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Abstract 
In this paper, we are concerned with the solvability for a class of nonlinear 
sequential fractional dynamical systems with damping infinite dimensional 
spaces, which involves fractional Riemann-Liouville derivatives. The solutions 
of the dynamical systems are obtained by utilizing the method of Laplace 
transform technique and are based on the formula of the Laplace transform of 
the Mittag-Leffler function in two parameters. Next, we present the existence 
and uniqueness of solutions for nonlinear sequential fractional dynamical 
systems with damping by using fixed point theorems under some appropriate 
conditions. 
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1. Introduction 

The purpose of this paper is to study the solvability of the following nonlinear 
sequential fractional dynamical systems which involve fractional Riemann- 
Liouville derivatives with damping:  
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In n  dimensional Euclidean space, where 0 1α< < , 0 1β< < ,  0  1q< < ,
qα β+ > , tDα  is the standard Riemann-Liouville fractional derivative with 

the lower limit zero, and ( )t tD Dα β  denotes the sequential Riemann-Liouville 
fractional derivative presented by Miller and Ross in [1].   ( ) nx t R∈  is a vector, 
a sufficiently order differentiable function; n nA R ×∈  is an any matrix and  
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( ) 0det I Aλ − ≡/ ; : n nf J R R× →  is a continuous function. 
The theory of the fractional derivatives and integrals becomes increasingly 

more important for applications. Both the ordinary and the partial differential 
equations of fractional order have been used within the last few decades for 
modeling of many physical and chemical processes and in engineering (see [1] 
[2] [3] [4] [5] [6]) and references therein). As stated in [6] [7], partial fractional 
differential equations became especially important for the modeling of the so 
called anomalous phenomena in nature and in the theory of the complex sys-
tems. Moreover, fractional differential equations allow for the representation of 
the long-memory and non-local dependence of many processes. 

In this connection, the so-called time-fractional diffusion equation that is ob-
tained from the classical diffusion equation by replacing the first-order time de-
rivative by a fractional derivative of order α  with 0 1α< ≤  has to be espe-
cially mentioned. As a consequence, the time-fractional diffusion equation 
appeared to be a suitable mathematical model for the so-called sub-diffusion 
processes and thus became important and useful for different applications. For 
more details on this topics one can see for instance (see [8] [9] [10]) and the ref-
erence therein. 

Fractional derivatives have been recognized as one of the best tools to de-
scribe long-memory processes. The corresponding mathematical models of these 
processes are fractional differential equations, which have been considered as an 
alternative model to integer differential equations. Recently, the subject of frac-
tional differential equations is gaining much importance and attention. For 
more history and basic results on fractional calculus theory, one can see mono-
graph ([4] [11]-[21]) and the references therein. In the past decades, various re-
sults for Cauchy problem, boundary value problem, nonlocal problem, impulsive 
problem and control problem of Riemann-Liouville type, Caputo type, Hada-
mard type fractional differential equations or inclusions have been paid more 
and more attention on finite or infinite dimensional spaces in recent years. In 
[22], Carrasco and Leiva developed a semi group approach for a class of semili-
near parabolic differential equations with delay and then derived the solvability 
of the delay systems by using the well known fixed point theorem. Leiva, Me-
rentes and Sanchez in [23] showed the solvability of a broad class of semilinear 
reaction diffusion equations in a Hilbert space. In [24], Li and Zhou considered 
the solvability for a class of control systems governed by semilinear parabolic 
equations with a boundary control by using the theorem of operators semi group. 
Wang and Du in [25] [26] recently proved the solvability of a class of semilinear 
parabolic system by using the Kakutani fixed point theorem. 

Significant progresses have been made for the integer and fractional order 
differential equations (see [27] [28] [29]). However, to the best of our know-
ledge, there is still little information known for the solvability of the nonlinear 
sequential fractional dynamical systems with damping and this fact is the moti-
vation of the present work. Our aim in this paper is to provide some suitable 
sufficient conditions for the existence and uniqueness of solutions of the nonli-
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near sequential fractional dynamical systems which involve fractional Riemann- 
Liouville derivatives with damping. 

The rest of this paper is organized as follows: In Section 2, we will present 
some basic definitions and preliminary facts which will be used throughout the 
following sections. In Section 3, we establish a suitable concept of solutions for 
problem (1.1) and present the existence and uniqueness of solutions under some 
appropriate conditions.  

2. Preliminaries 

In this section, we introduce some basic definitions and preliminaries which are 
used throughout this paper. For the n -dimensional Euclidean space nR , let 

( , )nC J R  denote the Banach space of all continuous functions from [0; ]J b=  
into nR  equipped with the norm || || sup{|| ( ) || : }Cx x t t J= ∈  for ( , )nx C J R∈  
and we also introduce the space 1

1 ( , ) { : ( ) ( , ), 0 1}n nC J R x t x t C J Rβ
β β−

− = ∈ < ≤  
with the norm 

1

1|| || sup{ || ( ) || : , 0 1}Cx t x t t J
β

β β
−

−= ∈ < ≤ . Obviously, the space 

1 ( , )nC J Rβ−  is a Banach space. 
Next, for the convenience of the readers, we first present some useful defini-

tions and fundamental facts of fractional calculus theory, which can be found in 
[7] [30]. 

Definition 2.1. The integral 

1
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is called Riemann-Liouville fractional integral of order q , where Γ  is the 
gamma function. 

Definition 2.2. For a function ( )f t  given in the interval [0, ),∞  the expres-
sion 
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is called the Riemann-Liouville fractional derivative of order q, where [ ] 1n q= + , 
[ ]q  denotes the integer part of number q. 

Definition 2.3. 1) The Mittag-Leffler function in two parameters is defined as 
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where 0, 0α β> >  and C  denotes the complex plane. 
In particularly, for 1,β =  we obtain the Mittag-Leffler function in one pa-

rameter as: 
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In addition, the Laplace transform of the Mittag-Leffler function is 
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where ( )Re λ  denotes the real parts of λ . 
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2) For an n n×  matrix A , we define the Mittag-Leffler matrix function as 
follows: 

,
0

( ) , 0, 0,
( )

k

k

AE A
kα β α β

α β

∞

=

= > >
Γ +∑  

and the Laplace transform of the Mittag-Leffler matrix function is 

( ) ( ) 11
, ; .[ ]L t E At I Aβ α α β α

α β λ λ λ
−− −± =   

where I  is the identity matrix. 
In order to study the solutions of problem (1.1), we need: 
Lemma 2.4. ([30]) Let 0, [ ] 1,mα α> = +  and let ( ) ( )m

m tx t I x tα
α

−
− =  be the 

fractional integral of order .m α−  If 1( ) ( , )nx t L J R∈  and  
( ) ( , ),m n

mx t AC J Rα− ∈  then we have the following equality 
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Next, the Laplace transform formula for the Riemann-Liouville fractional 
integral is defined by 

{ } 1 ˆ( ); ( ),tL I x t xα
αλ λ

λ
=  

where ˆ( )x λ  is the Laplace of x  defined by 

0
ˆ( ) ( ) , ,| ( ) | ,t tx e x t dt Re x t ceλ ωλ λ ω

∞ −= > ≤∫   c  is a constant. 

Lemma 2.5 Let , , (0,1],q qα β α β∈ + >  and ( , ) ( , )p n p nh L J R h L J R∈ ∈  if 
( ) 1 1 1 1, ( ) ( , ), ( ( )), , ( , )n q n

t t t tx t D x t L J R I D x t I x I x AC J Rβ α β β− − −∈ ∈  and x  is a so-
lution of the problem 
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then, x  satisfies the following equation 
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Proof. Apply Riemann-Liouville fractional integral operator tIα β+  on both 
sides of the equation (2.1), we get 

( )( ) ( ) ( ) ,q
t t t t t tI D D x t AI D x t I h tα β α β α β α β+ + +− =  

i.e., 
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Then by Lemma 2.4, we obtain 
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It follows from (2.2) that 
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Next, let 0,λ >  taking the Laplace transformations 
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Taking inverse Laplace transform to both sides of the expression (2.4), then 
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Finally substituting Laplace transformation of Mittag-Leffler function and 
Laplace convolution operator, we get the solution of the given system as 

( ) ( )
( )

( ) ( )( ) ( )

1
, 0 , 1

, 2

1
,0

 

  ( )

 

d .

q q q
q q

q q
q

t q
q

x t t E At x t E At x

At E At x

t s E A t s h s s

β α β α β α β
α β β α β α β

α β α β
α β α β

α β α β
α β α β

− + − + − + −
+ − + − +

+ − + −
+ − +

+ − + −
+ − +

+

+

=

−

− −∫

     (2.5) 

This completes the proof of the lemma. 
According to Lemma 2.5, we give the following definition: 
Definition 2.6. A function 1 ( , )nx C J Rβ−∈  is called a generalized solution of 

(1.1) if it satisfies the following fractional integral equation 
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3. Existence of Solutions 

In this section, we present the existence and uniqueness of solutions for problem 
(1.1) under some appropriate conditions by a well known fixed point theorem. 
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To obtain the global existence of mild solutions of problem (1.1), we suppose: 
H(f): The function : n nf J R R× →  satisfied ( , ) : nf x J R⋅ →  is continuous 

for all nx R∈  and there exists a constant 0L >  such that 

|| ( , ) ( , ) || || || , , nf t x f t y L x y for all x y R− ≤ − ∈ . 

Now, we are in the position to present the main result of this section. 
Theorem 3.1. Assume that the condition H(f) holds. Then the problem (1.1) 

has a unique solution on 1 ( , ).nC J Rβ−  
Proof. Define the operator 1 1: ( , ) ( , ),n nF C J R C J Rβ β− −→  as 
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Clearly, the problem of finding solutions for system (1.1) is reduced to find the 
fixed point of F. Firstly, under the assumption of our theorem, it is easy to check 
that F maps 1 ( , )nC J Rβ−  into itself. So it is only need to show that nF  is a 
contraction operator on 1 ( , )nC J Rβ− . 
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Using (3.1) and induction on n , it follows easily that 
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Since [ ( ) ] / ( ( ) )n
ELM b nα βα β α β β+Γ + Γ + +  is the general term of the Mit-

tag-Leffler series , ( ( ) )EE LM bα β
α β β α β +
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vergent on real axis, then for n  large enough, one can obtain  
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Hence, nF  is a contraction operator for large integer n  and hence F . By 
applying the well-known Banach’s contraction mapping principle, we know that 
the operator nF  and also F  has a unique fixed point on 1 ( , ).nC J Rβ−  So 
problem (1.1) has a unique solution on J . This completes the proof. 
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