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u(x,0)=u,

Abstract
We consider a von Karman equation of memory type with a delay term
|| u, —adu, + Au— .[;g (1=5)Au(s)ds+agu, +au, (x,0—7)=[u,v].

troducing suitable energy and Lyapunov functional, we establish a general

By in-

decay estimate for the energy, which depends on the behavior of g

Keywords

Von Karman Equation, Memory Type, Delay Damping Term, General Decay
Estimate

|u |pu —aAu, +A2u—.rg t—s Azu(s)ds+a0 (x.0)+ayu, (x,t
u—sv—OonF x(0,00), Bu— B(jg t—s

1. Introduction

Let Qc R’ be abounded domain with sufficiently smooth boundary T :=8Q,
r,ur,=r, ry,Nr,=<g, I, and I have positive measures and

Ou
Vz(vl,vz) be the outward unit normal vector on 6Q. We denote u, =8—,
t

2 0u
Au = Z-:l@

In this paper, we investigate the decay of energy of solutions for a von Karman

, where x=(x,x,)eQ.

system with memory and a delay term
-7)=[u,v], in Qx(0,%0),

) 0on I x Ooo), "

ou,
Bzu—aa—v—52 (jog(t—s)u(s)ds) =0onT, ><(O,oo),

().,

(x,O):u] z'):fo(x,t—

*This work was support by the national research foundation of Korea (Grant NRF-
2016R1D1A1B03930361).
#Corresponding author.

(x), xeQu,(xt ), (x,1)eQx(0,7),
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where p isassumed to satisfy 0<p< if N>3 or p>0 if N=12,

a>0; a, is a positive constant; @, is a real number; g is the kernel of the
memory term; 7 >0 represents the time delay; u,,u,, f;, are given functions
belonging to suitable spaces; and the Airy stress function v satisfies the following
elliptic problem

A%y =—[u,u]in Qx(0,),
(2)

v:%v:OOan(O,oo)).

The von Karman bracket [u, ¢] is given by
[1/[, ¢] = uxlxl ¢x2x2 + ux2x2 ¢x1x1 - 2ux1x2 ¢x1x2 2

and

Bu=Au+(1- 1) Bu, Byu =iAu+(l—,u)Bzu,

ov
Ly . . ) .
here ue O,E is Poisson’s ratio,
_ 2 2
Blu - 2V1V2ux|xz g uxzxz -V ux]x] ’
a 2 2
Bu = 5[(1/1 -V )um2 +vv, (”xm —Uy )]

From the physical point of view, problem (1) describes small vibrations of a
thin homogeneous isotropic plate of uniform thickness of «; u=u(x,?)
denotes the transversal displacement of the plate; the Airy stress function
v=v(x,t) isa vibrating plate.

When g, =0 and p=0, problem (1) was studied by many authors [1]-[8].
The authors in [1] [3] [4] proved uniform decay rates for the von Karman
system with frictional dissipative effects in the boundary. The stability for a von
Karman system with memory and boundary memory conditions was treated in
[5] [6] [7] [9]. They proved the exponential or polynomial decay rate when the
relaxation function decay is at the same rate. The aim of this work is to prove a
general decay result for a nonlinear von Karman equation of memory type with
a delay term in the first equation of (1), when the relaxation function does not
necessarily decay exponentially or polynomially. As for the works about general
decay for viscoelastic system, we refer [10]-[15] and references therein.
Considering delay term alu,(x,t—z') , the problem is different from existing
literature. Time delays arise in many applications depending not only on the
present state but also on some past occurrences. And the presence of delay may
be a source of instability (see e.g. [16] [17]). Thus, recently, the control of partial
differential equations with time delay effects has become an active area of
research (see [18] [17] [19] [20] and references therein). Nicaise and Pignotti

[17] examined a wave equation with a time-delay of the form

u, (x,0) = Au(x,t)+agu, (x,t)+au, (x,t—7)=0. (3)
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They proved that the energy of the problem decays exponentially under the

condition

0<a, <a,,

and there exists a sequence of delays such that instability occurs in the case
a, 2 a, . Kirane and Said-Houari [21] considered a viscoelastic wave equation

with a delay
u, (x,0)—Au(x,1)+ '[;g(t —s)Au(x,s)ds+agu, (x,1)+au, (x,t—7)=0. (4)

The authors proved the existence of a solution and a general decay result

under the condition

0<a <a,. (5)

They showed that the energy of solutions is still asymptotically stable even if
a, = a, owing to the presence of the viscoelastic damping. Recently, Wu [20]
obtained similar decay results as in [21] for problem (1) without von Karman
bracket [u,v] under the condition (5). Motivated by these results, we prove a
general decay result for a nonlinear viscoelastic von Karman Equation (1) with a

time-delay under the condition

|a| <, (6)

which is an extension and improvement of the previous result from [20] to a
nonlinear viscoelastic von Karman equation without the assumption «, >0.
The plan of this paper is as follows. In Section 2, we give some notations and
materials needed for our work. In Section 3, we derive general decay estimate of
the energy.

2. Statement of Main Results

Throughout this paper, we denote
V:{ueH3(Q):u:O on 1"0},

W:{ueHz(Q):u:au —OonFO},

P

(u,¢) = jﬂu(x)¢(x)dx and (u,¢)r1 = jru(x)¢(x)df.

1

For a Banach space X,

||| , denotes the norm of X. For simplicity, we denote
[l By [ and [, by |

=

From now on, we shall omit x and ¢ in all functions of x and ¢ if there is no

~||rl , respectively. We define forall 1< p<oo

||u

ambiguity, and c denotes a generic positive constant different from line to line or

even in the same line.

For O<pu <% , the bilinear form a(-,-) is defined by

a (M, ¢) = .[Q {uxlxl ¢x1xl + ux2x2 ¢x2x2 + H (u)qxl ¢x2x2 + uxzx2¢xlxl ) +2 (1 - lu) uxlxz ¢x1x2 } dx. (7)
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A simple calculation, based on the integration by parts formula, yields

[ AupdQ=a(u,g)- (B,u,g—ﬁj +(Bu,g)..

Thus, for (u,¢)e(H4 (Q)ﬂW)xW it holds

IQA2u¢dQ = a((u,¢) - [Blu’%j + (Bzu’¢)rl .

Since I'j# we know (see e.g. [1]) that a(u,u) is equivalent to the
H*? (Q) normon W, Le.

¢ ||u||22(9) <a(u,u)<c, ||u||22(g) for some ¢;,¢, > 0. (8)

This and Sobolev imbedding theorem imply that for some positive constants
c,» C , and C|

||u||2 < Cpa(u,u), ||u||§] < C'pa (u,u) and ||Vu||2 < Cxa(u,u),Vu eW. (9)
By (7) and Young’s inequality, we see that
5
a(u,p) < §||¢||22(Q) +§||¢||22(Q) for all & > 0.

From this and (8), it holds that

a(u,p)<Sa(u,u)+ a(¢,¢) forall 5> 0. (10)

2
1

We introduce the relative results of the Airy stress function and von Karman
bracket [,]

Lemma 2.1. ([4]) If u,¢ and y belong in H2(Q) and at least one of
them belongsin H;(Q), then ([u,qﬁ],y/) :([u,l//],qﬁ).

Lemma 2.2. ([1]) Let ueH*? (Q) and v be the Airy stress function
satistying (2). Then, the following relations hold.

[u.v]e L’ (Q) and ”[”’ V]" < C||u||H2(Q) ||v||WZ‘°°(Q) < é"u"HZ(Q) "””iﬂ(g) :

Now, we state the assumptions for problem (1).
(H1) For the relaxation function g, as in [11] [15], we assume that

g:R, >R, is a nonincreasing differentiable function satisfying g(0)>0,

I, = J?g(s)ds <% and

g'(t)<-¢(1)g(t) for >0, (11)

where ¢ :R, - R, isanonincreasing differentiable function.

Theorem 2.1. Assume that (H1) is hold. Then, for the initial data
(ugouy, fy) € (H4 (Q)ﬂW)x(H3 ()N V)><L2 (Qx(O,l)), problem (1) has a
unique weak solution u in the class

ueC(0,7;H (Q)NW)NC' (0,7 H (Q)NV).

Proof. This can be proved by Faedo-Galerkin method (see e.g. [7] [21]).
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3. General Decay of the Energy

In this section we shall prove a general decay rate of the solution for problem

(1). For simplicity of notations, we denote
gru=[g(t-s)u(s)ds,
gl =g (t=5)u(r)—u(s)[ ds.
and
g00% =g (t—s)a(u(r)—u(s).u(t)-u(s))ds.
From (9), we see that

g0u < C,gl00%u. (12)

From now on, we shall omit ¢in all functions of ¢if there is no ambiguity, and
c denotes a generic positive constant different in various occurrences. Multiplying

the first equation of (1) by u,, we have
E'(t) =-q, ||u,||2 -a, (ut (t —z’),u,)+ a(g *u,u[), (13)
where

" 1 1
gl L) Ll

p+2 p+2
From the symmetry of a(-,), we see that for any u e C' (0 T;H’ (Q))
1 '
a(g*u,u,)=—5g(t) a(u, u)+2gD82u—E—[gD62 (fg ) } (14)

Moreover, (10) gives

t

a(g*u,u)=j;g(t—s)a(u(s)—u(l),u(t))ds+( Og(s)ds)a(u,u)

t 5 (15)
< Z(Jog(s)ds)a (u,u) +ggﬂa2u.
Now, we define a modified energy by
+ (24 1
S+ v + (1= Fe () ds (o
1 1 2 pt 2
+Egﬂazu +Z||Av|| += ,(S)" ds,
where pis a positive constant satisfying
|a1|SpS2a0—|al|. (16)
It is noted that E(f)< 0 ll £(t). Therefore, it is enough to obtain the
o

desired decay for the modified energy & (t) which will be done below.

Lemma 3.1. There exist non-negative constants o, and «, satisfying

1 1
E(t) <o |u| - "ut (t- z’)”2 —Eg(t)a (u,u) +Eg'Dazu.
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Proof. Applying (14) to the last term in the right hand side of (13), we have
1 1
E'(t)=—a, ||u,||2 —a (ut (t— z’),u,)—Eg(t)a(u,u) +Eg’|j62u
p p 2
+5||”r||2 —5"% (=)
By Young’s inequality,

-q, (u, (¢ —r),u[) < @"ut”2 +@"ut (t- 7)”2 )

Thus, we have

05 -2 o [ 21 o -

—%g(r)a(u,u) +Eg'Dazu.
Putting o, a2 14 ¢ -2 la] deri
g a, =a, , Q= and considering (16), we complete
2 2 2 2
the proof. ]
Now, let us define the perturbed modified energy by
L(t)=NE(t)+&¥ (1) +0r(t)+D(1), (17)
where
()= (|u | u,,u)+a(Vu Vu),

p+1

)=JLe () .
(1) = b (:g(t—s)(u(t)—u(s),|ut|p ut)ds
- aj;g(t =) (Vu(t)=Vu(s),Vu,)ds.

Then, it is easily shown that L(t) is equivalent with & (t) forall +>0.0

Lemma 3.2. There exist positive constants C,,C, and t,>0 satistying

%L([)S—C38(t)+c4gﬂazu for 121, (18)

Proof. Poincare’s inequality gives

Y’([) __ t ef(H)

-7

u, ()| ds + [, (1)

u (1=7) (19)

<= [ |, ()| ds+ A2V, (1) -

U, (t—r)||2, (20)

where /4, is the embedding constant from H' (Q) to r (Q) . Using the
problem (1) and (14), we have

0
e velval e S —ofw)

+(Blu,2—ijrl —(l’j’zu,u)rl + a(g *u,u)
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—.[g (t-5) {[Bu(s),agf/t)]r _(Bz”(s)’”(t))n]ds
—a, (uwu,)-a (u, (1-7), )_(AZV’V)

p+2 2 _
Ll o () o) .
—ao(u u )—a,( (t r ) ||Av||
< p+1||u |Zi§ +a||Vu,|| —(1—2_[0g(s)ds)a(u u
5
30 ) 1 (=)o
1
Young and Poincaré’s inequalities produce
2 2
-a, (u,u,)S?]a(u,u)+%"Vu,"2,
a’C
—a, (ut(t—r),u)ﬁna(u,u)+ 1477p "ut(t—‘r)uz.
Substituting these into (21), we derive
L HaC, J
Vu || (1—2[ —Zn)a(u,u)
1 tlp+2 ( 4 " 0
P+ n (22)

2

5 C
+ Qgﬂﬁzu + aimp "u, (t— r)"2 - ||Av||2 .

Similarly, we get from (1) that

CD'(t):—I;g(t—S)I;g(t—r)a(u(r),u(t)—u(s))drds
+.[;g(t—S)a(u(t),u(t)—u(s))ds—ao.[(:g(t—s)(u, (t),u(t)—u(s))ds
_alj.tg(t—s)(ut (t—r(t)),u(t)—u(s))ds—([u,v],_[;g(t—s)(u(t)—u(s))ds)

P 1 t p+2 (23)
el [ ) <r>—u(s>)ds)—m ()l
~a(Vu, J1g (1=5) (Vu ()= Vu(5))ds ) - af g (5) 85 [ |
|- P42 t 2
:=11+--~+I6—mjog(s)ds”ut|p+2+I7—ajog(s)ds||Vut||

In what follows we will estimate the terms in right hand side of (23). By

similar arguments given in [8], we have

51, 5l
8c¢;  8¢io

Il <éla(u,u)+ 06%u
|1| 0 (’ ) [ jg 5

5
|[z| <6Slya(u,u) +@gD62u,

(0)C
4

|1,] < é'a”Vut”z —ag—é‘s(g'Dﬁzu),
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and

1 < 61w

(-5 (u(t)-u(s)) ]

2 CJ
< 56("“"112(9) "”"22(9)) + 4L50gD62u
SE§a(u,u)+ P

Using Young inequality and the fact that imbedding H'(Q)<s L") is

continuous, we infer

1 U VIV 2
T R IR ORI I

o) (o) 1 [t r 2
<—p+1{5/12 Vu || —5(Iog (s)ds)jog (t—s)”u—u(s)" ds}
5100 (220 506, o
22O o 20 o,

where /1, is the embedding constant from ¥ to L**)(Q).
Young’s inequality and (10) give

2 2
L] <alwu + o g
and
<ol (1= + e g
46

Combining these estimates with (23), we get

o (2505 )J

(1)< 5(ky +5 +)auu) +{a(6 - [ g(s)ds) + +8 v
0 p+1
(24)
ag(0)C, +g(0)C,
5, (-)f p+1(f ds 2+ cm0%u - 2 0% g
Since gis positive, for any #, >0 we have '[; dS>I s)ds:=g, forall

t 2 t, . Thus, combining (17), (22) and (24), we arrive

840 N0y er ()0 ()

(p+1) 25( )
ﬂ’l ( o ] ﬂichag Je) 2 \V2 2
—— e e P e v

<—jag,-d|a+l1+ il

7= (-2 ~20) -5y +12-+8)) ()

p+1
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eazC t
_e||Av||2 —[Qe'r —#—5]”% (¢ —r)"2 - jH u, s)"2 ds
(25)
J{%_ a(0) C‘4+ s(0)6, :lg'Dazu +(ce+c)gdou.
U

First, we fix 7>0 and @ >0 such that 1-2/,—27>0 and ag,—64 >0,
ag(0)C, +g(0)C,
4n

respectively. Next, we choose N >0 so large that —— >0,

and e>0 sufficiently small such that g,—€>0,
2

ZC 2
-0x —e(a +—" A 2 150 and e - £ >0. Finally, taking &>0
n

41
p+l 25(0))
so small that ago—t%f—{a a >0,
p+1
e(1-21,-2n)-5(l,+1; +¢)>0 and Ge*
( 0 77) ( ) 477

proof.[]
Theorem 3.1. There exist positive constants Cy, and t,>0 such that

off £(s)is

E(1)<Cpe for t > 1,.

Proof. Multiplying (18) by é’(t) , using (11) and (17), we get
()L (6)<—Co (1) (1) + Ci& () e00u
<-Cy¢ (1)E(t)-C,g'00%
<S-C (1)E(1)+Cy(-2E'(1)).
Since ¢ is nonincreasing, we have
(C(6)L(6)+2C,E(1)) <=C& (1)E(t) for 121,
Thus, by letting £(¢)=¢ (¢)L(1)+2C,E(1), we get
L'(1)<=c¢ (1)E(1) for 121,

Since ¢(¢) is a nonincreasing positive function, we can easily observe that
ﬁ(t) is equivalent to & (t) . Subsequently, it follows that

L'(r)<—=c{ (t)E(t) for t>1,.
Integrating this over (7,,), we conclude that
L(1)< £(t1)e_cj‘t°§(s)ds forall t>1,.

Consequently, the equivalent relations of £,L and & vyield the desired
result. -

4. Conclusion

In this paper we proved decay rates of energy for a viscoelastic von Karman
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equation with constant time delay in the velocity by establishing proper

Lyapunov functionals corresponding to the delay effect. In the future work, we

will consider the equation with time-varying delay effect.
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