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Abstract 
Vehicular traffic is a hard problem in big cities. Internal combustion vehicles are 
the main fossil fuel consumers and frame the main source of urban air pollu-
tants, such as particulate matter, nitrogen oxides, and volatile organic com-
pounds. Vehicular traffic is also a promoter of climate change due to its green-
house gas emissions, such as CO and CO2. Awareness of the spatiotemporal 
distribution of urban traffic, including the velocity distribution, allows knowing 
the spatiotemporal distribution of the air pollutant vehicular emissions required 
to understand urban air pollution. Although no well-established traffic theory 
exists, some models and approaches, like cellular automata, have been proposed 
to study the main aspects of this phenomenon. In this paper, a simple approach 
for estimating the space-time distribution of the air pollutant emission rates in 
traffic cellular automata is proposed. It is discussed with the Fukui-Ishibashi 
(FI) and Nagel-Schreckenberg (NS) models for traffic flow of identical vehicles 
in a single lane. We obtained the steady-state emission rates of the FI and NS 
models, being larger those produced by the first one, with relative differences of 
up to 45% in hydrocarbons, 56% in carbon monoxide, and 77% in nitrogen 
oxides. 
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1. Introduction 

Big cities are suffering severe problems because of the growing number of ve-
hicles moving over their streets. In Mexico City (CDMX), for example, the reg-
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istered vehicular fleet was estimated close to 5 million in 2015. Figure 1 de-
scribes information published by the Mexico’s National Institute of Statistics and 
Geography (Instituto Nacional de Estadística y Geografía, INEGI) in relation to 
the increasing number of registered vehicles between 1980 and 2014 [1]. 

The vehicular fleet of CDMX is composed, in a great majority, by internal 
combustion vehicles that consume fossil fuels (gasoline, diesel, and gas); there-
fore, vehicular flow through the city streets is one of the main responsible for 
urban air pollution. In fact, the 2014 emissions inventory of CDMX [2] reported 
that the contributions of the mobile sources to the air pollutant emissions in the 
city were as described in Table 1. 

In Table 1, we observe that the vehicular traffic contributed with the 44% of 
the CDMX air pollution, in average. These emissions, of course, are not un-
iformly distributed in the region because there is no a uniform distribution of 
traffic in the city and winds either are not uniform either perennial. This means 
that the most polluted areas of a city are not necessarily those ones where more 
pollutants are released to the atmosphere. 

Addressing the urban air pollution problems depends on the knowledge of the 
distribution modes of the urban vehicles in space, time, and over the possible 
speeds because these modes determine how the emissions of gases and particu-
late matter by the vehicles will result in a spatiotemporal distribution of emission 
rates in the city.  

Once in the atmosphere, the air pollutants will be transported by the wind and 
dispersed by the atmospheric turbulence. Figure 2 shows the basic scheme of 
coupling of the models required for simulating the impacts of traffic emissions 
on air quality. It comprises a traffic flow model, which estimates the spati-
otemporal distribution of the vehicles and their velocity distribution; an emis-
sion model, which allows determining the spatiotemporal distribution of the 
emission rates of the pollutants produced by the traffic flow; an atmospheric  
 

 
Figure 1. Growing of the MCMA’s vehicular fleet from 1980 
to 2014. 
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Figure 2. Basic scheme of coupling of the models required for simulating the impacts of 
the emissions of mobile sources on air quality. 
 
Table 1. Mobile source air pollutant emissions [%] according to the 2014 emissions 
inventory of CDMX. 

PM10 PM2.5 SO2 CO NOX TOC VOC CO2 N2O HFC CO2-eq Black Carbon 

20.7 28.7 16.5 96.1 78.5 11.3 20.0 61.5 50.0 98.0 49.0 83.7 

 
transport and dispersion modelling system of the emissions; and an atmospheric 
chemistry model, which addresses the possible transformations of the pollutants 
in the atmosphere. 

There is no a complete theory for traffic flow phenomena. However, several 
models and approaches for analyzing traffic phenomena, such as traffic jamming 
and some other common modes of traffic flow, have been developed from the 
macroscopic, mesoscopic and microscopic standpoints. 

The scientific treatment of the traffic flow phenomena began with Robert 
Herman in 1956, and some years later, in the early 1960s, Herman and Prigogine 
started to study vehicular traffic as a collective flow phenomenon, developing a 
kinetic theory for multi-lane traffic flow using a Boltzmann like model for the 
vehicle interactions [3]. 

In the second half of the 1980s, an alternative line of research emerged for 
traffic flow simulation based on cellular automata [4], but its proper develop-
ment started in the early 1990s with the models proposed by K. Nagel and M. 
Schreckenberg [5] and by M. Fukui and Y. Ishibashi [6], hereafter referred as NS 
and FI models, respectively. They defined cellular automata models for the mi-
croscopic simulation of vehicular traffic. The initial NS and FI models were 
formulated for identical vehicles moving on a single lane highway. In these 
models, each vehicle can be at rest or be hopping from site to site in a 1D lattice 
with a positive integer speed which does not exceed a given maximum. The dy-
namic rules of these cellular automata are probabilistic and control the propaga-
tion, acceleration, and braking of the model vehicles, although conserving its 
number and preventing them from collisions and overtaking. Several variants 
and extensions of the NS and FI basic models have been developed for simulat-
ing traffic flow in double-sense and multi-lane highways [7] [8] [9], and also for 
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2D complex traffic networks similar to that of a city [10] [11] [12] [13] [14]. 
In this paper, we propose a simple approach for estimating the spatiotemporal 

distribution of the emission rates for the traffic flow phenomena described by 
the NS and FI models. This approach assumes it is possible to know the velocity 
distribution of the system, i.e. how many vehicles are moving with each one of 
the possible velocities (from zero to a maximum speed). The velocity distribu-
tion of the traffic cellular automata can be obtained always by computer simula-
tions, but also theoretically, at least for a class of models. In this paper, for ob-
taining the velocity distributions, we used computer simulations and the statis-
tical mechanics approach proposed in [15] [16] [17] for the maximum entropy 
states of 1D traffic cellular automata. The results of this work show that due to 
the transition rules of the FI model, which favor the highest speeds, the steady 
state emission rates of this model are higher than those ones of the NS model, 
with relative differences as large as 45% for hydrocarbons, 56% for carbon mo-
noxide, and 77% for nitrogen oxides. 

The rest of the paper is organized as follows. In Section 2, we described our 
methodological approach. First, we presented the basic NS and FI traffic cellular 
automata, discussing, in particular, how the velocity distributions of these mod-
els can be obtained from computer simulations and from the theoretical ap-
proach proposed by Salcido and collaborators [15] [16] [17]. We described also 
the estimation model for the pollutants emission rates from mobile sources [18], 
and the extension we proposed for traffic cellular automata. In Section 3, we 
presented and discussed the results of the application of our methodological ap-
proach to the problem of estimating the distribution of the pollutant emissions 
from the NS and FI traffic cellular automata. 

2. Methodology 

In this section, we provide first a brief introduction to cellular automata; then we 
describe and discuss the NS and FI traffic cellular automata models and the ap-
proaches to frame their velocity distributions, and, finally, we present the ap-
proach to estimate the model cars emissions. 

2.1. Cellular Automata 

Cellular automata (henceforth: CA) are a class of spatially and temporally dis-
crete, complex dynamical systems characterized by local interaction and an in-
herently parallel form of evolution. Following a suggestion of Stanislaw Ulam, 
cellular automata were first introduced by John von Neumann in the early 1950s 
to act as simple models of biological self-reproduction [19]. Cellular automata 
can be considered as prototypical models for complex systems and processes 
consisting of a large number of identical, simple, locally interacting components 
[20]. The study of CA has generated great interest over the years because of their 
ability to generate a rich spectrum of very complex patterns of behavior out of 
sets of relatively simple underlying rules [20] [21] [22] [23]. Moreover, CA ap-
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pear to capture many essential features of complex self-organizing cooperative 
behavior observed in real systems. 

There exists a wide variety of particular CA models; however, most of them 
usually possess the following common generic characteristics. The system sub-
strate consists of a one-, two- or three-dimensional lattice of cells; all cells are 
equivalent; each cell takes on one of a finite number of possible discrete states; 
each cell interacts only with cells that are in its local neighborhood; and at each 
discrete time step, each cell updates its current state according to a transition 
rule taking into account the states of cells in its neighborhood. 

If ( ),x tψ  denotes the state at cell x at time t, ( )V x  is the neighborhood of 
this cell (in a well-defined sense of proximity), and ( ) ( ){ },x t V xxψ ∈  is the set 
of the states of the cells in the neighborhood, then the state at cell x at time 1t +  
will be given by 

( ) ( ) ( ){ }( ), 1 ,x t F x t V xxψ ψ+ = ∈                    (1) 

Here F represents the transition rules of the system dynamics. Note that both 
the neighborhood and the transition rule have the same definitions for all the 
lattice cells. Usually, neighborhoods contain the first nearest neighbors (von 
Neumann), or the first and second nearest neighbors (Moore). Some widely 
known cellular automata are the Wolfram’s 1D elementary cellular automata [24] 
and the Conway’s Game of Life [25]. 

2.2. One-Dimensional Traffic Cellular Automata 

The basic one-dimensional traffic cellular automata (B1DTCA) are concerned 
with the traffic flow of identical vehicles (cars) on a single lane highway with no 
anticipation. This class of CA models shares the following properties:  
• The system can be considered as a lattice gas of N indistinguishable unit mass 

particles, which evolves in a 1D lattice with L cells (or sites). 
• The particles of the system obey an exclusion principle, which establishes that 

no more than one particle can be in one lattice cell. 
• Each particle can be at rest or be moving with a positive integer velocity that 

cannot exceed a given maximum max 0v > : kv k=  with max0,1,2,3, ,k v=  . 
This means that the particles move always in the same direction (say, from 
left to right), and never can go in the reverse direction. The velocity maxv  is 
interpreted as a speed limit that drivers have to respect inexcusably. 

• The dynamics of the system is defined by a set of local transition rules. The 
same rules are applied simultaneously to all the lattice cells. These rules allow 
no particle collisions neither overtaking. Traffic accidents never occur and 
each car follows always same another car. 

• The local transition rules preserve the number of particles, but not necessari-
ly momentum neither the energy. 

• The system evolution occurs in discrete time steps. Time increases in one 
unit only once all the cells of the system have been updated according to the 
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transition dynamical rules. 
In Figure 3, we illustrate a possible spatial distribution of the system cars in 

the lattice. Here, the different car velocities are evidenced with different back-
ground colors. It must be noted that the no anticipation condition implies that 
each car with velocity v occupies v + 1 lattice sites. 

The distance among adjacent cells is usually defined as the unit, but for the 
purpose of real traffic simulations, it is assumed to be the average front-bumper- 
to-front-bumper distance of adjacent vehicles under conditions of strongly 
jammed traffic and set equal to 7.5 m. In this case, the time step is set equal to 
one second, and the velocity increases in steps of 27 km/h. 

We can describe the state of the system indicating the number of lattice cells 
(L), the total number of particles (N), and the numbers of particles kN  which 
move with velocity kv k=  ( max0,1,2, ,k v=  ). In general, however, we will use 
the intensive properties (densities) defined as 

, k
k

NNn n
L L

= =                          (2) 

The density of particles (i.e. the number of particles per cell) is equal to the 
sum of the partial densities 

k
k

n n=∑                               (3) 

and the densities of momentum (traffic flow) and kinetic energy are given by 

,k k k k
k k

q nv v n nε ε= = =∑ ∑                     (4) 

respectively, where v  is the average speed of the traffic flow and 2 2k kvε =  is 
the kinetc energy of a particle with speed kv . 

The traffic models developed by Nagel and Schreckenberg [5] and by Fukui 
and Ishibashi [6] [26] belong to the class of B1DTCA. 

2.2.1. The Nagel and Schreckenberg Model 
The dynamics of the Nagel-Schreckenberg model [5] is defined by the following 
set of local transition rules. If one vehicle is located at the cell c ( 1,2,3, ,c L=  ) 
at time t, and it is moving with velocity ( ),v c t , then 
• Rule 1. Acceleration: ( ),v c t  is replaced by ( ) ( ){ }max, min , 1,u c t v c t v= + . 
• Rule 2. Braking: ( ),u c t  is replaced by ( ) ( ) ( ){ }, min , , ,w c t d c t u c t= , where 

( ),d c t  is the number of empty cells ahead the cell c, at time t. 
• Rule 3. Randomization: the velocity of the vehicle located at cell c is updated to 

( ) ( ){ }, 1 max , 1,0v c t w c t+ = −  with probability p, or to ( ) ( ), 1 ,v c t w c t+ =  
with probability 1 p− . 

• Rule 4. Flow: the vehicle jumps from cell c to cell ( ), 1c v c t+ + . 
 

 
Figure 3. One instantaneous spatial distribution of the system cars. Colors make evident 
the possible different car velocities. 
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These rules are applied simultaneously to all the non-empty lattice cells; time 
increases by one only when all the lattice cells have been updated. 

These rules have widely accepted simple interpretations. Rule 1 mimics the 
fact that drivers like to go as fast as allowed. Rule 2 takes into account that one 
driver has to reduce its car’s velocity to avoid the collision against the vehicle 
ahead. Rule 3 aims to take into account some effects which produce velocity 
fluctuations, even in the free flow case; for example, the road conditions (slopes, 
potholes, and speed humps, among others), the impact of climatic conditions on 
traffic flow, and psychological effects. Consequently, this rule can produce brak-
ing overreaction, which may give rise to spontaneous jamming [27]. Finally, 
Rule 4 displaces the vehicles in the lattice. It is worthy of comment that Brilon 
and Wu [28] have questioned Rule 3; they argue that it has no theoretical basis. 
Nevertheless, Rule 3 is essential in simulating realistic traffic flow since other-
wise the model dynamics would be completely deterministic [5]. 

Collectively, these four rules enable the NS model to reproduce the basic 
phenomena of real traffic, such as the occurrence of the phantom traffic jams. 
These rules define a minimal model in the sense that any further simplification 
of them no longer produces nontrivial and realistic behavior. For proper model-
ling of the fine structure of traffic, however, it is necessary the introduction of 
additional rules and/or the modification of the transition rules above-presented. 

2.2.2. The Fukui and Ishibashi Model 
In the Fukui-Ishibashi model [6] [26] [29] the cars can move by at most maxv  
lattice sites in one time step if vehicles in front do not block them. Specifically, if 
at time t the number of empty sites h in front of a car is larger than maxv  then, 
in the next time-step, it can move forward maxv  sites with probability 1 p− , or 

max 1v −  sites with probability p. Here, the randomization probability p 
represents the degree of stochastic delay. Within the framework of this model, 
drivers do not like to use brakes if they are far away from the vehicle ahead. For 
a large density of cars, the stochastic delay in the FI model represents the assur-
ance of the avoidance of crashes. When the stochastic delay is null ( 0p = ), this 
cellular automaton is referred to as the deterministic FI model with the maxi-
mum velocity maxv . On the other hand, the case 1p =  defines the determinis-
tic FI model with the maximum velocity max 1v − . If maxh v<  at time t, then the 
car can only move by h sites in the next time-step. Important differences of the 
FI model with respect the NS model are that the acceleration of cars may occur 
abruptly and that stochastic delay only affects the high-speed cars. 

2.2.3. The Maximum Entropy States 
Many of the cellular automata models proposed for traffic flow are based on the 
NS and FI models that we described in the previous sections. These models, in 
general, have been developed as computational systems for simulating traffic 
phenomena, and there are no analytical theoretical formulations to describe 
them. In fact, up today, very few efforts have been made to establish a unified 
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theoretical formalism for the traffic cellular automata. In this section, we provide 
a brief description of a statistical mechanics’ analysis carried out by Salcido et al. 
[15] [16] [17] for obtaining the equilibrium states of the B1DTCA (such as the 
NS and FI models) from a maximum entropy principle. 

It is important to stress that the dynamical rules of the models like NS and FI 
are not microscopically reversible (they do not satisfy the principle of detailed 
balance [30] [31]), and, consequently, the system is always far from equilibrium. 
In fact, the Nagel-Schreckenberg and Fukui-Ishibashi models have been consi-
dered as variants of the well-known asymmetric exclusion process (ASEP), a pa-
radigm of non-equilibrium systems [32]. In spite of this fact, an entropy func-
tion can be defined for the class of B1DTCA, and the velocity distribution that 
corresponds to the maximum-entropy states may be determined [15] [16] [17]. 

Such as detailed in [17], we assume that our system belongs to the class of 
B1DTCA (defined in Section 2.2). In addition, we assume that it has periodic 
boundary conditions, so that when one particle leaves the lattice by one end, it 
appears immediately in the other end. Moreover, it is observed that each particle 
of the system, which is moving with the velocity iv  can be considered as a 
block that occupy 1iv +  cells in the 1D lattice. This observation allows showing 
that the entropy per cell of the system of blocks is 

( ) ( ) ( ) ( )ln ln lni i
i

s n n n nλ λ λ λ= + + − −∑             (5) 

where λ  is the vacancy (the number of cells per cell that remain empty after 
accommodating all the blocks of the system in the lattice) and in  is the partial 
density of the particles with velocity iv  (the number of blocks each one occu-
pying 1iv +  cells, per cell of the system). We observe that 

( )1 1 0i i
i

v nλ = − + ≥∑                        (6) 

Equations (3) and (4) give the densities of particles, momentum, and kinetic 
energy of the system. 

Under this context, the maximum entropy states of the system are given by 

0e e
i i

i i

v v

in n
n n

α βε βελ λλ
λ λ

− − −   = =   + +   
                (8) 

Here α  and β  are Lagrange multipliers, and it has been defined 0 en αλ −≡  
[17]. Equation (8), for each velocity 1 2 max, , ,iv v v v=  , gives the number of par-
ticles (cars) per cell which are moving with that velocity; i.e., this equation gives 
the velocity distribution of the system. This maximum entropy approach describes, 
as a particular case, the low-density behavior of the FI model with a very good 
agreement [17], and also reproduce, approximately, at least, the steady states of the 
NS model [15] [16] [17]. 

2.3. Pollutant Emission Rates of Traffic Cellular Automata 

Let us assume that ( ), ie vα  is the emission rate of the pollutant α  of one 
particle (a model car of a traffic cellular automaton) which is moving with veloc-

https://doi.org/10.4236/jamp.2017.511175


A. Salcido, S. Carreón-Sierra 
 

 

DOI: 10.4236/jamp.2017.511175 2148 Journal of Applied Mathematics and Physics 
 

ity iv . Let us assume also that at the cell x, the average number of particles per 
cell which are moving with the velocity iv  at time t, is ( ),in x t . Then, the par-
tial emission rate of the pollutant α  due to the vehicles with velocity iv  is 
given by 

( ) ( ) ( ), , , , ,i i iv x t e v n x tµ α α=                  (9) 

And the total emission rate of the pollutant α  at time t, due to all the par-
ticles of the system is 

( ) ( ) ( ) ( ), , , , , ,i i i
x i x i

Q t v x t e v n x tα µ α α= =∑∑ ∑∑            (10) 

where the sums extend over all the lattice cells and over all the possible veloci-
ties. 

For traffic cellular automata, the velocity distributions that we need to esti-
mate their pollutant emissions can be obtained in general from computer simu-
lations, but also from a theoretical standpoint such as the maximum entropy 
approach that we described in the previous section. 

The emission rate ( ), ie vα , on the other hand, must be determined experi-
mentally, using emission factors, or with a proper emission model. This function 
represents a subset of a mobile source emission inventory disaggregated by pol-
lutant, type of vehicle, and speed of movement of the vehicle. This emission rate, 
of course, will depend also on the characteristics and conditions of the vehicle, 
on driving habits, and on the weather conditions. In general, the reference data 
for estimating the emissions of road vehicles is obtained by measuring the emis-
sions of a representative vehicle in a controlled ambient and simulating specific 
driving condition. The results of the observations are usually aggregated either 
by estimating a functional relationship (e.g., the German recommendations for 
economic assessment of road infrastructure investments (EWS) [33]) or by clus-
tering the data into typical driving situations (e.g., the Workbook on Emission 
Factors for Germany and Switzerland [18]). 

The EWS has the advantage that the full functional relationship on the ve-
hicle’s velocity v is given for a specific pollutant α  and vehicle type [34]: 

( )

2 2
0 1

2 2
0 1

for 20 km h
,

min , for 20 km h
f

SG

cc c v v
v

e v
cc c c v v
v

α

 + + >=     + + ≤     

     (11) 

with parameters 0 1,c c  and 2c  for free flow, and parameter SGc  for stop-and- 
go traffic conditions. These parameters are differentiated by vehicle type and 
pollutant. A reduction factor is applied for each pollutant in order to take ac-
count of advanced pollution reduction technologies. From the emission factor, 

( ),fe vα , the emission rate ( ),e vα  is calculated as follows: 

( ) ( ),
,

3600
fe v v

e v
α

α =                         (12) 

Here, the emission rate is expressed in [g/s] if the velocity and the emission 

https://doi.org/10.4236/jamp.2017.511175


A. Salcido, S. Carreón-Sierra 
 

 

DOI: 10.4236/jamp.2017.511175 2149 Journal of Applied Mathematics and Physics 
 

factor are expressed in [km/h] and [g/km], respectively. 
Extending EWS [33] [34], we assume that the emission factor and the emis-

sion rate of the pollutant α  for a particle with velocity iv  in traffic cellular 
automata, can be estimated as 

( ) ( ) ( ) ( ) ( )2 32
0 1 5

,f i i
i i

A A
e v A A v

v v
α α

α α α= + + +           (13) 

( ) ( ) ( ) ( ) ( )3 45
0 1 2 3, i i i ie v B B v B v B vα α α α α= + + +          (14) 

for 0 1 max, , ,iv v v v=  . The parameters rA  and rB  depend on the pollutant 
α  and on the characteristics of the vehicle. The parameter 0B  represents the 
emission rate of one vehicle at rest (stopped, but with its motor running). Note 
the additional term in Equation (13) in comparison with Equation (11). In Sec-
tion 2.5, we will see that this term allows a very good fitting to the available data 
reported in [34]. 

3. Results and Discussion 

The main goal of this work is to estimate and compare the emissions rates of the 
Nagel-Schreckenberg and Fukui-Ishibashi traffic cellular automata. For simplic-
ity, we considered only simulations of the steady states for models with max 5v =  
and randomization probability 0.25p = . They were carried out with an 
800-cells lattice with periodic boundary conditions. Particle densities from 0 to 1 
in steps of 0.01 were considered. In each simulation, the system was allowed to 
evolve during 600 time steps, starting from an initially random spatial distribu-
tion of the particles. The simulation was repeated 1000 times for each particle 
density value. In this case, the ensemble average of the local velocity distribution 
at each lattice cell is the same as the ensemble average of the global one. 

3.1. The Velocity Distributions 

In Figure 4 and Figure 5, we present some results of the space-time evolution of 
the NS and FI models, which we obtained from computer simulations. In Figure 4, 
it is shown the evolution of the NS model for particle densities 0.10,0.12,0.17n =  
and 0.30. Each row (horizontal line) contains an instantaneous spatial distribution 
of the particles. Time increases vertically from top to bottom. It is observed that 

0.12n =  defines a transition between two different flow regimes: from free to 
congested flow. 

Figure 5 shows the spatiotemporal evolution of the FI model for densities 
0.18,0.20,0.22n =  and 0.30. In this case, 1 5n =  defines a transition between 

the free flow and congested flow regimes. 
The graphs of Figure 6 show, for the NS and FI models ( max 5v = , 0.25p = ), 

the steady state partial densities 0 1 5, , ,n n n  of the particles with velocities 

0 1 5, , ,v v v , respectively; and the densities of kinetic energy, ε , and momentum, 
q, and the velocity v, of the traffic flow, expressed as functions of the vehicular 
density n. The partial densities ( )in n  were obtained as ensemble averages  
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(a)                                    (b) 

  
(c)                                    (d) 

Figure 4. Computer simulations with the NS model with max 5v =  and 0.25p = , for 

several values of the particle density. In particular, for 0.12n = , a transition between two 
different flow regimes is observed. (a) 0.10n = ; (b) 0.12n = ; (c) 0.17n = ; (d) 0.30n = . 
 

  
(a)                                    (b) 

  
(c)                                    (d) 

Figure 5. Computer simulations of the FI model with max 5v =  and 0.25p = , for 
several values of the particle density. A transition from the free to the congested flow is 
observed around 1 5n = . (a) 0.18n = ; (b) 0.20n = ; (c) 0.22n = ; (d) 0.30n = . 
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Figure 6. Steady state properties of the NS and FI models with max 5v =  and 0.25p = . 
The partial densities 0 1 5, , ,n n n

 and the densities of kinetic energy ε , and 
momentum q, and the velocity v of the traffic flow, are shown in the first and second 
rows. The last row shows the differences of these properties between the FI and NS 
models. 
 
over the 1000 repetitions of the simulations. The properties ,qε , and v were 
calculated from Equations (4). In the traffic science jargon, the plot of q is 
known as the fundamental diagram. In the bottom row, we presented graphs 
which show the differences of these properties between the FI and NS models. 

Here, it is observed that all the partial densities, 0 1 5, , ,n n n  of the NS model 
are different from zero in the interval 0 1n< < , although only the partial densi-
ties 4n  and 5n  have non-negligible values in the interval 0 0.12n< < . For 
the FI model, otherwise, only the partial densities 4n  and 5n  are greater than 
zero in the low-density regime 0 1 5n< < , and for 1 5 1n< < , all partial densi-
ties, except 5n , are different from zero. Then, for max 5v =  and 0.25p = , the 
free flow regime in the FI model extends up to densities close to 1 5n = , while 
in the NS model this regime extends only up to 0.12n = . This is clear in the 
plots of the average velocity of the traffic flow and in the densities of momentum 
and kinetic energy, which are shown in the right column of Figure 6. 
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The left column of the last row of Figure 6 shows the plots of the differences 
between the partial densities of the FI and NS models: 

( ) ( ) ( ), , , 0,1, ,5k k kdn n n NI n n NS n k= − = 
          (15) 

These plots show that these differences are negligible in the interval 
0 0.12n< < , that the partial densities 4n  and 5n  in the FI model are larger 
than in the NS model in the density interval 0.12 0.18n< < , but in the same 
interval the partial densities of the smaller velocities are larger in the NS model 
than in the FI model. For particle densities 0.18 0.26n< < , only the partial 
density 4n  of the FI model is larger than in the NS model, and for 0.3 1n< < , 
the numbers of particles with velocities 2 3,v v , and 4v  are larger in the FI mod-
el. In the high density region 0.79 1n< < , also the number of particles with ve-
locity 1v  is larger in the FI model than in the NS model. These observations 
underline that, in general, the average velocity of traffic flow is larger in the FI 
model, such as it is shown in the plots we presented in the right column of the 
last row of Figure 6. These results are consequences of the dynamical rules of 
the FI traffic cellular automaton, where the particles can increase their velocities 
faster than in the NS model, and where the stochastic delay only applies to the 
high-speed cars. As we will show in Section 3.2, this behavior has an important 
consequence in relation with the air pollutant emissions of the traffic flows de-
scribed by these models. 

For concluding this section, in the graphs of the Figure 7 we showed the maxi-
mum entropy states of the NS and FI models for the same set of couples of particle 
density and kinetic energy per cell, ( ),n ε , of the simulations we described pre-
viously for these traffic models. Again, the partial densities 0 1 5, , ,n n n , and the 
densities of kinetic energy ε  and momentum q, and the velocity v, of the traffic 
flow, are shown. The partial densities presented in this figure (left column) were 
obtained by numerical solution of Equation (8) using the points ( ),n ε  of the 
curves ( )nε  presented in the first and second rows of the right column of Fig-
ure 6, as input data. An exception was the case of the low density behavior of the 
FI model, 0 1 5n< < , because the following exact analytical solution of Equa-
tion (8) exists for this case [17]: 

( ) ( )( ){ }2
5

1 1 4 1 4 4 1 5 1
2

n n n n n p= − − − − − −           (16a) 

4 5n n n= −                             (16b) 

( ) ( )( ){ }214 1 4 1 4 4 1 5 1
2

v n n n n p
n

= + − − − − − −          (16c) 

For each model, important differences can be observed between the plots of 
the partial densities obtained from computer simulations (first and second rows 
of Figure 6) and from the maximum entropy approach (Figure 7), mainly for 
the high-density regimes. The main reason for these behavior differences is due 
to the dynamical transition rules of the NS and FI traffic cellular automata, 
which do not satisfy the principle of detailed balance [30] [31], and, therefore, 
both systems are always driven out of equilibrium. 
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Figure 7. Maximum entropy states of the NS and FI models with max 5v =  and 

0.25p = . The partial densities 0 1 5, , ,n n n
, the velocity v, and the densities of kinetic 

energy ε , and momentum q, of the traffic flow, are shown. 

3.2. The Emission Rates 

With reference to Section 2.2, we underline that the distance among adjacent 
cells is usually assumed as the average front-bumper-to-front-bumper distance 
of adjacent vehicles under conditions of strongly jammed traffic, and it is set 
equal to 7.5 m. Then, if the time step is set equal to one second, the velocity of a 
vehicle will change in steps of 27 kph. Therefore, when comparing with real traf-
fic data, the interpretations of the model velocities will be as follows, 

0 1 2 3 4 50, 27, 54, 81, 108 and 135 kphv v v v v v= = = = = =     (17) 

The emission factors we used in this work are based on [18]. In the data base, 
the emission factors are given for traffic situations which are characterized by a 
mean speed (beside other dependencies). In order to obtain an effortless map-
ping between the velocity and the amount of emission, the different traffic situa-
tions were aggregated into bins of size 10 km/h [34] [35].  

Figure 8 shows the emission factors and the emission rates for three different 
pollutants: carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides 
(NOx). 

In this figure, we observed that the emission behavior is rather different for 
the distinct pollutants, and that their amount strongly depends on velocity. For 
estimating the pollutant emissions in the NS and FI traffic cellular automata, we 
used the emission rates of CO, HC, and NOx shown in Figure 8. The associated 
best fitting functions and their determination coefficients ( 2R ) are presented in 
Table 2. 
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Figure 8. Vehicular emission factors and emission rates for the pollutants CO, HC, and 
NOx as functions of velocity. We observe that the amount of emission is strongly 
dependent on the vehicle’s velocity and on the kind of pollutant. The best fitting curves 
(blue solid lines) of the model functions (13) and (14) to the data available in [34] [35] are 
also shown. 

 
Figure 9 shows the partial emission rates produced by the simulations with 

the NS and FI models for vehicle emissions of carbon monoxide (CO), hydro-
carbons (HC), and nitrogen oxides (NOx). The differences between these models 
are also shown. These results were obtained with the Equation (9), using the NS 
and FI velocity distributions shown in Figure 6, and the CO, HC and NOx emis-
sion rates given in Table 2 with the allowed particle velocities given by the Equ-
ation (17). 

The differences between the emission rates produced by the FI and NS models 
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(Figure 9) are shown in Figure 10. Here we note that the FI traffic model pro-
duces the larger emission rates, particularly those associated with the velocity 

max 1v − . However, when the system is in the high-density regime, the NS model 
produces an emission rate larger than the FI model does associated with the 
largest velocity maxv . 

In Figure 11, we show the partial emission rates obtained with the maximum 
entropy velocity distributions (see Figure 7). In Figure 12, the differences be-
tween the FI and NS emission rates are shown. 

The graphs of Figure 9 and Figure 11 show important qualitative similarities 
between the partial emission rates estimated with the velocity distributions ob-
tained by computer simulation and by means of the maximum entropy approach. 
However, there exist non-negligible numerical differences which are reflected 
also in the total emission rates, particularly for the CO and HC pollutants, as it is 
shown in the Figure 13. 

In Figure 13, we present the total emission rates for the models NS and FI. It 
includes the results obtained with computer simulations and with the maximum 
 

 
Figure 9. Partial emission rates of the NS and FI traffic models for the pollutants CO, HC 
and NOx. 
 
Table 2. Best fitting functions for the traffic emission rates of CO, HC, and NOx as 
dependent on the vehicle velocity. Estimated from data available in [34] [35]. 
Determination coefficients ( 2R ) are also shown. 

Pollutant Emission Rate [g/s] R2 

CO ( ) 7 3 45
CO 0.0467 0.020966 7.551701 10 0.044694i i i ie v v v v−= − + × +  0.991621 

HC ( ) 8 3 45
HC 0.0054 0.000810 1.931618 10 0.002321i i i ie v v v v−= − + × +  0.988483 

NOx ( )
x

8 3 45
NO 0.0012 0.000703 5.577680 10 0.000653i i i ie v v v v−= + + × −  0.996947 
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Figure 10. Differences between the FI and NS partial emission rates of Figure 9. 
 

 
Figure 11. Partial emission rates of the NS and FI traffic cellular automata estimated with 
the maximum entropy velocity distribution. 
 

 
Figure 12. Differences between the FI and NS emission rates of Figure 11. 
 
entropy approach. The plots presented in Figure 13 were obtained by summing, 
respectively, the partial emission rates of Figure 9 and Figure 11, such as it is 
indicated by the Equation (10). 

In Figure 13, we observe: for densities 0 0.11n< < , both traffic cellular au-
tomata produced the same total emission rates for each pollutant; for densities 

0.11n > , the FI traffic model produced total emission rates of CO, HC and NOx 
larger than the NS model did, respectively. In the limit 1n → , the emission 
rates of both models become the same because all the particles become at rest, 
remaining only the emissions in the idle conditions. 
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Figure 13. Total Emission rates of the NS and FI traffic cellular automata ( max 5v =  and 

0.25p = ) as functions of the particle density. The solid line curves correspond to the 
computer simulations of steady state conditions. The dotted line curves correspond to the 
maximum entropy states. 

 
Figure 13 shows also the plots of the emission rates estimated with the max-

imum entropy state velocity distributions. We observe that the deviations with 
respect the estimations with velocity distributions obtained from computer si-
mulations only result important in the case of the hydrocarbons, because in this 
case the differences and the emission rates themselves are of the same order. The 
larger emission rates of the FI model are a consequence of its dynamic rules be-
cause the stochastic delay is applied only to the highest speed vehicles, extending 
its free flow regime up to particle densities higher than in the NS model.  

In Figure 14, the relative differences  

( ) ( ) ( )
( )

, ,
, 100 ,

,
FI NS

NS

Q n Q n
n

Q n
α α

δ α
α

 −
≡   

 
             (18) 

between the total emission rates of the FI and NS models for steady state condi-
tions and the selected pollutants (Figure 13), are shown. Here we can underline 
three interesting density intervals:  

1) 0 0.11n< < : This is the interval of the low density behavior of the FI and 
NS traffic models with max 5v =  and 0.25p = . Here, almost all the particles are 
moving with one of the two highest velocities, 5v =  (i.e. maxv ) or 4v =  (i.e. 

max 1v − ). It is a free flow regime. In this density region, the relative differences 
between the estimations of the emission rates of the NS and FI models are neg-
ligible for all the pollutants we considered:  

( ) ( ) ( )xCO, HC, NO , 0n n nδ δ δ≅ ≅ ≅ . 
2) 0.11 1 5v< < : In this interval, while the numbers of particles at rest and 

with the lower velocities in the system start to be non-negligible in the NS model, 
all the particles persist in the free flow regime, with the highest velocities in the 
FI model; however, the number of particles con velocity 5v =  decreases to zero 
at 1 5n = . Because of the velocity distribution (Figure 6, left column) and of 
the dependence of emission rate on velocity (Figure 8, right column), the emis-
sion rates, in this interval, also reach their highest values for each pollutant  
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Figure 14. Relative difference (%) between the FI and NS 
estimations of the emission rates. 

 
(Figure 11), with larger values for the FI model than for the NS model. Here, all 
the relative differences ( )HC, nδ , ( )CO,nδ  and ( )xNO ,nδ  show sharp 
peaks (45.36%, 56.27% and 64.10%, respectively) around 0.175n = , just where 
the highest values of the FI emission rates occur. 

3) 1 5 1n< < : In this interval, both models exhibit a congested flow regime. 
As the particle density increases, the numbers 4n  and 5n  of the particles that 
move with the highest velocities, decrease monotonically; the number of par-
ticles at rest ( 0n ) increases monotonically; and the numbers of particles with 
velocities 1v , 2v  and 3v  grow up to a maximum and then drop to zero. Be-
cause of this, the total emission rates diminish monotonically up to their idle 
condition values, when all the particles become at rest. On the other hand, the 
relative difference between the emission rates of the FI and NS models (Figure 
14) seems to decrease monotonically for hydrocarbons, but for carbon monox-
ide and nitrogen oxides grows up and then drops to zero, reaching their maxi-
mum values, 40.41% and 76.87%, at 0.43n =  and 0.55n = , respectively. 

4. Concluding Remarks 

There exists a growing interest in using cellular automata to model traffic flow 
phenomena from a microscopic standpoint. The possibility of using these mod-
els to simulate traffic in the cities brings out the attention to the problem of as-
sessing the contributions of this phenomenon to the urban air pollution. To do it, 
the velocity distribution of the traffic network has to be known, spatially and 
temporally disaggregated. It is also required the engine’s emission factors or 
emission rates as functions of the vehicle velocity. In this work, we used com-
puter simulations and a maximum entropy approach for obtaining the velocity 
distributions of the traffic cellular automata of Nagel-Schreckenberg and Fukui- 
Ishibashi under steady state conditions. The engine emissions were obtained 
from data available in [18] [33] [34] [35], which allowed us to estimate and 
compare the emission rates of CO, HC, and NOx produced by the NS and FI 
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traffic models.  
Although the dynamical rules of the NS and FI models are not microscopically 

reversible and, therefore, these systems are always far from equilibrium, our es-
timations of the total traffic emission rates with the maximum entropy velocity 
distributions resulted very similar to those we obtained using the velocity distri-
butions from computer simulations with these traffic cellular automata. 

In general, the emission rates in the FI traffic flow resulted larger than in the 
NS model. The relative differences ( ),nδ α  reached values of up to 45% in HC, 
56% in CO, and 77% in NOx. These results are consequences of the differences 
between the FI and NS dynamic rules: In the NS model, the acceleration of the 
particles is gradual, while in the FI model, a particle can accelerate from rest up 
to the maximum velocity in a single time step. Moreover, the stochastic delay is 
applied only to the particles with the highest velocities in the FI model. 

The ideas of this study can be extended easily to other 1D or 2D traffic cellular 
automata for estimating the traffic flow contributions to air pollution. 
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