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Abstract 
We consider a von Karman equation of memory type with a delay term 
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troducing suitable energy and Lyapunov functional, we establish a general 
decay estimate for the energy, which depends on the behavior of g. 
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1. Introduction 

Let 2Ω⊂   be a bounded domain with sufficiently smooth boundary :Γ = ∂Ω , 

0 1Γ Γ = Γ∪ ,  0 1Γ Γ ≠ ∅∩ ,  0Γ  and  1Γ  have  pos i t i ve  measures  and  

( )1 2,ν ν ν=  be the outward unit normal vector on ∂Ω . We denote t
uu
t

∂
=
∂

, 
2

2
21i
i

uu
x=

∂
∆ =

∂∑ , where ( )1 2,x x x= ∈Ω .  

In this paper, we investigate the decay of energy of solutions for a von Karman 
system with memory and a delay term  
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where ρ  is assumed to satisfy 
20

2N
ρ< ≤

−
 if 3N ≥  or 0ρ >  if 1,2N = ,  

0α > ; 0a  is a positive constant; 1a  is a real number; g is the kernel of the 
memory term; 0τ >  represents the time delay; 0 1 0, ,u u f  are given functions 
belonging to suitable spaces; and the Airy stress function v satisfies the following 
elliptic problem  

[ ] ( )

( )

2 , in 0, ,

0 on 0, ).

v u u

v v
ν

∆ = − Ω× ∞

 ∂

= = Γ× ∞ ∂                    

(2) 

The von Karman bracket [ ],u φ  is given by  

[ ]
1 1 2 2 2 2 1 1 1 2 1 2

, 2 ,x x x x x x x x x x x xu u u uφ φ φ φ≡ + −  

and  

( ) ( )1 1 2 21 , 1 ,u u B u u u B uµ µ
ν
∂

= ∆ + − = ∆ + −
∂

   

here 10,
2

µ  ∈ 
 

 is Poisson’s ratio,  

1 2 2 2 1 1

2 2
1 1 2 1 22 ,x x x x x xB u u u uν ν ν ν= − −  

( ) ( )1 2 2 2 1 1

2 2
2 1 2 1 2 .x x x x x xB u u u uν ν ν ν

τ
∂  = − + − ∂

 

From the physical point of view, problem (1) describes small vibrations of a 
thin homogeneous isotropic plate of uniform thickness of α ; ( ),u u x t=  
denotes the transversal displacement of the plate; the Airy stress function 

( ),v v x t=  is a vibrating plate.  
When 1 0a =  and 0ρ = , problem (1) was studied by many authors [1]-[8]. 

The authors in [1] [3] [4] proved uniform decay rates for the von Karman 
system with frictional dissipative effects in the boundary. The stability for a von 
Karman system with memory and boundary memory conditions was treated in 
[5] [6] [7] [9]. They proved the exponential or polynomial decay rate when the 
relaxation function decay is at the same rate. The aim of this work is to prove a 
general decay result for a nonlinear von Karman equation of memory type with 
a delay term in the first equation of (1), when the relaxation function does not 
necessarily decay exponentially or polynomially. As for the works about general 
decay for viscoelastic system, we refer [10]-[15] and references therein. 
Considering delay term ( )1 ,ta u x t τ− , the problem is different from existing 
literature. Time delays arise in many applications depending not only on the 
present state but also on some past occurrences. And the presence of delay may 
be a source of instability (see e.g. [16] [17]). Thus, recently, the control of partial 
differential equations with time delay effects has become an active area of 
research (see [18] [17] [19] [20] and references therein). Nicaise and Pignotti 
[17] examined a wave equation with a time-delay of the form  

( ) ( ) ( ) ( )0 1, , , , 0.tt t tu x t u x t a u x t a u x t τ− ∆ + + − =            (3) 
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They proved that the energy of the problem decays exponentially under the 
condition  

1 00 ,a a< <  

and there exists a sequence of delays such that instability occurs in the case 

1 0a a≥ . Kirane and Said-Houari [21] considered a viscoelastic wave equation 
with a delay  

( ) ( ) ( ) ( ) ( ) ( )0 10
, , , d , , 0.

t
tt t tu x t u x t g t s u x s s a u x t a u x t τ− ∆ + − ∆ + + − =∫   

(4) 

The authors proved the existence of a solution and a general decay result 
under the condition  

1 00 .a a< ≤                           (5) 

They showed that the energy of solutions is still asymptotically stable even if 

1 0a a=  owing to the presence of the viscoelastic damping. Recently, Wu [20] 
obtained similar decay results as in [21] for problem (1) without von Karman 
bracket [ ],u v  under the condition (5). Motivated by these results, we prove a 
general decay result for a nonlinear viscoelastic von Karman Equation (1) with a 
time-delay under the condition  

1 0 ,a a≤                            (6) 

which is an extension and improvement of the previous result from [20] to a 
nonlinear viscoelastic von Karman equation without the assumption 1 0a > . 
The plan of this paper is as follows. In Section 2, we give some notations and 
materials needed for our work. In Section 3, we derive general decay estimate of 
the energy. 

2. Statement of Main Results  

Throughout this paper, we denote  

( ){ }3
0: 0 on ,V u H u= ∈ Ω = Γ  

( )2
0: 0 on ,uW u H u

ν
∂ = ∈ Ω = = Γ 
∂ 

 

( ) ( ) ( ) ( ) ( ) ( )
1 1

, d and , d .u u x x x u u x xφ φ φ φ
ΓΩ Γ

= = Γ∫ ∫  

For a Banach space X, X⋅  denotes the norm of X. For simplicity, we denote 

( )2L Ω
⋅  by ⋅  and ( )2

1L Γ
⋅  by 

1Γ
⋅ , respectively. We define for all 1 p≤ < ∞   

( ) d .
pp

pu u x x
Ω

= ∫  

From now on, we shall omit x and t in all functions of x and t if there is no 
ambiguity, and c denotes a generic positive constant different from line to line or 
even in the same line.  

For 10
2

µ< < , the bilinear form ( ),a ⋅ ⋅  is defined by  

( ) ( ) ( ){ }1 1 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 1 2
, 2 1 d .x x x x x x x x x x x x x x x x x x x xa u u u u u u xφ φ φ µ φ φ µ φ

Ω
= + + + + −∫ (7) 
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A simple calculation, based on the integration by parts formula, yields  

( ) ( )2
1 2d , , , .u a u u uφ

φ φ φ
ν ΓΩ

Γ

∂ ∆ Ω = − + ∂ ∫    

Thus, for ( ) ( )( )4,u H W Wφ ∈ Ω ×∩  it holds  

( ) ( )
1

1

2
1 2d ( , , , .u a u u uφ

φ φ φ
ν ΓΩ

Γ

∂ ∆ Ω = − + ∂ ∫    

Since 0Γ ≠ ∅  we know (see e.g. [1]) that ( ),a u u  is equivalent to the 
( )2H Ω  norm on W, i.e.  

( ) ( ) ( )2 2
2 2

1 2 1 2, for some , > 0.H Hc u a u u c u c c
Ω Ω
≤ ≤

          
(8) 

This and Sobolev imbedding theorem imply that for some positive constants 

pC , pC�  and sC   

( ) ( ) ( )
1

2 2 2, , , and , , .p p su C a u u u C a u u u C a u u u W
Γ

≤ ≤ ∇ ≤ ∀ ∈�
    

(9) 

By (7) and Young’s inequality, we see that  

( ) ( ) ( )2 2
2 25, for all 0.

8H Ha u φ δ φ φ δ
δΩ Ω

≤ + >  

From this and (8), it holds that  

( ) ( ) ( )2
1

5, , , for all 0.
8

a u a u u a
c

φ δ φ φ δ
δ

≤ + >
           

(10) 

We introduce the relative results of the Airy stress function and von Karman 
bracket [ ],⋅ ⋅ .  

Lemma 2.1. ([4]) If ,u φ  and ψ  belong in ( )2H Ω  and at least one of 
them belongs in ( )2

0H Ω , then [ ]( ) [ ]( ), , , ,u uφ ψ ψ φ= .  
Lemma 2.2. ([1]) Let ( )2u H∈ Ω  and v  be the Airy stress function 

satisfying (2). Then, the following relations hold:  

[ ] ( ) [ ] ( ) ( ) ( ) ( )2 2, 2 2
22, and , .H W H Hu v L u v C u v C u u∞Ω Ω Ω Ω

∈ Ω ≤ ≤ �  

Now, we state the assumptions for problem (1).  
(H1) For the relaxation function g, as in [11] [15], we assume that 
:g + +→   is a nonincreasing differentiable function satisfying ( )0 0g > ,  

( )0 0

1: d
2

l g s s
∞

= <∫  and  

( ) ( ) ( ) for 0,g t t g t tζ′ ≤ − ≥                   (11) 

where :ζ + +→   is a nonincreasing differentiable function.  
Theorem 2.1. Assume that (H1) is hold. Then, for the initial data 

( ) ( )( ) ( )( ) ( )( )4 3 2
0 1 0, , 0,1 ,u u f H W H V L∈ Ω × Ω × Ω×∩ ∩  problem (1) has a 

unique weak solution u  in the class  

( )( ) ( )( )4 1 30, ; 0, ; .u C T H W C T H V∈ Ω Ω∩ ∩ ∩  

Proof. This can be proved by Faedo-Galerkin method (see e.g. [7] [21]). 
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3. General Decay of the Energy 

In this section we shall prove a general decay rate of the solution for problem 
(1). For simplicity of notations, we denote  

( ) ( )
0

d ,
t

g u g t s u s s∗ = −∫  

( ) ( ) ( ) 2

0
d ,

t
g u g t s u t u s s= − −∫  

and  

( ) ( ) ( ) ( ) ( )( )2
0

, d .
t

g u g t s a u t u s u t u s s∂ = − − −∫  

From (9), we see that  
2 .pg u C g u≤ ∂                        (12) 

From now on, we shall omit t in all functions of t if there is no ambiguity, and 
c denotes a generic positive constant different in various occurrences. Multiplying 
the first equation of (1) by tu , we have  

( ) ( )( ) ( )2
0 1 , , ,t t t tE t a u a u t u a g u uτ′ = − − − + ∗

          
(13) 

where  

( ) ( )2 2 2

2

1 1 1, .
2 2 2 4t tE t u u a u u vρ

ρ

α
ρ

+

+
= + ∇ + + ∆

+
 

From the symmetry of ( ),a ⋅ ⋅ , we see that for any ( )( )1 20, ;u C T H∈ Ω   

( ) ( ) ( ) ( )( ) ( )2 2
0

1 1 1 d, , d , .
2 2 2 d

t
ta g u u g t a u u g u g u g s s a u u

t
 ′∗ = − + ∂ − ∂ −  ∫  (14) 

Moreover, (10) gives  

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )

0 0

2
20
1

, , d d ,

52 d , .
8

t t

t

a g u u g t s a u s u t u t s g s s a u u

g s s a u u g u
c

∗ = − − +

≤ + ∂

∫ ∫

∫ 
   

(15) 

Now, we define a modified energy by  

( ) ( )( ) ( )

( )

2 2

2 0

222

1 1 1 d ,
2 2 2

1 1 d ,
2 4 2

t
t t

t
tt

t u u g s s a u u

pg u v u s s

ρ

ρ

τ

α
ρ

+

+

−

= + ∇ + −
+

+ ∂ + ∆ +

∫

∫




 

where p is a positive constant satisfying  

1 0 12 .a p a a≤ ≤ −                       (16) 

It is noted that ( ) ( )
0

1
1

E t t
l

≤
−
 . Therefore, it is enough to obtain the 

desired decay for the modified energy ( )t  which will be done below. 

Lemma 3.1. There exist non-negative constants 1α  and 2α  satisfying  

( ) ( ) ( ) ( )22 2
1 2

1 1, .
2 2t tt u u t g t a u u g uα α τ′ ′≤ − − − − + ∂   
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Proof. Applying (14) to the last term in the right hand side of (13), we have  

( ) ( )( ) ( ) ( )

( )

2 2
0 1

22

1 1, ,
2 2

.
2 2

t t t

t t

t a u a u t u g t a u u g u

p pu u t

τ

τ

′ ′= − − − − + ∂

+ − −

 
 

By Young’s inequality,  

( )( ) ( ) 221 1
1 , .

2 2t t t t

a a
a u t u u u tτ τ− − ≤ + −  

Thus, we have  

( ) ( )

( ) ( )

221 1
0

2

2 2 2 2
1 1, .
2 2

t t

a ap pt a u u t

g t a u u g u

τ
   

′ ≤ − − − − − −   
   

′− + ∂





 

Putting 1
1 0 2 2

apaα = − − , 1
2 2 2

ap
α = −  and considering (16), we complete 

the proof.                                                         

Now, let us define the perturbed modified energy by  

( ) ( ) ( ) ( ) ( ) ,L t N t t t tε θ= + Ψ + ϒ +Φ               (17) 

where  

( ) ( ) ( )1 , , ,
1 t t tt u u u u uρ α

ρ
Ψ = + ∇ ∇

+
 

( ) ( ) ( ) 2
e d ,

t t s
tt

t u s s
τ

− −

−
ϒ = ∫  

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

0

0

1 , d
1

, d .

t
t t

t
t

t g t s u t u s u u s

g t s u t u s u s

ρ

ρ

α

Φ = − − −
+

− − ∇ −∇ ∇

∫

∫
 

Then, it is easily shown that ( )L t  is equivalent with ( )t  for all 0t ≥ .  
Lemma 3.2. There exist positive constants 3 4,C C  and 0 0t >  satisfying  

( ) ( ) 2
3 4 0

d for .
d

L t C t C g u t t
t

≤ − + ∂ ≥ 
             

(18) 

Proof. Poincare’s inequality gives  

( ) ( ) ( ) ( ) ( )2 2 2
e d e

t t s
t t tt

t u s s u t u tτ
τ

τ− − −

−
′ϒ = − + − −∫         

(19) 

( ) ( ) ( )2 2 22
1e d e ,

t
t t tt

u s s u t u tτ τ
τ

λ τ− −

−
≤ − + ∇ − −∫      

(20) 

where 1λ  is the embedding constant from ( )1H Ω  to ( )2L Ω . Using the 
problem (1) and (14), we have  

( ) ( )

( ) ( )

1

1
1

2 2

2

1 2

1 , ,
1

, , ,

tt
t t

u
t u u u a u u

uu u u a g u u

ρ

ρ
α α

ρ ν

ν

+

+
Γ

Γ
Γ

∂ ′Ψ = + ∇ + − + ∂ 

∂ + − + ∗ ∂ 
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( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )
( ) ( )

( ) ( )( )

( )( ) ( )

( ) ( )( )

1
1

1 20

2
0 1

2 2

2

2
0 1

2 2

2 0

22
0 12

1

, , d

, , ,

1 , ,
1

, ,

1 1 2 d ,
1
5 , , .

8

t

t t

t t

t t

t
t t

t t

u t
g t s u s u s u t s

a u u a u t u v v

u u a u u a g u u

a u u a u t u v

u u g s s a u u

g u a u u a u t u v
c

ρ

ρ

ρ

ρ

ν

τ

α
ρ

τ

α
ρ

τ

Γ
Γ

+

+

+

+

 ∂ 
 − − − 

∂   

− − − − ∆

= + ∇ − + ∗
+

− − − − ∆

≤ + ∇ − −
+

+ ∂ − − − − ∆

∫

∫

 



    

(21) 

Young and Poincaré’s inequalities produce  

( ) ( )
2 2

21 0
0 , , ,

4
p

t t

a C
a u u a u u u

λ
η

η
− ≤ + ∇  

( )( ) ( ) ( )
2

21
1 , , .

4
p

t t

a C
a u t u a u u u tτ η τ

η
− − ≤ + −  

Substituting these into (21), we derive  

( ) ( ) ( )

( )

2 2
2 21 0

02

2
2 212

2
1

1 1 2 2 ,
1 4

5 .
48

p
t t

p
t

a C
t u u l a u u

a C
g u u t v

c

ρ

ρ

λ
α η

ρ η

τ
η

+

+

 
′Ψ ≤ + + ∇ − − −  +  

+ ∂ + − − ∆
  

(22) 

Similarly, we get from (1) that  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( )( )( )

( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( )( ) ( )

0 0

00 0

1 0 0

2

20 0

2

0 0

, d d

, d , d

, d , , d

1 1, d d
1 1

, d d

:

t t

t t
t

t t
t

t t
t t t

t t
t t

t g t s g t a u u t u s s

g t s a u t u t u s s a g t s u t u t u s s

a g t s u t t u t u s s u v g t s u t u s s

u u g t s u t u s s g s s u

u g t s u t u s s g s s u

I

ρ ρ

ρ

τ τ τ

τ

ρ ρ

α α

+

+

′Φ = − − − −

+ − − − − −

− − − − − − −

′− − − −
+ +

′− ∇ − ∇ −∇ − ∇

=

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

( ) ( )2 2
1 6 720 0

1 d d
1

t t
t tI g s s u I g s s uρ

ρ
α

ρ
+

+
+ + − + − ∇

+ ∫ ∫�

(23) 

In what follows we will estimate the terms in right hand side of (23). By 
similar arguments given in [8], we have  

( )2 20 0
1 0 0 2 2

1 1

5 5
, ,

8 8
l lI l a u u l g u
c c

δ
δ

 
≤ + + + ∂ 

 
  

( ) 2
2 0 2

1

5, ,
8

I l a u u g u
c

δ
δ

≤ + ∂  

( ) ( )2 2
7

0
,

4
s

t
g C

I u g u
α

δα
δ

′≤ ∇ − ∂  
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and  

[ ] ( ) ( ) ( )( )

( ) ( )( )
( )

2 2

22
5 0

22 0 2

0 2

1, d
4

4

, .
4

t

p
H H

p

I u v g t s u t u s s

C l
c u u g u

C l
c a u u g u

δ
δ

δ
δ

δ
δ

Ω Ω

≤ + − −

≤ + ∂

≤ + ∂

∫

�





 

Using Young inequality and the fact that imbedding  ( ) ( )2 11H L ρ+Ω  is 
continuous, we infer  

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
( )

22 1
6 2 1 0

22 12 1
2 0 0

2 1
2 22

1 1 d
1 4

1 1 d d
1 4

02 0
,

1 4 1

t
t

t t
t

p
t

I u g t s u t u s s

u g s s g t s u u s s

g C
u g u

ρ

ρ

ρρ

ρρ

δ
ρ δ

δλ
ρ δ

δλ
ρ α δ ρ

+

+

++

+

 ′≤ + − − − 
+  

 ′ ′≤ ∇ + − − 
+  

 
′≤ ∇ − ∂ 

+ + 

∫

∫ ∫




 

where 2λ  is the embedding constant from V  to ( ) ( )2 1L ρ+ Ω .  
Young’s inequality and (10) give  

2 2
2 0 0 1 2

3 4
p

t

a l C
I u g u

λ
δ

δ
≤ ∇ + ∂  

and  

( )
2

2 1 0 2
4 .

4
p

t

a l C
I u t g uδ τ

δ
≤ − + ∂  

Combining these estimates with (23), we get  

( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )( ) ( ) ( )

2 1
2

22
0 0 0

2 2 2 2
20

2 0

, d
1

0 01 d .
1 4

t
t

t s p
t t

t l l c a u u g s s u

g C g C
u t g s s u cg u g u

ρ
ρ

ρ

ρ

δλ
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Since g is positive, for any 0 0t >  we have ( ) ( )0
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0t t≥ . Thus, combining (17), (22) and (24), we arrive  
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First, we fix 0η >  and 0θ >  such that 01 2 2 0l η− − >  and 2
0 1 0gα θλ− > , 

respectively. Next, we choose 0N >  so large that 
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. Finally, taking 0δ >  

so small that 
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, we complete the 

proof. 

Theorem 3.1. There exist positive constants 0 ,C ω  and 0 0t >  such that  

( ) ( )
0

d
0 0e for .

t
t s s

E t C t t
ω ζ− ∫≤ ≥  

Proof. Multiplying (18) by ( )tζ , using (11) and (17), we get  
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Since ζ  is nonincreasing, we have  

( ) ( ) ( )( ) ( ) ( )4 3 02 for .t L t C t C t t t tζ ζ′+ ≤ − ≥   

Thus, by letting ( ) ( ) ( ) ( )42t t L t C tζ= +  , we get  

( ) ( ) ( ) 0for .t c t t t tζ′ ≤ − ≥   

Since ( )tζ  is a nonincreasing positive function, we can easily observe that 
( )t  is equivalent to ( )t . Subsequently, it follows that  

( ) ( ) ( ) 0for .t c t t t tζ′ ≤ − ≥   

Integrating this over ( )0 ,t t , we conclude that  

( ) ( ) ( )
0

d
1 0e for all .

t
tc s s

t t t t
ζ− ∫≤ ≥   

Consequently, the equivalent relations of , L  and   yield the desired 
result.                                                            

4. Conclusion 

In this paper we proved decay rates of energy for a viscoelastic von Karman 
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equation with constant time delay in the velocity by establishing proper 
Lyapunov functionals corresponding to the delay effect. In the future work, we 
will consider the equation with time-varying delay effect. 
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