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Abstract 
In this paper we investigate anomalous diffusion coupled with linear convec-
tion, using fractional calculus to describe the anomalous associated memory 
effects in diffusive term. We get an explicit travelling wave solution, wave-
front, with finite propagation. We comment the properties of the solution, in-
cluding the stationary case. 
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1. Introduction 

The fractional calculus is almost as old as the calculus of integer order, but only 
in 1974 was realized the first Conference on Fractional Calculus its Applications. 
In the decade 90s fractional calculus was recognized and specific journals and 
textbooks were being published [1] [2] [3]. Nowadays, many definitions have 
appeared in fractional calculus that shows us some difficulties and limitations of 
the theory with applications [4] [5] [6] [7]. The researchers have investigated in 
diffusion processes the anomalous related memory effects [8] [9] [10] [11], for 
example, some materials the moisture propagates according to the 2x tα  scal-
ing, with 0 2α< <  [12] [13]. Costa et al. [14] comment that water transport 
for large distance in a relatively short time (groundwater infiltration problem) 
can be described for a fractional space-time nonlinear diffusion equation. 

We study the diffusion with linear convection, that is, a nonlinear convec-
tion-diffusion problem. Appearing in several physical, biological and chemical 
applications, B. H. Gilding and R. Kersner [15] highlight the study of pattern 
formation by bacterial colonies analyzed in [16]. The investigation of that prob-
lem with the fractional operators has shown that fractional derivatives in con-

How to cite this paper: Costa, F.S. and 
Pereira, M.R.A. (2017) Travelling Waves in 
Space-Fractional Nonlinear Diffusion with 
Linear Convection. Journal of Applied 
Mathematics and Physics, 5, 462-468. 
https://doi.org/10.4236/jamp.2017.52041  
 
Received: December 30, 2016 
Accepted: February 21, 2017 
Published: February 24, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

   
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2017.52041
http://www.scirp.org
https://doi.org/10.4236/jamp.2017.52041
http://creativecommons.org/licenses/by/4.0/


F. S. Costa, M. R. A. Pereira 
 

463 

vection-diffusion equation give more information about the anomalous asso-
ciated with effect memory [17] [18] [19]. We are interested in travelling wave 
solution given by similarity reductions to fractional equation. 

Our purpose is to find an explicit solution, so that we can investigate its prop-
erties in the fractional model. In Section 2 we define the Riesz fractional deriva-
tive. In Section 3 the fractional model used to describe the convection-diffusion 
equation using Riesz fractional derivative. In Section 4 we use the similarity re-
duction method in fractional equation. In Section 5 we calculate the particular 
travelling wave, called a wavefront. Section 6 makes our concluding remarks.  

2. Riesz Fractional Derivative 

The Riesz fractional derivative of order α , with 0 2α< <  and 1α ≠  is de-
fined by:  

( ) ( ) ( )
( )

,
2cos π 2x

D f x D f x
D f x

α α
α

α
+ −+

= −                  (1) 

where ( )D f xα
±  are Weyl fractional derivatives [20] [21]. 

Theorem 1. Let be ( ) 1h x x α− −= , with 1 2α< < . We describe the Riesz 
fractional derivative of order α  for an appropriate Fourier convolution prod-
uct is given by:  

( ) ( )( ) ,xD f x d f h xα
α= ∗                     (2) 

with 
( )

1
π2 cos

2

dα αα
= −

 Γ −  
 

.  

This result is an improvement of the theorem developed by E. C. Grigoletto 
and E. C. de Oliveira [22].  

3. Fractional Convection-Diffusion  

Analyze a fractional space nonlinear convection-diffusion equation, in which we 
apply the Riesz fractional derivative in diffusive term. If we consider only diffu-
sion, Equation (3) defines a fractional porous medium equation [23] [24] [25].  

( ) ( ) ( ), , , ,   1, 0  and  ,n
xu x t D u x t u x t n t x

t x
α∂ ∂

= + > > ∈
∂ ∂


       (3) 

where xDα  is Riesz fractional derivative, with 1 2α< < . In the case 2α → , we 
get the integer classical convection-diffusion equation. The parameter n  ap-
pears, when we consider the diffusion coefficient ( )1 ,nnu x t− , that is, density 
dependent diffusivity, in that n  is determined by properties of the medium and 
phenomenon investigated. 

An important application arises in a model describing the unsaturated flow of 
a fluid through a homogeneous porous column under the influence of capillary 
pressure and gravity. As example, we cite water movement in a vertical column 
of the medium, if water movement in a horizontal column of the medium, the 
problem reduces to the flow porous medium.  
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4. Travelling waves 

Use the similarity reduction method in Equation (3), to find the travelling wave  

solutions ( )g x ct± , where ( ) 1d tg x ct x g c
x

 ± = ± 
 

, with d  is related to the 

homogeneity degree.  

( ) ( ), ,    1 ,a tu x t x U c
x

η η= = ±                   (4) 

where 0t > , { }0x∈ −  and a  is unknown. 
We apply Equation (4) on the left-side hand of Equation (3):  

( ) ( ) ( )1, 1 .a atu x t x U c c x U
t t x

η
η

−∂ ∂   ∂ = ± = ±  ∂ ∂ ∂  
          (5) 

In relation to the right-side hand of Equation (3). We calculate Riesz fraction-
al derivative, using Theorem 1: 

( )

( ) ( )

1

1

1 1

, 1 1

1 d

1 d 1 d .

n an n an n
x x

an n

xan n an n
x

t tD u x t D x U c d x U c x
x x
td s U c x s s
s

t td s x s U c s x s s U c s
s s

αα α
α

α
α

α α
α

− −

+∞ − −

−∞

+∞ − − − −

−∞

      = ± = ± ∗            
 = ± − 
 

    = − ± + − ±        

∫

∫ ∫

 (6) 

The integrals are given follows:  

( )

( ) ( ) ( ) ( )

1

1 1 1

1

1 d

1 1 d

x an n

an anan n

tx s s U c s
s

x U

α

η α αα η η τ τ τ τ

− −

−∞

+ − − − + −−

 − ± 
 

= − − −

∫

∫
         (7) 

and  

( )

( ) ( ) ( ) ( ) ( )

1

1 1 1

1

1 d

1 1 1 d

an n
x

an anan n

ts x s U c s
s

x U

α

ηα α αα η η ψ ψ ψ ψ

+∞ − −

− + − − − + −−

 − ± 
 

= − − − −

∫

∫
     (8) 

The Riesz fractional derivative is given by:  

( )
( ) ( ) ( ) ( ) ( )1 1 1

1

,

1 1 1 1 d .

n
x

an anan n

D u x t

d x U

α

ηα α αα
α η η ψ ψ ψ ψ− + − − − + −− = + − − − −  ∫

  (9) 

Replacing, Equation (5) and Equation (9) in Equation (3), we get:  

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1 1 1

1

1

1 1 1 1 d

   1

a

an anan n

a

c x U

d x U

x a U

ηα α αα
α

η
η

η η ψ ψ ψ ψ

η η
η

−

− + − − − + −−

−

∂
±

∂

 = + − − − − 
∂

+ + −   ∂

∫  (10) 

Imposing invariance on the variable x  for Equation (10):  
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11
1

a an a
n
αα −

− = − ⇒ =
−

                   (11) 

We obtain the equation:  

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

11 1 11 1 1 1 d

  1

an an n

c U

d U

a U

α α α
α η

η
η

η η ψ ψ ψ ψ

η η
η

− + − − − + −

∂
±

∂

 = − + − − − − 
 ∂

+ + − ∂ 

∫    (12) 

5. Wavefronts 

Look for a travelling wave, called wavefront [26] [27] [28]. Let us consider:  

( ) , 0
0, 0

kA
U

η η
η

η
 <

= 
≥

                     (13) 

where A  and k  are unknowns. To determine these variables, we replace this 
equation in Equation (12). The calculus of the integral is given by:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )

11 1 1

01 1 1

01 1 1

1

1
1

2

1 1 1 1 d

1 1 1 1 d

1 1 1 1 1 d

1 1

1 1
   1 1

1
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an an n n

an ann n n
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d U

d A

d A

d A

n
F

n

α α α
α η

α α α κ
α η

α α ακ α κ
α

α α
α

η η ψ ψ ψ ψ

η η ψ ψ ψ ψ

η η µ ηµ µ µ

η

α κ
η α

α κ
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− + − − − + −

− + − − − + −−

− −

+

 + − − − − = 
 = + − − − − 
 = + − − − − 
 = + − 

− Γ − Γ +
× − − +
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∫

∫

∫

( ),1 ;1 ; ,an n nκ α κ η+ − +

  (14) 

where 2 1F  is hypergeometric function. Thus, we obtain the relation:  

( )
( )

( ) ( ) ( ) ( )
( ) ( )

( )

1

1
1

2

1

1 1

1 1
  1 1 ,1 ;1 ;

1

  .

k

n kn

an

k k

c Ak

d A

kn
F an kn kn

kn

A a k k

α α
α

η

η

α
η α α η

α

η η

−

− −

+

−

±

 = − + − 
− Γ − Γ +

× − − + + − +
Γ − +

 + − + 

   (15) 

Once again, considering k a= , we impose invariance on the variable η  for 
Equation (15), that gives us:  

( ) ( ) ( ) ( ) ( )
( )

1 1
1 1 .

1
n kn

c kA d A kA
kn

α
α

α
α

− − Γ − Γ + ± = − + − +  Γ − +
       (16) 

Thus,  

( ) ( )
( ) ( )1 exp π 2 1

1 ,
1

n i kn
A k c

kn
α α− Γ − +

= − ± −  Γ +
           (17) 

and using Equation (11), we have:  
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( ) ( )
( ) ( )

1
1exp π 2 1

1 .
1

ni k
A c

kn
α − Γ + = − ± −   Γ +  

            (18) 

The values of A  and a  in Equation (4),  

( )
( ) ( )

( ) ( ) ( )
1

11exp π 2 1
1 ,   , 1

0,                                                                               .

ni k
c x ct x ctu x t kn

x ct

αα −
−


 Γ +  − ± − ± <   =  Γ +  

≥

   (19) 

The integer classical equation is recovered by taking the limit 2α →  in Eq-
uation (3):  

( ) ( ) ( )
2

2, , , ,nu x t u x t u x t
t xx
∂ ∂ ∂

= +
∂ ∂∂

               (20) 

and its solution is given by:  

( )
( ) ( ) ( )

1
11

1 ,  ,

0,                                                 ,

nn
c x ct x ctu x t n

x ct

−


−   ± − ± <   =   
≥

         (21) 

which is same result found by B.H. Gilding and R. Kersner in [27]. 
The condition 0η <  gives us the relations: ( )0,x∈ ∞  associated to “ c− ” 

and ( ),0x∈ −∞  associated to“ c+ ”, that is, x x→ −  implies the change of ve-
locity c c− → + . If we regard ( ),u x t  in Equation (21) nonnegative, we have 

( )0 0,c x≥ ∈ ∞  and ( )1 ,0c x> ∈ −∞ . Therefore, the fractional equation in Eq-
uation (3) has only stationary solution in ( )0,∞ . The relation between the val-
ues A  and c  is establishes in Equation (18). 

6. Concluding Remarks 

We introduce the space-fractional model based on Riesz fractional derivative 
with nonlinear diffusion in conjunction linear convection. We obtain the explicit 
travelling wave solution, with finite propagation, wavefront; that is, Equation (3) 
admits solution in the region x ct<  such that ( ),u x t  vanishes on the front 
x ct= . This property and the behaviour near the interface are in general de-
scribed by wavefront; it may give rise to interfaces separating the regions that we 
have just mentioned. As a continuation of this paper, we can suppose fractional 
derivatives in time and nonlinear convection for Equation (3) and we search its 
travelling waves.  
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