined by  

( ) ( ) ( ) ( )1 ,   0 1.f t f t f tα α α α◊ ∆ ∇= + − ≤ ≤  

Thus f  is diamond-α differentiable if and only if f  is ∆  and ∇  diffe-
rentiable. 

The diamond-α derivative reduces to the standard ∆ -derivative for 1α = , 
or the standard ∇ -derivative for 0α = . It represents a weighted dynamic deriv-
ative for ( )0,1α ∈ . 

Theorem 3. [9]: Let , :f g →   be diamond-α differentiable at t∈ . 
Then  

1) :f g± →   is diamond-α differentiable at t∈ , with  

( ) ( ) ( ) ( ).f g t f t g tα α α◊ ◊ ◊± = ±  

2) :fg →   is diamond-α differentiable at t∈ , with  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )1 .

fg t f t g t f t g t

f t g t

α α σ

ρ

α

α

◊ ◊ ∆

∇

= +

+ −
 

3) For ( ) ( ) ( ) 0g t g t g tσ ρ ≠ , :f
g

→   is diamond-α differentiable at  

t∈ , with  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1
.

f t g t g t f t g t g t f t g t g tf t
g g t g t g t

α α σ ρ σ ρ ρ σ

σ ρ

α α◊ ◊ ∆ ∇− − − 
= 

 
 

Theorem 4. [9]: Let ,a t∈  and :h →  . Then the diamond-α integral 
from a  to t  of h is defined by  

( ) ( ) ( ) ( )1 ,   0 1,
t t t

a a a
h s s h s s h s sα α α α◊ = ∆ + − ∇ ≤ ≤∫ ∫ ∫  

provided that there exist delta and nabla integrals of h  on  .  
Theorem 5. [9]: Let , ,a b t∈ , c∈ . Assume that ( )f s  and ( )g s  are 

α◊ -integrable functions on [ ],a b  , then  

1) ( ) ( ) ( ) ( )t t t

a a a
f s g s s f s s g s sα α α± ◊ = ◊ ± ◊  ∫ ∫ ∫ ;  

2) ( ) ( ) t t

a a
cf s s c f s sα α◊ = ◊∫ ∫ ;  

3) ( ) ( )t a

a t
f s s f s sα α◊ = − ◊∫ ∫ ;  

4) ( ) ( ) ( )t b t

a a b
f s s f s s f s sα α α◊ = ◊ + ◊∫ ∫ ∫ ;  

5) ( ) 0
a

a
f s sα◊ =∫ .  

We need the following results. 
Theorem 6. [4]: Let ,a b∈  and ,c d ∈ . Suppose that  

[ ] ( )( ), , ,g C a b c d∈   and [ ]( ), ,h C a b∈    with ( ) 0α◊ >∫
b

a
h s s . If  

( )( ), ,F C c d∈   is convex, then generalized Jensen’s inequality is  
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( ) ( )

( )

( ) ( )( )

( )
.

b b

a a
b b

a a

h s g s s h s F g s s
F

h s s h s s

α α

α α

 
◊ ◊ 

  ≤
 

◊ ◊ 
 

∫ ∫

∫ ∫
             (3) 

If F is strictly convex, then the inequality ≤  can be replaced by < .  
Theorem 7. [3] [10]: Let ,a b∈ . Let [ ]( ), ,if C a b∈   , 1, ,i n=   are α◊ -  

integrable functions and 1ip >  such that 
1

1 1
n

i ip=

=∑ . Then  

( ) ( )
1

1 1
,

ii
b bn n pp

i i
i ia a

f t t f t tα α
= =

 
◊ ≤ ◊ 

 
∏ ∏∫ ∫                 (4) 

which is generalized Rogers-Hölder’s Inequality. 
Definition 3. [11]: A function :f →   is called convex on I I=   , 

where I  is an interval of   (open or closed), if  

( )( ) ( ) ( ) ( )1 1 ,f t s f t f sλ λ λ λ+ − ≤ + −               (5) 

for all ,t s I∈   and all [ ]0,1λ∈  such that ( )1t s Iλ λ+ − ∈  . 
The function f  is strictly convex on I  if (5) is strict for distinct ,t s I∈   

and ( )0,1λ∈ . 
The function f  is concave (respectively, strictly concave) on I , if f−  is 

convex (respectively, strictly convex). 

3. Main Results 

First we present α◊ -integral general fractional Schlömilch’s type inequalities on 
time scales, which is an extension of Schlömilch’s inequality given in [12].  

Theorem 8. Let [ ]
1

,a b 
 and [ ]

2
,c d 

 be two time scales;  
( ) [ ] [ ]

1 2 0, : , ,k x y a b c d +× →    is continuous kernel function with [ ]
1

,x a b∈ 
 

and [ ]
2

,y c d∈ 
. Let α◊ -integral operator functions [ ]

1
: ,ig a b →   belonging 

to a class ( ),iG f k  for ( )1,2i =  are represented by 

( ) ( ) ( ): , ,
d

i ic
g x k x y f y yα= ◊∫  

where [ ]
2

: ,if c d →   are continuous functions. Continuous weight function 
is defined by [ ]

1 0: ,w a b +→   with ( ) 1
b

a
w x xα◊ =∫ . Define  

( ) ( ) ( ) ( )
( )2

2

,
:

b

a

k x y
s y f y w x x

g x α= ◊∫  and [ ]
2

,y c d∀ ∈ 
, where ( )2 0f y >  implies  

( )2 0g x > . Let [ )0 0: 0,F + += ∞ →   be a convex and increasing function. 
If 2 1 1η η≥ ≥ , then the following inequality holds  

( ) ( )
( )

( )
( ) ( )

1 21 2

1 1

1 1

2 2

.
b d

a c

g x f y
w x F x F s y y

g x f y

η ηη η

α α

      
   ◊ ≤ ◊               
∫ ∫        (6) 

Proof. In order to prove this Theorem, we need Bernoulli’s inequality, that is, 
if 0x > , then  
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1 ,    if 1.ppx p x p+ − ≤ ≥  

Since 2 1 1η η≥ ≥ , we have 2

1

1η
η

≥ . Thus, by Bernoulli’s inequality, we have  

( )

( )
( )

( ) ( )
( )

( )

( )
( )

( ) ( )
( )

2

1
1

2

1

2

12

1 2 2

11

2

1 1,

b

b
a

a

b

b
a

a

g x
F

g x
w x x

g x
w x F x

g x

g x
F

g x
w x x

g x
w x F x

g x

η
η

α

α

α

α

η
η η

η

  
      ◊   ◊   

  
  
     ≥ + − ◊ =   ◊   

  

∫
∫

∫
∫

 

that is,  

( ) ( )
( ) ( ) ( )

( )

22
11

1 1

2 2

.
b b

a a

g x g x
w x F x w x F x

g x g x

ηη
ηη

α α

    
 ◊ ≥ ◊           

∫ ∫  

Let F  be replaced by 1Fη  and taking power 
2

1 0
η

> , we get  

( ) ( )
( )

( )
( )

( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( )

1 1

2 2

2 2

2 2

1

1

2

1

1

2

1

1

2

1

1
2

2 2

( )

,

1 ,

b

a

b

a

d
b

c

a

b
d

c
a

g x
w x F x

g x

g x
w x F x

g x

k x y f y y
w x F x

g x

f y
w x F k x y f y y x

g x f y

η η

α

η η

α

η η

α
α

η η

α α

  
 ◊     

  
 ≤ ◊     

  ◊  = ◊      

  
 = ◊ ◊     

∫

∫

∫
∫

∫ ∫

 

( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

2 2

2 2

2 2

1

1
2

2 2

1

1
2

2 2

1

1

2

1 ,
( )

( , )
( )

,

b
d

c
a

d
b

a
c

d

c

f y
w x k x y f y F y x

g x f y

f y k x yF f y w x x y
f y g x

f y
F s y y

f y

η η

α α

η η

α α

η η

α

     ≤ ◊ ◊        

     = ◊ ◊        

  
 = ◊     

∫ ∫

∫ ∫

∫
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where we used the generalized Jensen’s inequality and Fubini’s theorem. 
This proves the claim.                                            □ 
Remark. If we set 1 2 1η η= =  and [ ): 0,F ∞ →  be a convex and increas-

ing function, then (6) takes the form  

( ) ( )
( )

( )
( ) ( )1 1

2 2

.
b d

a c

g x f y
w x F x F s y y

g x f yα α

   
◊ ≤ ◊      

   
∫ ∫            (7) 

If [ ] [ ]
1 2

, ,a b c d= 
, where 1 2= =   , then (7) takes the form of (1).  

Corollary 1. If 1 2 1η η= = , [ ): 0,F ∞ →  be a convex and increasing func-
tion and 1α = , then delta version form of (6) is  

( ) ( )
( )

( )
( ) ( )1 1

2 2

.
b d

a c

g x f y
w x F x F s y y

g x f y

   
∆ ≤ ∆      

   
∫ ∫             (8) 

If 1 2 1η η= = , [ ): 0,F ∞ →  be a convex and increasing function and 0α = , 
then nabla version form of (6) is  

( ) ( )
( )

( )
( ) ( )1 1

2 2

.
b d

a c

g x f y
w x F x F s y y

g x f y

   
∇ ≤ ∇      

   
∫ ∫            (9) 

Remark. Now we take that F  is not necessarily increasing and is taken from  

( )0,∞  into 0
+  and ( )

( )
1

2

f y
f y

 has fixed and strict sign, then according to  

Theorem 8, we get  

( ) ( )
( )

( )
( ) ( )

1 21 2

1 1

1 1

2 2

.
b d

a c

g x f y
w x F x F s y y

g x f y

η ηη η

α α

      
   ◊ ≤ ◊               
∫ ∫  

Corollary 2. If we apply for ( ) pF x x= , 1p > , then (6) takes the form  

( ) ( )
( )

( )
( ) ( )

1 21 2

1 1

1 1

2 2

.
p p

b d

a c

g x f y
w x x s y y

g x f y

η ηη η

α α

      
   ◊ ≤ ◊               
∫ ∫       (10) 

Corollary 3. If we apply for ( ) e , 0xF x x= ≥ , then (6) takes the form  

( )
( )
( )

( )
( ) ( )

1 21 1
1 2

2 2

1 1

e .
g x f yb d
g x f y

a c

w x e x s y y
η η

η η

α α

   
   
   
   

   
   ◊ ≤ ◊      
   
∫ ∫          (11) 

Corollary 4. If 1 2 1η η= = , ( ): 0,F ∞ →  be a convex and not necessarily  

increasing function, ( )
( )

1

2

f y
f y

 has fixed and strict sign and we apply for  

( ) ln , 0F x x x= − > , then (6) takes the form  

( ) ( )
( )

( )
( ) ( )1 1

2 2

ln ln .
b d

a c

g x f y
w x x s y y

g x f yα α

   
◊ ≥ ◊      

   
∫ ∫          (12) 

Remark. If we set ( )2 1f y = , ( ) ( )1g x g x= , ( ) ( )1f y f y= , 1 2 1η η= =  and 
[ ): 0,F ∞ →  be a convex and increasing function, then  
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( ) ( ) ( ) [ ]
12 , ,   , .

d

c

g x k x y y K x x a bα= ◊ = ∀ ∈∫   

We assume that ( ) 0K x > , and define  

( ) ( ) ( )
( ) [ ]

2

,
: ,  , .

b

T
a

w x k x y
s y x y c d

K x α= ◊ ∀ ∈∫  

Then (6) takes the form of (2), as proved in [3].  
Corollary 5. If we take 0

1 q=  , 1q > , where 0  is the set of nonnegative 
integers and 2 =  . 

Then  

( ) ( ) ( ) ( ) ( )
1

11 1 ,
n

m

q n
i i i

i mq

f x x q q f q f qα α α
−

+

=

 ◊ = − + − ∑∫  

for [ ] 01
, ,m n

q
a b q q =    , m n< , where 0,m n∈ . 

And  

( ) ( )d .
d d

c c

f y y f y yα◊ =∫ ∫  

When 1 2 1η η= =  and [ ): 0,F ∞ →  be a convex and increasing function, 
then (6) can be written as  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )
( ) ( )

11 1 11
1

2 2

1

2

1 1

d .

α α
+

−
+

+
=

    
    − + −
    

    
 

≤   
 

∑

∫

i in
i i i

i i
i m

d

c

g q g q
q q w q F w q F

g q g q

f y
F s y y

f y

 

We can generalize Theorem 8 for convex functions of several variables on time 
scales in the upcoming theorem. 

Theorem 9. Let [ ]
1

,a b 
 and [ ]

2
,c d 

 be two time scales;  
( ) [ ] [ ]

1 2 0, : , ,k x y a b c d +× →    is continuous kernel function with [ ]
1

,x a b∈ 
 

and [ ]
2

,y c d∈ 
. Let α◊ -integral operator functions [ ]

1
: ,ig a b →   belonging 

to a class ( ),iG f k  for ( )1,2,3i =  are represented by 

( ) ( ) ( ): , ,
d

i ic
g x k x y f y yα= ◊∫  

where [ ]
2

: ,if c d →   are continuous functions. Continuous weight function 
is defined by [ ]

1 0: ,w a b +→   with ( ) 1
b

a
w x xα◊ =∫ . Define  

( ) ( ) ( ) ( )
( )2

2

,
:

b

a

k x y
s y f y w x x

g x α= ◊∫  and [ ]
2

,y c d∀ ∈ 
, where ( )2 0f y >  implies  

( )2 0g x > . Let [ ) [ )0 0 0: 0, 0,F + + +× = ∞ × ∞ →    be a convex and increasing 
function. 

If 2 1 1η η≥ ≥ , then the following inequality holds  

( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( )

1 21 2

1 1

1 3 1 3

2 2 2 2

, , .
η ηη η

α α

      
   ◊ ≤ ◊               
∫ ∫
b d

a c

g x g x f y f y
w x F x F s y y

g x g x f y f y
 (13) 
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Proof. Proof is similar to Theorem 8.                               □ 
Remark. If we set 1 2 1η η= = , [ ) [ ): 0, 0,∞ × ∞ →F   be a convex and increas-

ing function and [ ] [ ]
1 2

, ,=a b c d 
, where 1 2= =   , then (13) reduces to  

( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( )1 3 1 3

2 2 2 2

, d , d ,
   

≤      
   

∫ ∫
b b

a a

g x g x f y f y
w x F x F s y y

g x g x f y f y
 

as given in ([2], p. 236).  
Now we present α◊ -integral general fractional Rogers-Holder’s type inequalities. 
Upcoming result is an application of general fractional Schlömilch’s type dy-

namic inequality. 
Theorem 10. Let [ ]

1
,a b 

 and [ ]
2

,c d 
 be two time scales;  

( ) [ ] [ ]
1 2 0, : , ,ik x y a b c d +× →    for 1, ,= ∈i n   are continuous kernel  

functions with [ ]
1

,x a b∈ 
 and [ ]

2
,y c d∈ 

. Let α◊ -integral operator functions 
[ ]

1
, : ,i if g a b →   for 1, ,= ∈i n   are represented by  

( ) ( ) ( ): , ,α= ◊∫
d

i i ic
f x k x y u y y  

and  

( ) ( ) ( ): , ,α= ◊∫
d

i i ic
g x k x y v y y  

where [ ]
2

, : ,i iu v c d →   are continuous functions for 1, ,= ∈i n  .  
Continuous weight function is defined by [ ]

1 0: , +→w a b    with  

( ) 1
b

a
w x xα◊ =∫ . Define ( ) ( ) ( ) ( )

( )
,

:
b i

i i a
i

k x y
s y v y w x x

g x α= ◊∫ , and [ ]
2

,y c d∀ ∈ 
 for  

1, ,= ∈i n  , where ( ) 0>iv y  implies ( ) 0ig x >  for 1, ,= ∈i n  . Let 

0 0:iF + +→   for 1, ,= ∈i n   are convex and increasing functions. 

If 1ip >  with 
1

1 1
n

i ip=

<∑ . Then the following inequality holds  

( ) ( )
( )

( )
( ) ( )

1

1 1
.α α

= =

     ◊ ≤ ◊           
∏ ∏∫ ∫

i i
p pb dn n

i i
i i i

i ii ia c

f x u y
w x F x F s y y

g x v y
     (14) 

Proof. Let 
1

1: 1γ
=

= <∑
n

i ip
 and :ζ γ= <i i ip p  for 1, ,= i n . Then 

1

1 1
ζ=

=∑
n

i i

,  

where 1ζ >i  for 1, ,= i n . We use here generalized Rogers-Hölder’s inequa-
lity, Schlömilch’s inequality, generalized Jensen’s inequality and Fubini’s theo-
rem, as  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1

1

1

1

1

i

i i

b n
i

i
i ia

b n
i

i
i ia

bn
i

i
i ia

f x
w x F x

g x

f x
w x F x

g x

f x
w x F x

g x

α

ζ α

ζ ζ

α

=

=

=

 
◊  

 

  
 = ◊     

   ≤ ◊     

∏∫

∏∫

∏ ∫
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( ) ( )
( )

( )
( ) ( )

( )

1

1

1

1

,

i i

i i

p pbn
i

i
i ia

p pd
bn i ic

i
i ia

f x
w x F x

g x

k x y u y y
w x F x

g x

α

α
α

=

=

  
 ≤ ◊     

  ◊  = ◊      

∏ ∫

∫∏ ∫

 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( ) ( )

( )

1

1

1

1

1

1

1 ,

1 ,

,

i i

i i

i i

p pbn d i
i i ic

i a i i

p pbn d i
i i ic

i a i i

p pdn bi i
i i a

i c i i

u y
w x F k x y v y y x

g x v y

u y
w x k x y v y F y x

g x v y

u y w x k x y
F v y x y

v y g x

α α

α α

α α

=

=

=

   = ◊ ◊     

     ≤ ◊ ◊        

     = ◊ ◊         

∏ ∫ ∫

∏ ∫ ∫

∏ ∫ ∫

( )
( ) ( )

1

1
.

i i
p pdn

i
i i

i c i

u y
F s y y

v y α
=

  
 = ◊     

∏ ∫

 

This proves the claim.                                            □ 
Corollary 6. If we apply for ( ) i

iF x xξ= , 0x ≥ , 1, ,i n=   and let 1iξ ≥ , 
1, ,i n=  . Then (14) takes the form  

( ) ( )
( )

( )
( ) ( )

1

1 1
.

i i i i
p pb dn n

i i
i

i ia ci i

f x u y
w x x s y y

g x v y

ξ ξ

α α
= =

     ◊ ≤ ◊           
∏ ∏∫ ∫       (15) 

4. Conclusion and Future Work  

The study of dynamic inequalities on time scales has a lot of scope. This research 
article is devoted to some general fractional Schlömilch’s type and Rogers-Hölder’s 
type dynamic inequalities for convex functions harmonized on diamond-α calcu-
lus and their delta and nabla versions are similar cases. Similarly, in future, we can 
present such inequalities by using Riemann-Liouville type fractional integrals and 
fractional derivatives on time scales. It will also be very interesting to present such 
inequalities on quantum calculus. 

References 
[1] Mitrinović, D.S. and Pečarić, J.E. (1988) Generalizations of Two Inequalities of 

Godunova and Levin. Bulletin of the Polish Academy of Sciences, 36, 645-648. 

[2] Pečarić, J.E., Proschan, F. and Tong, Y.L. (1992) Convex Functions, Partial Order-
ings, and Statistical Applications, vol. 187 of Mathematics in Science and Engineer-
ing. Academic Press, Boston. 

[3] Anastassiou, G.A. (2012) Integral Operator Inequalities on Time Scales. Interna-
tional Journal of Difference Equations, 7, 111-137.  

https://doi.org/10.4236/jamp.2017.512193


M. Jibril S. Sahir 
 

 

DOI: 10.4236/jamp.2017.512193 2370 Journal of Applied Mathematics and Physics 
 

[4] Agarwal, R.P., O’Regan, D. and Saker, S. (2014) Dynamic Inequalities on Time 
Scales. Springer International Publishing, Cham, Switzerland.  
https://doi.org/10.1007/978-3-319-11002-8 

[5] Bohner, M. and Peterson, A. (2001) Dynamic Equations on Time Scales. Birkhäuser 
Boston. https://doi.org/10.1007/978-1-4612-0201-1 

[6] Bohner, M. and Peterson, A. (2003) Advances in Dynamic Equations on Time 
Scales. Birkhäuser Boston, Boston. https://doi.org/10.1007/978-0-8176-8230-9 

[7] Hilger, S. (1988) Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltig-
keiten. PhD Thesis, Universität Würzburg, Würzburg. 

[8] Anderson, D., Bullock, J., Erbe, L., Peterson, A. and Tran, H. (2003) Nabla Dynamic 
Equations on Time Scales. Pan-American Mathematical Journal, 13, 1-48. 

[9] Sheng, Q., Fadag, M., Henderson, J. and Davis, J.M. (2006) An Exploration of Com-
bined Dynamic Derivatives on Time Scales and Their Applications. Nonlinear 
Analysis: Real World Applications, 7, 395-413.  
https://doi.org/10.1016/j.nonrwa.2005.03.008 

[10] Chen, G.S., Huang, F.L. and Liao, L.F. (2014) Generalizations of Hölder Inequality 
and Some Related Results on Time Scales. Journal of Inequalities and Applications, 
2014, 207. https://doi.org/10.1186/1029-242X-2014-207 

[11] Dinu, C. (2008) Convex Functions on Time Scales, Annals of the University of 
Craiova. Mathematics and Computer Science Series, 35, 87-96. 

[12] Hardy, G.H., Littlewood, J.E. and Pölya, G. (1952) Inequalities. 2nd Edition, Cam-
bridge University Press, Cambridge. 

 
 

https://doi.org/10.4236/jamp.2017.512193
https://doi.org/10.1007/978-3-319-11002-8
https://doi.org/10.1007/978-1-4612-0201-1
https://doi.org/10.1007/978-0-8176-8230-9
https://doi.org/10.1016/j.nonrwa.2005.03.008
https://doi.org/10.1186/1029-242X-2014-207

	Dynamic Inequalities for Convex Functions Harmonized on Time Scales
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Conclusion and Future Work 
	References

