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Abstract 
We review our models of quantum associative memories that represent the “quanti-
zation” of fully coupled neural networks like the Hopfield model. The idea is to re-
place the classical irreversible attractor dynamics driven by an Ising model with pat-
tern-dependent weights by the reversible rotation of an input quantum state onto an 
output quantum state consisting of a linear superposition with probability ampli-
tudes peaked on the stored pattern closest to the input in Hamming distance, result-
ing in a high probability of measuring a memory pattern very similar to the input. 
The unitary operator implementing this transformation can be formulated as a se-
quence of one-qubit and two-qubit elementary quantum gates and is thus the expo-
nential of an ordered quantum Ising model with sequential operations and with pat-
tern-dependent interactions, exactly as in the classical case. Probabilistic quantum 
memories, that make use of postselection of the measurement result of control qu-
bits, overcome the famed linear storage limitation of their classical counterparts be-
cause they permit to completely eliminate crosstalk and spurious memories. The 
number of control qubits plays the role of an inverse fictitious temperature. The ac-
curacy of pattern retrieval can be tuned by lowering the fictitious temperature under 
a critical value for quantum content association while the complexity of the retrieval 
algorithm remains polynomial for any number of patterns polynomial in the number 
of qubits. These models thus solve the capacity shortage problem of classical associa-
tive memories, providing a polynomial improvement in capacity. The price to pay is 
the probabilistic nature of information retrieval. 
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1. Introduction 

There is a growing consensus that the fundamental mechanism of human intelligence is 
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simply pattern recognition, the retrieval of information based on content association, 
albeit repeated in ever increasing hierarchical structures [1] [2]. Correspondingly, pat-
tern recognition in machine intelligence [3] has made enormous progress in the last 
decade or so and such systems are now to be found in applications ranging from medi-
cal diagnosis to facial and voice recognition in security and digital personal assistants, 
the latest addition to the family being self-driving cars. On the other side, the last two 
decades have seen the birth of, and an explosion of research in a new information- 
theoretic field: quantum information theory and quantum computation [4] [5]. This 
chapter deals with quantum pattern recognition, with particular emphasis on models 
that are both accessible to detailed analytical treatment and efficiently implementable 
within the framework of the quantum circuit model. 

Pattern recognizers, which go also under the name of associative memories (or more 
precisely autoassociative memories), are fundamentally different than von Neumann or 
Turing machines [6], which have grown into the ubiquitous computers that permeate 
our information society. Computation is not sequential but, rather, based on collective 
phenomena due to interactions among a large number of, typically redundant, elemen-
tary components. Information is not address-oriented, i.e. stored in look-up tables 
(random access memories, RAMs) but, rather, distributed in often very complex ways 
over the connections and interactions parameters. In traditional computers informa-
tion is identified by a label and stored in a database indexed by these labels. Retrieval 
requires the exact knowledge of the relevant label, without which information is simply 
not accessible. This is definitely not how our own brain works. When trying to recog-
nize a person from a blurred photo it is totally useless to know that it is the 16878th 
person you met in your life. Rather, the recognition process is based on our strong 
power of association with stored memories that resemble the given picture. Association 
is what we use every time we solve a crossword puzzle and is distinctive of the human 
brain. 

The best known examples of pattern recognizers are neural networks [7] [8] and 
hidden Markov models [9], the Hopfield model [10] (and its generalization to a bidi-
rectional associative memory [11]) being the paradigm, since it can be studied analyti-
cally in detail by the techniques of statistical mechanics [7] [8] [12]. The great advan-
tage of these architectures is that they eliminate the extreme rigidity of RAM memories, 
which require a precise knowledge of the memory address and, thus, do not permit the 
retrieval of incomplete or corrupted inputs. In associative memories, on the contrary, 
recall of information is possible also on the basis of partial knowledge of its content, 
without knowing a precise storage location, which typically does not even exist. This is 
why they are also called “content-addressable memories”. 

Unfortunately, classical associative memories suffer from a severe capacity shortage. 
When storing multiple patterns, these interfere with each other, a phenomenon that 
goes under the name of crosstalk. Above a critical number of patterns, crosstalk be-
comes so strong that a phase transition to a completely disordered spin glass phase [13] 
takes place. In this phase there is no relation whatsoever between the information en-
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coded in the memory and the original patterns. For the Hopfield model, the critical thre-
shold on the number p of patterns that can be stored in a network of n binary neurons is 

max 0.138p n  [7] [8]. While various possible improvements can be envisaged, the 
maximum number of patterns remains linear in the number of neurons, ( )maxp O n= . 

The power of quantum computation [4] [5] is mostly associated with the speed-up in 
computing time it can provide with respect to its classical counterpart, the paramount 
examples being Shor’s factoring algorithm [14] and Grover’s database search algorithm 
[15]. The efficiency advantage over classical computation is due essentially to the 
quantum superposition principle and entanglement, which allow for massively parallel 
information processing. 

The bulk of the research effort in quantum computation has focused on the “quanti-
zation” of the classical sequential computer architecture, which has led to the quantum 
circuit model [4] [5], in which information processing is realized by the sequential ap-
plication of a universal set of elementary one- and two-qubit gates to typically highly 
entangled quantum states of many qubits. The computation is said to be efficient if the 
desired unitary evolution of the quantum state can be realized by the application of a 
polynomial number (in terms of the number of involved qubits) of these elementary 
quantum gates. 

However, the question immediately arises if quantum mechanics can be applied suc-
cessfully also to the collective information processing paradigm typical of machine in-
telligence algorithms and, specifically, if there are advantages in doing so. While this 
research has trailed the development of the quantum circuit model, it is presently expe-
riencing a flurry of increased interest, so much so that last year NASA and Google have 
teamed up to found the Quantum Artificial Intelligence Laboratory, entirely dedicated 
to develop and advance machine intelligence quantum algorithms. 

While speed has been the main focus of quantum computation, it can be shown that 
quantum mechanics also offers a way out from the impossibility of reconciling the as-
sociation power of content-addressable memories with the requirement of large storage 
capacity. Indeed, one of us pointed out already in 2001 [16] [17] [18] [19] that storage 
capacity of associative memories can also be greatly enhanced by the quantum super-
position principle. The key idea is to exploit the fundamental probabilistic nature of 
quantum mechanics. If one is willing to abandon the classical paradigm of one-off re-
trieval and sacrifice some speed by repeating the information retrieval step several 
times, then it is possible to store any desired polynomial number (in terms of the num-
ber of qubits) of patterns in a quantum associative memory and still tune the associative 
retrieval to a prescribed accuracy, a large advantage with respect to the classical linear 
limitation described above. Quantum entanglement permits to completely eliminate 
crosstalk and spurious memories in a tuneable probabilistic content association proce-
dure with polynomial complexity for a polynomial number of stored patterns. Such 
probabilistic quantum associative memories can thus be implemented efficiently. Simi-
lar ideas in this direction were developed simultaneously in [20] [21] [22]. 

In this chapter, we will review our own work on fundamental aspects of quantum 
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associative memories and quantum pattern recognition. We will begin by a short survey 
of the main features of classical fully coupled neural networks like the Hopfield model 
and its generalizations, with a special emphasis on the capacity limitation and its origin. 
We will then describe the quantization of the Hopfield model [23]: the idea is to replace 
the classical irreversible dynamics that attracts input patterns to the closest minima of 
an energy function, representing the encoded memories, with a reversible unitary 
quantum evolution that amplifies an input quantum state to an output quantum state 
representing one of the stored memories at a given computational time t. In the classic-
al model there is a complex phase diagram in terms of the two noise parameters, the 
temperature T and the disorder p/n with n the number of bits and p the number of 
stored patterns. It is, specifically the disorder due to an excessive loading factor p/n that 
prevents the storage of more than a critical number of patterns by causing the transi-
tion to a spin glass phase [13], even at zero temperature. Correspondingly, in the quan-
tum version there are quantum phase transitions due to both disorder and quantum 
fluctuations, the latter being encoded in the effective coupling Jt, with J being the ener-
gy parameter of the model and t being the computational time (throughout the review 
we will use units in which c = 1 and 1= ). These are first examples of quantum col-
lective phenomena typical of quantum machine intelligence. It turns out that, barring 
periodicity effects due to the unitary time evolution, the phase diagram for the quan-
tum Hopfield model is not so different from its classical counterpart. Specifically, for 
small loading factors the quantum network has indeed associative power, a very inter-
esting feature by itself, but the maximum loading factor is still limited to 1p n ≤ , 
above which there is a totally disordered spin glass phase, with no association power for 
any computational time. The transition to this quantum spin glass phase takes place 
when one tries to store a number of memories that is not anymore linearly indepen-
dent. 

We then turn our attention to probabilistic quantum associative memories [16] [17] 
[18] [19]. The basic idea underlying their architecture is essentially the same as above, 
with one crucial difference: they exploit, besides a unitary evolution, a second crucial 
aspect of quantum mechanics, namely wave function collapse upon measurement [4] 
[5]. A generic (pure) quantum state is a superposition of basis states with complex coef-
ficients. A measurement projects (collapses) the state probabilistically onto one of the 
basis states, the probability distribution being governed by the squared absolute values 
of the superposition coefficients. Probabilistic quantum associative memories involve, 
besides the memory register itself a certain number b of control qubits. The unitary 
evolution of the input state is again determined by a Hamiltonian that depends only on 
the stored patterns. Contrary to quantized Hopfield memories, however, this unitary 
evolution mixes the memory register and the control qubits. After having applied the 
unitary evolution to the initial input state, the control qubits are measured. Only if one 
obtains a certain specific result, one proceeds to measure the memory register. This 
procedure is called probabilistic postselection of the measurement result and guaran-
tees that the memory register is in a superposition of the stored patterns such that the 
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measurement probabilities are peaked on those patterns that minimize the Hamming 
distance to the input. A measurement of the memory register will thus associate input 
and stored patterns according to this probability distribution. 

Of course, if we limit ourselves to a maximum number T of repetitions, there is a 
non-vanishing probability that the memory retrieval will fail entirely, since the correct 
control qubit state will never be measured. One can say that information retrieval in 
these quantum memories consists of two steps: recognition (the correct state of the 
control qubits has been obtained) and identification (the memory register is measured 
to give an output). Both steps are probabilistic and both the recognition efficiency and 
the identification accuracy depend on the distribution of the stored patterns: recogni-
tion efficiency is best when the number of stored patterns is large and the input is simi-
lar to a substantial cluster of them, while identification accuracy is best for isolated pat-
terns which are very different from all other ones, both very intuitive features. Both 
recognition efficiency and identification accuracy can be tuned to prescribed levels by 
varying the repetition threshold T and the number b of control qubits. 

The accuracy of the input-output association depends only on the choice of the 
number b of control qubits. Indeed, we will show that 1t b=  plays the role of an ef-
fective temperature [19]. The lower t, the sharper is the corresponding effective Boltz- 
mann distribution on the states closest in Hamming distance to the input and the better 
becomes the identification. By averaging over the distribution of stored patterns with 
Hamming distance to the input above a threshold d one can eliminate the dependence 
on the stored pattern distribution and derive the effective statistical mechanics of 
quantum associative memories by introducing the usual thermodynamic potentials as a 
function of d and the effective temperature 1t b= . In particular, the free energy ( )F t  
describes the average behaviour of the recall mechanism and provides concrete criteria 
to tune the accuracy of the quantum associative memory. By increasing b (lowering t), 
the associative memory undergoes a phase transition from a disordered phase with no 
correlation between input and output to an ordered phase with perfect input-output 
association encoded in the minimal Hamming distance d. This extends to quantum in-
formation theory the relation with Ising spin systems known in error-correcting codes 
[24] [25] [26] and in public key cryptography [27]. 

The recognition efficiency can be tuned mainly by varying the repetition threshold T: 
the higher T, the larger the number of input qubits that can be corrupted without af-
fecting recognition. The crucial point is that the recognition probability is bounded 
from below by ( )( ) ( )2 21 π 2 b bp pn− . For any number of patterns, thus, a repetition 
threshold T polynomial in n guarantees recognition with probability ( )1O . Due to the 
factor ( )1p −  in the numerator, whose origin is exclusively quantum mechanical, the 
number of repetitions required for efficient recognition would actually be polynomial 
even for a number of patterns exponential in n. The overall complexity of probabilistic 
associative quantum memories is thus bounded by the complexity ( )( )2 3O p n +  of 
the unitary evolution operator. Any polynomial number of patterns ( )xp O n=  can be 
encoded and retrieved efficiently in polynomial computing time. The absence of spu-
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rious memories leads to a substantial storage gain with respect to classical associative 
memories, the price to pay being the probabilistic nature of information recall. 

2. The Classical Hopfield Model 

Historically, the interest in neural networks [7] [8] has been driven by the desire to 
build machines capable of performing tasks for which the traditional sequential com-
puter architecture is not well suited, like pattern recognition, categorization and gene-
ralization. Since these higher cognitive tasks are typical of biological intelligences, the 
design of these parallel distributed processing systems has been largely inspired by the 
physiology of the human brain. 

The Hopfield model is one of the best studied and most successful neural networks. 
It was designed to model one particular higher cognitive function of the human brain, 
that of associative pattern retrieval or associative memory. 

The Hopfield model consists of an assembly of n binary neurons is , 1, ,i n=   [28], 
which can take the values ±1 representing their firing (+1) and resting (−1) states. The 
neurons are fully connected by symmetric synapses with coupling strengths ij jiw w=  
( 0iiw = ). Depending on the signs of these synaptic strengths, the couplings will be ex-
citatory (>0) or inhibitory (<0). The model is characterised by an energy function 

1 , 1, , 1, , ,
2 ij i j i

i j
E w s s s i j n

≠

= − = ± =∑                   (1) 

and its dynamical evolution is defined by the random sequential updating (in time t) of 
the neurons according to the rule 

( ) ( )( )1 sign ,i is t h t+ =                         (2) 

( ) ( ),i ij j
i j

h t w s t
≠

= ∑                            (3) 

where ih  is called the local magnetization. 
The synaptic coupling strengths are chosen according to the Hebb rule 

1, ,

1 ,ij i j
p

w
n

µ µ

µ
ξ ξ

=

= ∑


                          (4) 

where i
µξ , 1, , pµ = 

 are p binary patterns to be memorized. An associative memory 
is defined as a dynamical mechanism that, upon preparing the network in an initial 
state 0

is  retrieves the stored pattern i
λξ  that most closely resembles the presented 

pattern 0
is , where resemblance is determined by minimizing the Hamming distance, 

i.e. the total number of different bits in the two patterns. As emerges clearly from this 
definition, all the memory information in a Hopfield neural network is encoded in the 
synaptic strengths. 

It can be easily shown that the dynamical evolution (2) of the Hopfield model satis- 
fies exactly the requirement for an associative memory. This is because: 
• The dynamical evolution (2) minimizes the energy functional (1), i.e. this energy 

functional never increases when the network state is updated according to the evo-
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lution rule (2). Since the energy functional is bounded by below, this implies that 
the network dynamics must eventually reach a stationary point corresponding to a, 
possibly local, minimum of the energy functional. 

• The stored patterns i
µξ  correspond to, possibly local, minima of the energy func-

tional. This implies that the stored patterns are attractors for the network dynamics 
(2). An initial pattern will evolve till it overlaps with the closest (in Hamming dis-
tance) stored pattern, after which it will not change anymore. 

Actually, the second of these statements must be qualified. Indeed, the detailed beha-
vior of the Hopfield model depends crucially upon the loading factor p nα = , the ra-
tio between the number of stored memories and the number of available bits. This is 
best analyzed in the thermodynamic limit p →∞ , n →∞ , in which the different re-
gimes can be studied by statistical mechanics techniques [7] [8] [12] and characterized 
formally by the values of critical parameters. 

For crit1 0.051α α<  , the system is in a ferromagnetic (F) phase in which there are 
global energy minima corresponding to all stored memories. The former differ from 
the original input memories only in a few percent of the total number of bits. Mixing 
between patterns leads to spurious local energy minima. These, however are destabi-
lized at sufficiently high temperatures. 

For crit crit1 0.051 2 0.138α α α< <  , the system is in a mixed spin glass (SG) [13] 
and ferromagnetic phase. There are still minima of sizable overlap with the original 
memories but they are now only metastable states. The true ground state is the spin 
glass, characterized by an exponentially increasing number of minima due to the mix-
ing of original memories (crosstalk). The spin glass phase is orthogonal to all stored 
memories. If an input pattern is sufficiently near (in Hamming distance) to one of the 
original memories it will be trapped by the corresponding metastable state and the re-
trieval procedure is successful. On the other hand, if the input pattern is not sufficiently 
close to one of the stored memories, the network is confused and it will end up in a 
state very far from all original memories. 

For crit2 0.138α α>  , the system is in a pure spin glass (SG) phase [13] in which all 
retrieval capabilities are lost due to an uncontrolled proliferation of spurious memories. 
It is this phase transition to a spin glass that limits the storage capacity of the Hopfield 
model to 0.138p nα = < . While various improvements are possible, the storage ca-
pacity of classical associative memories remains linearly bounded by the number n of 
classical bits [7] [8]. 

3. Quantum Neural Networks and the Quantization of the 
Hopfield Model 

In this section, we introduce a quantum information processing paradigm that is dif-
ferent from the standard quantum circuit model [23]. Instead of one- and two-qubit 
gates that are switched on and off sequentially, we will consider long-range interactions 
that define a fully-connected quantum neural network of qubits. This is encoded in a 
Hamiltonian that generates a unitary evolution in which the operator acting on one qu-
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bit depends on the collective quantum state of all the other qubits. Note that some of 
the most promising technologies for the implementation of quantum information 
processing, like optical lattices [29] and arrays of quantum dots [30] rely exactly on 
similar collective phenomena. 

In mathematical terms, the simplest classical neural network model is a graph with 
the following properties: 
• A state variable is  is associated with each node (neuron) i. 
• A real-valued weight ijw  is associated with each link (synapse) (ij) between two 

nodes i and j. 
• A state-space-valued transfer function ( )if h  of the synaptic potential i ij jjh w s= ∑  

determines the dynamics of the network. 
Directed graphs correspond to feed-forward neural networks [7] [8] while undirected 

graphs with symmetric weights contain feed-back loops. If the graph is complete one 
has fully-connected neural networks like the Hopfield model. Two types of dynamical 
evolution have been considered: sequential or parallel synchronous. In the first case the 
neurons are updated one at a time according to 

( ) ( )1 ,i ik k
k

s t f w s t + =  
 
∑                        (5) 

while in the second case all neurons are updated at the same time. The simplest model 
is obtained when neurons become binary variables taking only the values 1is = ±  for 
all i and the transfer function becomes the sign function. This is the original Mc-Cullogh- 
Pitts [28] neural network model, in which the two states represent quiescent and firing 
neurons. 

As we have seen in the previous section, the Hopfield model [10] is a fully-connected 
McCullogh-Pitts network in which the synaptic weights are symmetric quantities cho-
sen according to the Hebb rule [7] [8] 

1

1 , 0.
p

ij ji i j iiw w w
n

µ µ

µ
ξ ξ

=

= = =∑                     (6) 

and in which the the dynamics-defining function f is the sign function, signf = . This 
dynamics minimises the energy function 

1 , 1, , 1, , ,
2 ij i j i

i j
E w s s s i j n

≠

= − = ± =∑                  (7) 

where n is the total number of neurons and µξ  are the p binary patterns to be memo-
rized ( 1i

µξ = ± ) 
A quantum McCullogh-Pitts network can correspondingly be defined as a graph that 

satisfies: 
• A two-dimensional Hilbert space i  is associated with each node (neuron) i, i.e. 

each neuron becomes a qubit whose basis states can be labeled as 0  and 1 . 
• A vector-valued weight ijw  is associated with each link (synapse) (ij) between two 

nodes i and j. 
• The synaptic potential becomes an operator i ij jjh = ∑ w σ , where ( ), ,x y z

i i i iσ σ σ=σ  
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is the vector of Pauli matrices acting on the Hilbert space i . A unitary operator 
( )iU h  determines the dynamics of the network starting from an initial input 

quantum state on the product Hilbert space of all qubits. 
In case of feed-forward quantum networks on directed graphs only a subset of qubits 

is measured after the unitary evolution, in case of fully connected quantum networks 
with symmetric weights the state of the whole network is relevant. 

The crucial difference with respect to classical neural networks concerns the interac-
tions between qubits. In the classical model, the dynamics (5) induced by the transfer 
function is fully deterministic and irreversible, which is not compatible with quantum 
mechanics. A first generalization that has been considered is that of stochastic neurons, 
in which the transfer function determines only the probabilities that the classical state 
variables will take one of the two values: ( )1 1in t + = ±  with probabilities ( )( )if h t± , 
where f must satisfy ( ) 0f h → −∞ = , ( ) 1f h → +∞ =  and ( ) ( ) 1f h f h+ − = . While 
this modification makes the dynamics probabilistic by introducing thermal noise, the 
evolution of the network is still irreversible since the actual values of the neurons are 
prescribed after an update step. In quantum mechanics the evolution must be reversible 
and only the magnitudes of the changes in the neuron variables can be postulated. Ac-
tually, the dynamics must generate a unitary evolution of the network. 

It is known that two-level unitary gates are universal, i.e. every unitary matrix on an 
n-dimensional Hilbert space may be written as a product of two-level unitary matrices. 
However, an arbitrary unitary evolution cannot be implemented as a sequential succes-
sion of a discrete set of elementary gates, nor can it be approximated efficiently with a 
polynomial number of such gates [4] [5]. In general, quantum neural networks as de-
fined above, have to be thought of as defined by Hamiltonians H that code hard-wired 
qubit interactions and generate a unitary evolution ( )expU iHt= . This corresponds to 
the parallel synchronous dynamics of classical neural networks. Only in particular cases, 
one of which will be the subject of the next section, does this unitary evolution admit a 
representation as a sequential succession of a discrete set of elementary one- and two- 
bit gates. In this cases the network admits a sequential dynamics as its classical coun-
terpart. 

We now describe a direct “quantization” of the Hopfield model in this spirit, i.e. by 
defining a quantum Hamiltonian that generalizes (7). At first sight one would be 
tempted to simply replace the classical spins is  of (7) with the third Pauli matrix z

iσ  
acting on the Hilbert space iH . This however would accomplish nothing, the model 
would still be identical to the original classical model, since all terms in the Hamilto-
nian would commute between themselves. A truly quantum model must involve at least 
two of the three Pauli matrices. In [23] we have proposed the following “transverse” 
Hamiltonian: 

,y z
ij i j

ij
J w σ σ= ∑                          (8) 

where kσ , , ,k x y z=  denote the Pauli matrices and J is a coupling constant with the 
dimensions of mass (we remind the reader that we use units in which 1, 1c = = ). This 
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generates a unitary evolution of the network: 

( ) ( ) 0exp ,t i tψ ψ=                          (9) 

where ( )0 0tψ ψ= = . Specifically, we will choose as initial configuration of the 
network the uniform superposition of all computational basis states [4] [5] 

2 1

0
0

1 .
2

n

n x
xψ

−

=

= ∑                          (10) 

This corresponds to a “blank memory” in the sense that all possible states have the 
same probability of being recovered upon measurement. In the language of spin sys-
tems this is a state in which all spins are aligned in the x direction. 

Inputs extξ  can be accomodated by adding an external transverse magnetic field 
along the y axis, i.e. modifying the Hamiltonian to 

ext ,y z y
ij i j i i

ij i
J w g hσ σ σ= +∑ ∑                    (11) 

where ext ext
i ij jjh w ξ= ∑ . This external magnetic field can be thought of as arising from 

the interaction of the network with an additional “sensory” qubit register prepared in 
the state extξ , the synaptic weights between the two layers being identical to those of 
the network self-couplings. 

Let us now specialize to the simplest case of one assigned memory ξ  in which 

ij i jw nξ ξ= . In the classical Hopfield model there are two nominal stable states that 
represent attractors for the dynamics, the pattern ξ  itself and its negative ξ− . Cor-
respondingly, the quantum dynamics defined by the Hamiltonian (8) and the initial 
state (10) have a 2Z  symmetry generated by x

iiσ∏ , corresponding to the inversion 
0 1↔  of all qubits. 

As in the classical case we shall analyze the model in the mean field approximation. 
In this case, the mean field represents the average over quantum fluctuations rather 
than thermal ones but the principle remains the same. The mean field model becomes 
exactly solvable and allows to derive self-consistency conditions on the average overlaps 
with the stored patterns. In the classical case, the mean field approximation is known to 
become exact for long-range interactions [31]. 

In the quantum mean-field approximation operators are decomposed in a sum of their 
mean values in a given quantum state and fluctuations around it, ( )k k k k

i i i iσ σ σ σ= + − , 
and quadratic terms in the fluctuations are neglected in the Hamiltonian. Apart from 
an irrelevant constant, this gives 

ext
mf ,

,

y z z y
i i i i i

i

k k k
i ij j i

j

gJ h h h
J

h w m

σ σ

σ ξ

 = + + 
 

= =

∑

∑


                 (12) 

where ( )1k k
i iim n σ ξ= ∑  is the average overlap of the state of the network with the 

stored pattern. This means that each qubit i interacts with the average magnetic field 
(synaptic potential) k

ih  due to all other qubits: naturally, the correct values of these 
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mean magnetic fields k
ih  have to be determined self-consistently. 

To this end we compute the average pattern overlaps km  using the mean field Ha-
miltonian (12) to generate the time evolution of the quantum state. This reduces to a 
sequence of factorized rotations in the Hilbert spaces of each qubit, giving 

( )

sin 2 ,

sin 2 ,

y
y

z z
z

mm Jt m
m

m g J M
m Jt m

m

= −

+
=

                   (13) 

where ( ) ( )( )2 2y z zm m m g J M= + +  and ( ) ext1z
i iiM n ξ ξ= ∑  is the average over- 

lap of the external stimulus with the stored memory. 
Before we present the detailed solution of these equations, let us illustrate the me-

chanism underlying the quantum associative memory. To this end we note that, for 
0g = , the pattern overlaps ym  and zm  in the two directions cannot be simulta-

neously different from zero. As we show below, only 0zm ≠  for 0J >  (for 0J <  
the roles of ym  and zm  are interchanged). In this case the evolution of the network 
becomes a sequence of n rotations 

( ) ( )
( ) ( )

cos sin

sin cos

z z
i i

z z
i i

Jt h Jt h

Jt h Jt h

 
 
  − 

                    (14) 

in the two-dimensional Hilbert spaces of each qubit i. The rotation parameter is exactly 
the same synaptic potential ih  which governs the classical dynamics of the Hopfield 
model. When these rotations are applied on the initial state (10) they amount to a single 
update step transforming the qubit spinors into 

( ) ( )
( ) ( )

cos sin1 .
2 cos sin

z z
i i

z z
i i

Jt h Jt h

Jt h Jt h

 +
 
  − 

                  (15) 

This is the generalization to quantum probability amplitudes of the probabilistic 
formulation of classical stochastic neurons. Indeed, the probabilities for the qubit to be 
in its eigenstates ±1 after a time t, obtained by squaring the probability amplitudes, are 
given by ( )zf h± , where ( ) ( )( )1 sin 2 2z zf h Jt h= +  has exactly the properties 
of an activation function (alternative to the Fermi function), at least in the region 

π 4Jt < . In this correspondence, the effective coupling constant Jt plays the role of the 
inverse temperature, as usual in quantum mechanics. 

We shall now focus on a network without external inputs. In this case the equation 
for the average pattern overlaps has only the solution 0m =  for 0 1 2Jt< < . For 
such small effective couplings (high effective temperatures), corresponding to weak 
synaptic connections or to short evolution times, the network is unable to remember 
the stored pattern. For 1 2 Jt< , however, the solution 0m =  becomes unstable, and 
two new stable solutions 0

zm m= ±  appear. This means that the reaction of the mean 
orientation of the qubit spinors against a small deviation zmδ  from the 0m =  solu-
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tion is larger than the deviation itself. Indeed, any so small external perturbation 
( ) zg J M  present at the bifurcation time 1 2t J=  is sufficient for the network evo-
lution to choose one of the two stable solutions, according to the sign of the external 
perturbation. The point 1 2Jt =  represents a quantum phase transition [32] from an 
amnesia (paramagnetic) phase to an ordered (ferromagnetic) phase in which the net-
work has recall capabilities: the average pattern overlap zm  is the corresponding order 
parameter. In the ferromagnetic phase the original Z2 symmetry of the model is spon-
taneously broken. 

For π 4Jt = , the solution becomes 0 1m = , which means that the network is capa-
ble of perfect recall of the stored memory. For π 4Jt > , the solution 0m  decreases 
slowly to 0 again. Due to the periodicity of the time evolution, however, new stable so-
lutions 0 1m = ±  appear at ( )1 4 π 4Jt n= +  for every integer n. Also, for 3π 4Jt ≥ , 
new solutions with 0ym ≠  and 0zm =  appear. These, however, correspond all to 
metastable states. Thus, π 4t J=  is the ideal computation time for the network. 

The following picture of quantum associative memories emerges from the above 
construction. States of the network are generic linear superpositions of computational 
basis states. The network is prepared in the state 0ψ  and is then let to unitarily 
evolve for a time t. After this time the state of the network is measured, giving the result 
of the computation. During the evolution each qubit updates its quantum state by a ro-
tation that depends on the aggregated synaptic potential determined by the state of all 
other qubits. These synaptic potentials are subject to large quantum fluctutations which 
are symmetric around the mean value 0zh = . If the interaction is strong enough, 
any external disturbance will cause the fluctuations to collapse onto a collective rotation 
of all the network’s qubits towards the nearest memory. 

We will now turn to the more interesting case of a finite density p nα =  of stored 
memories in the limit n →∞ . In this case, the state of the network can have a finite 
overlap with several stored memories µξ  simultaneously. As in the classical case we 
shall focus on the most interesting case of a single “condensed pattern”, in which the 
network uniquely recalls one memory without admixtures. Without loss of generality 
we will chose this memory to be the first, 1µ = , omitting then the memory superscript 
on the corresponding overlap m. Correspondingly, we will consider external inputs so 
that only 1 0M Mµ= = ≠ . For simplicity of presentation, we will focus directly on solu-
tions with a non-vanishing pattern overlap along the z-axis, omitting also the direction 
superscript z. 

In case of a finite density of stored patterns, one cannot neglect the noise effect due 
to the infinite number of memories. This changes (13) to 

1

1

1 sin2 ,

.

i
i

i i i

gm Jt m M
n J

mµ µ

µ
ξ ξ

≠

 = + + ∆ 
 

∆ =

∑

∑
                   (16) 

As in the classical case we will assume that { }i
µξ  and { }, 1mµ µ ≠  are all indepen-

dent random variables with mean zero and we will denote by square brackets the con-
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figurational average over the distributions of these random variables. As a consequence 
of this assumption, the mean and variance of the noise term are given by [ ] 0i∆ =  and 

2
i rα ∆ =  , where 

( )2

1

1r mµ

µα ≠

 =   ∑                          (17) 

is the spin-glass order parameter [13]. According to the central limit theorem one can 
now replace 1

in− ∑  in (16) by an average over a Gaussian noise, 
2

2d e sin2 .
2π

zz gm Jt m M rz
J

α
−  = + + 

 ∫               (18) 

The second order parameter r has to be evaluated self-consistently by a similar pro-
cedure starting from the equation analogous to Equation (16) for 1µ ≠ . In this case 
one can use 1mµ

  for 1µ ≠  to expand the transcendental function on the right- 
hand side in powers of this small parameter, which gives 

2

2
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2

d e sin 2 ,
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 = + + 
 

 = + + 
 

∫

∫

              (19) 

where ( )21 2v Jtx r= − . Solving the integrals gives finally the following coupled equa-
tions for the two order parameters m and r: 

( ) ( )

( )

( )

2

2

2

2

8

2
2

sin 2 e ,

1 cos4 e
1 .
2

1 2 cos 2 e

Jt r

Jt r
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m Jt m gJM

gJt m M
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gJt Jt m M
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α

−

−

−

= +

 − + 
 =

  − +    

             (20) 

In terms of these order parameters one can distinguish three phases of the network. 
First of all the value of m determines the presence ( 0m > ) or absence ( 0m = ) of fer-
romagnetic order (F). If 0m =  the network can be in a paramagnetic phase (P) if also 

0r =  or a quantum spin glass phase (SG) if 0r > . The phase structure resulting from 
a numerical solution of the coupled Equation (20) for 0g =  is shown in Figure 1. 

For 0.025α <  the picture is not very different from the single memory case. For 
large enough computation times there exists a ferromagnetic phase in which the 0m =  
solution is unstable and the network has recall capabilities. The only difference is that 
the maximum value of the order parameter m is smaller than 1 (recall is not perfect due 
to noise) and the ideal computation time t at which the maximum is reached depends 
on α . For 0.025 1.000α< <  instead, ferromagnetic order coexists as a metastable 
state with a quantum spin glass state. This means that ending up in the memory re-
trieval solution depends not only on the presence of an external stimulus but also on its 
magnitude; in other words, the external pattern has to be close enough to the stored 
memory in order to be retrieved. For 1 α<  all retrieval capabilities are lost and the  
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Figure 1. The phase structure of quantum associative memories with finite density of stored pat-
terns. P, F and SG denote (quantum) paramagnetic, ferromagnetic and spin-glass phases, respec-
tively. F + SG denotes a mixed phase in which the memory retrieval solution is only locally stable. 
 
network will be in a quantum spin glass state for all computation times (after the tran-
sition from the quantum paramagnet). 1α =  is thus the maximum memory capacity 
of this quantum network. Note that 1α =  corresponds to the maximum possible 
number of linearly independent memories. For memory densities smaller but close to 
this maximum value, however, the ferromagnetic solution exists only for a small range 
of effective couplings centered around 9Jt  : for these high values of Jt  the quality 
of pattern retrieval is poor, the value of the order parameter m being of the order 0.15 - 
0.2. Much better retrieval qualities are obtained for smaller effective couplings: e.g. for 

1Jt =  the order parameter is larger than 0.9 (corresponding to an error rate smaller 
than 5%) for memory densities up to 0.1. In this case, however the maximum memory 
density is 0.175, comparable with the classical result of the Hopfield model. Quantum 
mechanics, here, does not carry any advantage. 

4. Probabilistic Quantum Memories 

We have seen in the last section that crosstalk prevents the amplification of patterns 
stored in the weights of a simple quantum Hamiltonian like (8) when the loading factor 
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exceeds a linear bound comparable with the classical one. In this section we show that 
this limit can be overcome by probabilistic quantum memories, which use postselection 
of the measurement results of certain control qubits [16] [17] [18] [19]. The price to 
pay is that such probabilistic memories require repetitions of the retrieval process and 
that there is non-vanishing probability that this fails entirely. When it is successful, 
however, it allows retrieval of the most appropriate pattern among a polynomial pool 
instead of a linear one. 

4.1. Storing Patterns 

Let us start by describing the elementary quantum gates [4] [5] that we will use in the 
rest of the paper. First of all there are the single-qbit gates represented by the Pauli 
matrices iσ , , ,i x y z= . The first Pauli matrix xσ , in particular, implements the NOT 
gate. Another single-qbit gate is the Hadamard gate H, with the matrix representation 

1 11 .
1 12

H  
=  − 

                        (21) 

Then, we will use extensively the two-qbit XOR (exclusive OR) gate, which performs 
a NOT on the second qbit if and only if the first one is in state 1 . In matrix notation 
this gate is represented as ( )XOR diag 1, xσ= , where 1 denotes a two-dimensional 
identity matrix and xσ  acts on the components 01  and 11  of the Hilbert space. 
The 2XOR, or Toffoli gate is the three qbit generalization of the XOR gate: it performs a 
NOT on the third qbit if and only if the first two are both in state 1 . In matrix nota-
tion it is given by ( )2XOR diag 1,1, xσ= . In the storage algorithm we shall make use 
also of the nXOR generalization of these gates, in which there are n control qbits. This 
gate is also used in the subroutines implementing the oracles underlying Grover’s algo-
rithm [4] [5] and can be realized using unitary maps affecting only few qbits at a time 
[33], which makes it efficient. All these are standard gates. In addition to them we in-
troduce the two-qbit controlled gates 

0 0 1 1 1 ,

1 1

,
1 1

i i

i

CS S

i
i iS

i
ii

= ⊗ + ⊗

 −
 
 =
 − −
  
 

                    (22) 

for 1, ,i p= 
. These have the matrix notation ( )diag 1,i iCS S= . For all these gates we 

shall indicate by subscripts the qbits on which they are applied, the control qbits com-
ing always first. 

The construction of quantum memories relies, of course, on the fundamental fact 
that one can use entanglement to “store” an arbitrary number p of binary patterns ip  
of length n in a quantum superposition of just n qubits, 

1

1 .
p

i

i
m p

p =

= ∑                         (23) 
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The idea of the memory architecture consists thus of two steps: 
• Generate the state m  by a unitary evolution M from a simple prepared state, say 

10 , ,0n , 10 , ,0nm M=  . 
• Given an input state 1, , ni i i=  , generate from m  a superposition of the pat-

tern states that is no more uniform but whose amplitudes define a probability dis-
tribution peaked on the pattern states with minimal Hamming distance front the 
input. It is this step that involves both a unitary evolution and a postselection of the 
measurement result. 

The quantum memory itself is the unitary operator M that codes the p patterns. It 
defines implicitly a Hamiltonian through the formal relation ( )expM i=  , a Hamil-
tonian that represents pattern-dependent interactions among the qubits. This is the 
quantum generalization of the classical Hopfield model. In order to dispel any possible 
misunderstandings right away, we point out that this is quite different to the commu-
nication of classical information via a quantum channel, limited by the Holevo theorem 
[34], as we discuss in detail below. 

In order to construct explicitly the quantum memory M we will start from an algo-
rithm that loads sequentially the classical patterns into an auxiliary register, from which 
they are then copied into the actual memory register. A first version of such an algorithm 
was introduced in [35]. The simplified version that we present here is due to [16] [17]. 

We shall use three registers: a first register p of n qbits in which we will subsequently 
feed the patterns ip  to be stored, a utility register u of two qbits prepared in state 
01 , and another register m of n qbits to hold the memory. This latter will be initially 

prepared in state 10 , ,0n . The full initial quantum state is thus 
1 1 1
0 1 1, , ;01;0 , ,0 .n np pψ =                       (24) 

The idea of the storage algorithm is to separate this state into two terms, one corres-
ponding to the already stored patterns, and another ready to process a new pattern. 
These two parts will be distinguished by the state of the second utility qbit 2u : 0  for 
the stored patterns and 1  for the processing term. 

For each pattern ip  to be stored one has to perform the operations described be- 
low: 

2
1 0

1
2 .i

j j

n
i i

p u m
j

XORψ ψ
=

=∏                      (25) 

This simply copies pattern ip  into the memory register of the processing term, 
identified by 2 1u = . 

1 1

2 1
1

3 2

,

.

ij j j

n

n
i i

m p m
j

i i
m m u

NOT XOR

nXOR

ψ ψ

ψ ψ
=

=

=

∏



                   (26) 

The first of these operations makes all qbits of the memory register 1 ’s when the 
contents of the pattern and memory registers are identical, which is exactly the case 
only for the processing term. Together, these two operations change the first utility qbit 
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1u  of the processing term to a 1 , leaving it unchanged for the stored patterns term. 

1 2

1
4 3 .i p i i

u uCSψ ψ+ −=                       (27) 

This is the central operation of the storing algorithm. It separates out the new pattern 
to be stored, already with the correct normalization factor. 

1 15 4

1

6 5

,

.

n

i jj j

i i
m m u

i i
mp m

j n

nXOR

XOR NOT

ψ ψ

ψ ψ
=

=

=∏



                  (28) 

These two operations are the inverse of Equation (26) and restore the utility qbit 1u  
and the memory register m to their original values. After these operations on has 

6
1

1 ;00; ;01; .
i

i i k i i

k

p ip p p p
pp

ψ
=

−
= +∑             (29) 

With the last operation, 

2

1

7 62XOR ,i
j j

i i
p u m

j n
ψ ψ

=

=∏                     (30) 

one restores the third register m of the processing term, the second term in Equation 
(29) above, to its initial value 10 , ,0n . At this point one can load a new pattern into 
register p and go through the same routine as just described. At the end of the whole 
process, the m-register is exactly in state m , Equation (23). 

Any quantum state can be generically obtained by a unitary transformation of the in-
itial state 0, ,0 . This is true also for the memory state m . In the following we 
will explicitly construct the unitary memory operator M which implements the trans-
formation 0, ,0m M=  . 

To this end we introduce first the single-qbit unitary gates 

2
π πcos 1 sin ,
2 2

i i i
j j jU p i p σ   = +   

   
                  (31) 

where 2σ  is the second Pauli matrix. These operators are such that their product over 
the n qbits generates pattern ip  out of 0, ,0 : 

1

0, ,0 ,

.

i i

n
i i

j
j

p P

P U
=

=

≡∏



                         (32) 

We now introduce, in addition to the memory register proper, the same two utility 
qbits as before, also initially in the state 0 . The idea is, exactly as in the sequential al-
gorithm, to split the state into two parts, a storage term with 2 0u =  and a pro- 
cessing term with 2 1u = . Therefore we generalize the operators iP  defined above 
to 

2 2
1

,
n

i i
u u j

j
CP CU

=

≡∏                         (33) 

which loads pattern ip  into the memory register only for the processing term. It is 
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then easy to check that 

( )2 1 1 2 2 1 2 2

1 1

1

;00 0, ,0;00 ,

.
p

i p i i
u u u u u u u u

i

m M

M CP NOT CS XOR CP NOT
− + −

=

=

 = ×  ∏



         (34) 

From this construction it is easy to see that the memory operator M involves a num-
ber ( )2 3 1p n + +  of elementary one- and two-qbit gates. It is thus efficient for any 
number p of patterns polynomial in the number n of qubits. It is interesting to note that 
another version of this operator has been recently derived in [36], with a bound of 
( )3 6O pn  on its complexity. This is also linear in p, implying again efficiency for a 

polynomial number of patterns. 
While the memory construction we have presented here mirrors its classical coun-

terpart, it is important to stress one notable difference. In classical associative memories, 
patterns are stored as minima of an energy landscape or, alternatively in the parameters 
of a dynamical evolution law [7] [8]. This is reflected verbatim in the construction of 
the unitary operator M in (34), which completely codes the patterns in a dynamical law, 
albeit reversible in the quantum case. In quantum mechanics, however, there is the 
possibility of shuffling some (but not all, as we will shortly see) information about the 
patterns from the unitary evolution law M onto a set of quantum states. 

The ideal, most compressed quantum memory would indeed be the quantum super-
position of patterns m  in (23) itself. This, however is impossible. If the memory 
state has to be used for information retrieval it must be measured and this destroys all 
information about the patterns (save the one obtained in the measurement). The quan-
tum state must therefore be copied prior to use and this is impossible since the linearity 
of quantum mechanics forbids exact universal cloning of quantum states [37]. Univer-
sal cloning of quantum states is possible only in an approximate sense [38] and has two 
disadvantages: first of all the copies are imperfect, though optimal [39] [40] and se-
condly, the quality of the master copy decreases with each additional copy made. Ap-
proximate universal cloning is thus excluded for the purposes of information recall 
since the memory would be quickly washed out. 

This leaves state-dependent cloning [41] as the only viable option. State-dependent 
cloners are designed to reproduce only a finite number of states and this is definitely 
enough for our purposes. Actually the memory M in (34) is equivalent to a state-   
dependent cloner for the state m  in (23). In this case the information about the 
stored patterns is completely coded in the memory operator, or equivalently, the state- 
dependent cloner. It is possible, however, to subdivide the pattern information among 
an operator and a set of quantum states, obviously including m , by using a probabil-
istic cloning machine [42]. Probabilistic cloners copy quantum states exactly but the 
copying process is not guaranteed to succeed and must be repeated until the measure-
ment of an auxiliary register produces a given result associated with copying success. In 
general, any number of linearly independent states can be copied probabilistically. In 
the present case for example, it would be sufficient to consider any dummy state d  
different from m  (for more than two states the condition would be linear indepen-
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dence) and to construct a probabilistic cloning machine for these two states. This ma-
chine would reproduce m  with probability mp  and d  with probability dp ; a 
flag would tell when the desired state m  has been obtained. In order to obtain an 
exact copy of m  one would need then 1 mp  trials on average. The master copy 
would be exactly preserved. 

The cloning efficiencies of the probabilistic cloner of two states are bounded as fol-
lows [42]: 

2 .
1m dp p

d m
+ ≤

+
                       (35) 

This bound can be made large by choosing d  as nearly orthogonal to m  as 
possible. A simple way to achieve this for a large number of patterns would be, for ex-
ample, to encode also the state 

( ) 1

1

1 1
p

i i

i
d p

p
+

=

= −∑                       (36) 

together with m  when storing information. This can be done easily by using alter-
nately the operators iS  and ( ) 1iS

−
 in the storing algorithm above. For binary pat-

terns which are all different from one would then have 

0 , even,
1 , odd,

d m p

d m p
p

=

=
                       (37) 

and the bound for the cloning efficiencies would be very close to its maximal value 2 in 
both cases. 

The quantum network for the probabilistic cloner of two states has been developed in 
[43]. It can be constructed exclusively out of the two simple distinguishability tranfer 
(D) and state separation (S) gates. As expected, these gates embody information about 
the two states to be cloned. Part of the memory, therefore, still resides in the cloning 
network. The pattern-dependence of the network cloner can be decreased by choosing a 
larger set of states in the pool that can be cloned, so that the cloner becomes more and 
more generic. On one side this decreases also the efficiency of the cloner, so that more 
repetitions are required, on the other side, since the clonable pool is limited to a set of 
linearly independent states, one can never eliminate completely the pattern-dependence 
of the cloning operator. This is why the original claim of an exponential capacity in-
crease of quantum associative memories [16] [17], based on probabilistic cloning of the 
state m , is excessive. The complexity of the cloner, be it exact as in the memory 
operator M or probabilistic, remains linear in the number of patterns and the require-
ment of efficient implementability limits thus p to a polynomial function of the number 
n of qubits, which is still a large improvement upon classical associative memories. 

4.2. Retrieving Patterns 

Let us now assume we are given a binary input i that is a corrupted version of one of the 
patterns stored in the memory. The task of the retrieval algorithm is to “recognize” it, 
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i.e. output the stored pattern that most resembles this input, where similarity is defined 
(here) in terms of the Hamming distance, the number of different bits between the two 
patterns, although other similarity measures [7] could also be incorporated. 

The retrieval algorithm requires also three registers. The first register i of n qbits 
contains the input pattern; the second register m, also of n qbits, contains the memory 
m ; finally there is a control register c with b qbits all initialized in the state 0 . The 

full initial quantum state is thus: 

0 1
1

1 ; ;0 , ,0
p

k
b

k
i p

p
ψ

=

= ∑                          (38) 

where 1, , ni i i=   denotes the input qbits, the second register, m, contains the 
memory (23) and all b control qbits are in state 0 . Applying the Hadamard gate to 
the first control qbit one obtains 

1 1 1
1 1

1 1; ;0 , ,0 ; ;1 , ,0 .
2 2

p p
k k

b b
k k

i p i p
p p

ψ
= =

= +∑ ∑             (39) 

Let us now apply to this state the following combination of quantum gates: 

2 1
1

,
j j j

n

m i m
j

NOT XORψ ψ
=

=∏                       (40) 

As a result of the above operation the memory register qbits are in state 1  if ji  
and k

jp  are identical and 0  otherwise: 

2 1 1
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1 1; ;0 , ,0 ; ;1 , ,0 ,
2 2

p p
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i d i d
p p

ψ
= =
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where 1k
jd =  if and only if k

j ji p=  and 0k
jd =  otherwise. 

Consider now the following Hamiltonian: 
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                       (42) 

where zσ  is the third Pauli matrix.   measures the number of 0’s in register m, with 
a plus sign if c1 is in state 0  and a minus sign if c1 is in state 1 . Given how we have 
prepared the state 2ψ , this is nothing else than the number of qbits which are 
different in the input and memory registers i and m. This quantity is called the Hamming 
distance and represents the (squared) Euclidean distance between two binary patterns. 

Every term in the superposition (41) is an eigenstate of   with a different eigenva-
lue. Applying thus the unitary operator ( )exp π 2i n  to 2ψ  one obtains 
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p

i d
p

ψ ψ

ψ
=

−

=

=

=

+

∑

∑







               (43) 
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where ( ), k
Hd i p  denotes the Hamming distance bewteen the input i and the stored 

pattern kp . 
In the final step we restore the memory gate to the state m  by applying the in-

verse transformation to Equation (40) and we apply the Hadamard gate to the control 
qbit 1c , thereby obtaining 

( )

( )

1

1

4 3

4 1
1

1
1

,

1 πcos , ; ;0 , ,0
2

1 πsin , ; ;1 , ,0 .
2

j j jc i m m
j n

p
k k

H b
k

p
k k

H b
k

H XOR NOT

d i p i p
np

d i p i p
np

ψ ψ

ψ

=

=

=

=

=

+

∏

∑

∑





             (44) 

The idea is now to repeat the above operations sequentially for all b control qbits 1c  
to bc . This gives 

( ) ( )
{ }

fin
1 0

1 π πcos , sin , ; ; ,
2 2 l

p b
b l k l k k l

H H
k l J

d i p d i p i p J
n np

ψ −

= =

   = ×   
   

∑∑ ∑   (45) 

where { }lJ  denotes the set of all binary numbers of b bits with exactly l bits 1 and 
( )b l−  bits 0. 

Note that one could also dispense with a register for the input but, rather, code also 
the input directly into a unitary operator. Indeed, the auxiliary quantum register for the 
input is needed only by the operator (40) leading from (39) to (41). The same result 
(apart from an irrelevant overall sign) can be obtained by applying 

1

2

,

π πsin 1 cos ,
2 2

n

j
j

j j j

I U

U i i i σ

=

=

   = +   
   

∏
                  (46) 

directly on the memory state m . The rest of the algorithm is the same, apart the re-
versing of the operator (40) which needs now the operator 1I − . 

The end effect of the information retrieval algorithm represents thus a rotation of the 
memory quantum state in the enlarged Hilbert space obtained by adding b control qbits. 
The overall effect of this rotation is an amplitude concentration on memory states sim-
ilar to the input, if there is a large number of 0  control qbits in the output state and 
an amplitude concentration on states different from the input, if there is a large number 
of 1  control qbits in the output state. As a consequence, the most interesting state for 
information retrieval purposes is the projection of finψ  onto the subspace with all 
control qbits in state 0 . 

There are two ways of obtaining this projection. The first, and easiest one, is to 
simply repeat the above algorithm and measure the control register several times, until 
exactly the desired state for the control register is obtained. If the number of such repe-
titions exceeds a preset threshold T the input is classified as “non-recognized” and the 
algorithm is stopped. Otherwise, once 1 1, , 0 , ,0b bc c =   is obtained, one proceeds 
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to a measurement of the memory register m, which yields the output pattern of the 
memory. 

The second method is to first apply T steps of the amplitude amplification algorithm 
[44] rotating finψ  towards its projection onto the “good” subspace formed by the 
states with all control qbits in state 0 . To this end it is best to use the version of the 
retrieving algorithm that does not need an auxiliary register for the input. Let us define 
as ( )R i  the input-dependent operator which rotates the memory state in the Hilbert 
space enlarged by the b control qbits towards the final state finψ  in Equation (45) 
(where we now omit the auxiliary register for the input): 

( )fin 1;0 , ,0 .bR i mψ =                         (47) 

By adding also the two utility qbits needed for the storing algorithm one can then 
obtain finψ  as a unitary transformation of the initial state with all qbits in state 0 : 

( )fin 1;00 0, ,0;0 , ,0 ;00 .bR i Mψ =                    (48) 

The amplitude amplification rotation of fin ;00ψ  towards its “good” subspace in 
which all b control qbits are in state 0  is then obtained [44] by repeated application 
of the operator 

( ) ( )1 1
0Q R i MS M R i S− −= −                       (49) 

on the state fin ;00ψ . Here S conditionally changes the sign of the amplitude of the 
“good” states with the b control qbits in state 0 , while 0S  changes the sign of the 
amplitude if and only if the state is the zero state 10, ,0;0 , ,0 ;00b  . As before, if a 
measurement of the control registers after the T iterations of the amplitude amplifica-
tion rotation yields 10 , ,0b  one proceeds to a measurement of the memory register, 
otherwise the input is classified as “non-recognized”. 

The expected number of repetitions needed to measure the desired control register 
state is rec1 bP , with 

( )rec 2

1

1 πcos ;
2

p
b k

b H
k

P d i p
p n=

 =  
 

∑                    (50) 

the probability of measuring 1 1, , 0 , ,0n nc c =  . The threshold T governs thus the 
recognition efficiency of the memory. Note, however, that amplitude amplification 
provides a quadratic boost [44] to the recognition efficiency since only rec1 bP  steps 
are typically required to rotate finψ  onto the desired subspace. Accordingly, the 
threshold T can be lowered to T  with respect to the method of projection by mea-
surement. The crucial point is that, due to the quantum nature of the retrieval mechan-
ism, this recognition probability depends on the distribution of all stored patterns. A 
lower bound on the recognition probability can thus be established as follows. Of all the 
stored patterns, all but one have Hamming distance from the input smaller or equal 
than ( )1n − . There is only pattern that can have a larger Hamming distance equal to n. 
So we shall use the upper bound ( )1n −  for the Hamming distance of all patterns but 
one, for which we shall use the upper bound n, and this one does not contribute to the 
recognition probability since the cosine function vanishes. Given that cosine is a de-
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creasing function in the interval [ ]0,π 2 , we get the lower bound 

( )min 2 π 11 cos .
2

rec b
b b

npP P
p n

− −
≥ =  

 
                (51) 

For 1n  we can now estimate this lower bound as 
2

min 1 π .
2

b

b
pP

p n
−  

 
 

                        (52) 

This shows that, independent of the number p of patterns, the threshold T for recog-
nition can be set as a polynomial function of the number n of qubits. Note that this is 
entirely due to the factor ( )1p −  in the numerator of (52), which, in turn, depends on 
the quantum nature of the memory. In other words, the probabilistic character of the 
retrieval process does not limit at all the number of possible stored patterns. The typical 
number of repetitions required would be polynomial even for an exponential number 
or patterns. The efficient implementability of the quantum memory is limited only by 
the number of elementary quantum gates in M, which is linear in p. 

In general, the probability of recognition is determined by comparing (even) powers 
of cosines and sines of the distances to the stored patterns. It is thus clear that the worst 
case for recognition is the situation in which there is an isolated pattern, with the re-
maining patterns forming a tight cluster spanning all the largest distances to the first 
one. As a consequence, the threshold needed to recognize all patterns diminishes when 
the number of stored patterns becomes very large, since, in this case, the distribution of 
patterns becomes necessarily more homogeneous. Indeed, for the maximal number of 
stored patterns 2np =  one has rec 1 2b

bP =  and the recognition efficiency becomes 
also maximal, as it should be. 

Once the input pattern i is recognized, the measurement of the memory register 
yields the stored pattern kp  with probability 

( ) ( )21 πcos , ,
2

k b k
b HP p d i p

Z n
 =  
 

                  (53) 

( )rec 2

1

πcos , .
2

p
b k

b H
k

Z pP d i p
n=

 = =  
 

∑                 (54) 

Clearly, this probability is peaked around those patterns which have the smallest 
Hamming distance to the input. The highest probability of retrieval is thus realized for 
that pattern which is most similar to the input. This is always true, independently of the 
number of stored patterns. In particular, contrary to classical associative memories, 
there are no spurious memories: the probability of obtaining as output a non-stored 
pattern is always zero. This is another manifestation of the fact that there are no restric-
tions on the loading factor p/n due to the information retrieval algorithm. 

In addition to the threshold T, there is a second tunable parameter, namely the 
number b of control qbits. This new parameter b controls the identification efficiency 
of the quantum memory since, increasing b, the probability distribution ( )k

bP p  be-
comes more and more peaked on the low ( ), k

Hd i p  states, until 
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( ) min
lim ,k

b kkb
P p δ

→∞
=                         (55) 

where mink  is the index of the pattern (assumed unique for convenience) with the 
smallest Hamming distance to the input. 

While the recognition efficiency depends on comparing powers of cosines and sines 
of the same distances in the distribution, the identification efficiency depends on com-
paring the (even) powers of cosines of the different distances in the distribution. Spe-
cifically, it is best when one of the distances is zero, while all others are as large as poss-
ible, such that the probability of retrieval is completely peaked on one pattern. As a 
consequence, the identification efficiency is best when the recognition efficiency is 
worst and vice versa. 

The role of the parameter b becomes familiar upon a closer examination of Equation 
(53). Indeed, the quantum distribution described by this equation is equivalent to a ca-
nonical Boltzmann distribution with (dimensionless) temperature 1t b=  and (di-
mensionless) energy levels 

( )π2logcos , ,
2

k k
HE d i p

n
 = −  
 

                 (56) 

with Z playing the role of the partition function. 
The appearance of an effective thermal distribution suggests studying the average 

behaviour of quantum associative memories via the corresponding thermodynamic po-
tentials. Before this can be done, however, one must deal with the different distribu-
tions of stored patterns characterizing each individual memory. The standard way to do 
this in similar classical problems is to average over the random distribution of patterns. 
Typically, one considers quenched averages in which extensive quantities, like the free 
energy are averaged over the disorder: this is the famed replica trick used to analyze 
spin glasses [13]. In the present case, however, the disorder cannot lead to spin-glass- 
like phases since there are no spurious memories: by construction, probabilistic quan-
tum memories can output only one of the stored patterns. The only question is how 
accurate is the retrieval of the most similar pattern to the input as a function of the fic-
titious temperature 1t b= . To address this question we will “quench” only one aspect 
of the random pattern distribution, namely the minimal Hamming distance d between 
the input and the stored patterns. The rest of the random pattern distribution will be 
considered as annealed. In doing so, one obtains an average description of the average 
memory as a function of the fictitious temperature 1t b=  and the minimal Hamming 
distance d. 

To do so we first normalize the pattern representation by adding (modulo 2) to all 
patterns, input included, the input pattern i. This clearly preserves all Hamming dis-
tances and has the effect of choosing the input as the state with all qbits in state 0 . 
The Hamming distance ( ), k

Hd i p  becomes thus simply the number of qbits in 
pattern kp  with value 1 . The averaged partition function takes then a particularly 
simple form: 
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{ }

2
av

πcos ,
2

n
b

j
j d

p jZ
N nλλ

λ
=

 =  
 

∑∑                      (57) 

where jλ  describes a probability distribution, = = 1n
jj dλ∑ , with the following proper-

ties. Let the number of patterns scale as the xth power of the number of qubits, 
x

xp nα=  for 1n . Then 
0, ,

1 , ,
!

j

j
x

j n x

j n x
x

λ

λ
α

= > −

≤ = −
                         (58) 

with all other jλ  for j n x< −  unconstrained. { }λ  is the set of such distributions 
and Nλ  the corresponding normalization factor. Essentially the probability distribu-
tion becomes unconstrained in the limit of large n. 

We now introduce the free energy ( ),F b d  by the usual definition 
( ) ( ) ( ), ,

av ave 0 e ,bF b d bF b dZ p Z b− −= = =                   (59) 

where we have chosen a normalization such that ( )exp bF−  describes the deviation of 
the partition function from its value for b = 0 (high effective temperature). Since Z p , 
and consequently also avZ p  posses a finite, non-vanishing large-n limit, this norma-
lization ensures that ( ),F b d  is intensive, exactly like the energy levels (56), and scales 
as a constant for large n. This is the only difference with respect to the familiar situation 
in statistical mechanics. 

The free energy describes the equilibrium of the system at effective temperature 
1t b=  and has the usual expression in terms of the internal energy U and the entropy 

S: 

( ) ( ) ( )

( ) ( ) ( )
, , , ,

,
, , , .t

F t d U t d tS t d

F t d
U t d E S t d

t

= −

−∂
= =

∂

                 (60) 

Note that, with the normalization we have chosen in (59), the entropy S is always a 
negative quantity describing the deviation from its maximal value max 0S =  at t = ∞ . 

By inverting Equation (56) with F substituting E one can also define an effective (rel-
ative) input/output Hamming distance   at temperature t: 

( )
( ),
22, arccose .

π

F t d

t d
−

=                        (61) 

This corresponds exactly to representing the recognition probability of the average 
memory as 

( ) ( )rec 2
av

πcos , ,
2

b
bP b d =  

 
                       (62) 

which can also be taken as the primary definition of the effective Hamming distance. 
The function ( ),b d  provides a complete description of the behaviour of the av-

erage probabilistic quantum associative memory with a minimal distance Hamming 
distance d. This can be used to tune its performance. Indeed, suppose that one wants 
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the memory to recognize and identify inputs with up to n  corrupted inputs with an 
efficiency of ν  ( )0 1ν≤ ≤ . Then one must choose a number b of control qbits suffi-
ciently large that ( )( ) ( ), 1b n ν− ≤ −    and a threshold T of repetitions satisfying  

( )2 π1 cos ,
2

bT b n ≥  
 
  , as illustrated in Figure 2. 

A first hint about the general behaviour of the effective distance function ( ),b d  
can be obtained by examining closer the energy eigenvalues (56). For small Hamming 
distance to the input these reduce to 

( ) ( )2
2 , ,π , 1.

4

k k
H Hk

d i p d i p
E

n n

 
 
 
 

                  (63) 

Choosing again the normalization in which 0 0i =   and introducing a “spin” 
k
is  with value 1 2k

is = −  if qbit i in pattern kp  has value 0  and 1 2k
is = +  if qbit 

i in pattern kp  has value 1 , one can express the energy levels for 1Hd n  as 
2 2 2

2
,

π π π .
16 4 4

k k k k
i j i

i j i
E s s s

n n
= + +∑ ∑                   (64) 

 

 
Figure 2. Effective input/output distance and entropy (rescaled to [0, 1]) for 1 Mb patterns and 

1%d n = . 
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Apart from a constant, this is the Hamiltonian of an infinite-range antiferromagnetic 
Ising model in presence of a magnetic field. The antiferromagnetic term favours confi-
gurations k with half the spins up and half down, so that tot 0k k

iis s= =∑ , giving 
2π 16kE = . The magnetic field, however, tends to align the spins so that tot 2ks n= − , 

giving 0kE = . Since this is lower than 0kE = , the ground state configuration is fer-
romagnetic, with all qbits having value 0 . At very low temperature (high b), where 
the energy term dominates the free energy, one expects thus an ordered phase of the 
quantum associative memory with ( ),t d d n= . This corresponds to a perfect iden-
tification of the presented input. As the temperature is raised (b decreased) however, 
the thermal energy embodied by the entropy term in the free energy begins to counte-
ract the magnetic field. At very high temperatures (low b) the entropy approaches its 
maximal value ( ) 0S t = ∞ =  (with the normalization chosen here). If this value is ap-
proached faster than 1/t, the free energy will again be dominated by the internal energy. 
In this case, however, this is not any more determined by the ground state but rather 
equally distributed on all possible states, giving 

( ) ( ) 1

2

1 πd 2logcos
21

1 2 log2 ,

d
n

F t U t x xd
n

d dO
n n

−  = ∞ = = ∞ =  
 −

    = + +          

∫
             (65) 

and leading to an effective distance 

( )
22 2log2, .

3 π 3
d dt d O
n n

  = ∞ = − +      
                  (66) 

This value corresponds to a disordered phase with no correlation between input and 
output of the memory. 

A numerical study of the thermodynamic potentials in (60) and (61) indeed confirms 
a phase transition from the ordered to the disordered phase as the effective temperature 
is raised. In Figure 2 we show the effective distance   and the entropy S for 1 Mb 
( 68 10n = × ) patterns and 1%d n =  as a function of the inverse temperature b (the 
entropy is rescaled to the interval [0, 1] for ease of presentation). At high temperature 
there is indeed a disordered phase with max 0S S= =  and 2 3= . At low tempera-
tures, instead, one is in the ordered phase with minS S=  and 0.01d n= = . The ef-
fective Hamming distance plays thus the role of the order parameter for this quantum 
phase transition. 

The phase transition occurs around 1
cr 10b −
 . The physical regime of the quantum 

associative memory (b = positive integer) lies thus just above this transition. For a good 
accuracy of pattern recognition one should choose a fictitious temperature low enough 
to be well into the ordered phase. As is clear from Figure 2, this can be achieved al-
ready with a number of control qubits ( )410b O= . 

Having described at length the information retrieval mechanism for complete, but 
possibly corrupted patterns, it is easy to incorporate also incomplete ones. To this end 
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assume that only q n<  qbits of the input are known and let us denote these by the in-
dices { }1, ,k kq . After assigning the remaining qbits randomly, there are two possibil-
ities. One can just treat the resulting complete input as a noisy one and proceed as 
above or, better, one can limit the operator ( )H md  in the Hamiltonian (42) to 

( )
1

1 ,
2

ki

zq

H m
i m

d σ
=

 +
=  

 
∑                       (67) 

so that the Hamming distances to the stored patterns are computed on the basis of the 
known qbits only. After this, the pattern recall process continues exactly as described 
above. This second possibility has the advantage that it does not introduce random 
noise in the similarity measure but it has the disadvantage that the operations of the 
memory have to be adjusted to the inputs. 

Finally, it is fair to mention that the model of probabilistic quantum associative 
memory presented here has been criticised [45] on three accounts: 
• It has been claimed that the same result could have been obtained by storing only 

one of the p patterns in n classical bits and always using this single pattern as the 
same output independently of the input, provided the input has a Hamming dis-
tance to the unique stored pattern lower than a given threshold, otherwise the input 
would not be recognized. 

• It has been claimed that the Holevo theorem bounds the number of patterns that 
can be stored in a quantum associative memory. 

• It has been pointed out that the complexity of memory preparation prevents the ef-
ficient storing of patterns. 

This criticism is wrong on the first two accounts and partially justified on the third 
[46]. It is true that both the quantum memory and the proposed equivalent classical 
prescription are based on probabilistic recognition and identification processes. In the 
proposed classical alternative, however the probabilities for both recognition and iden-
tification depend on one unique, fixed and random pattern whereas in the quantum 
memory, exactly due to its quantum character, these probabilities depend on the dis-
tribution of all stored patterns. These probabilities are such that an input different from 
most stored patterns is more difficult to recognize than an input similar to many stored 
memories and that the identification probability distribution can be peaked with any 
prescribed accuracy on the stored pattern most similar to the input. In the proposed 
classical alternative, given that only one single pattern can be stored on the n classical 
bits, the recognition or lack thereof depends on the distance to a randomly chosen pat-
tern and the identification probability is a delta function peaked on this fixed random 
pattern. In other words there is no correlation whatsoever between input and output 
apart from the fact that they have Hamming distance below a certain threshold, a pre-
scription that can hardly qualify as an associative memory: it would indeed be a boring 
world the one in which every stimulus would produce exactly the same response, if any 
response at all. Also, the Holevo theorem [34] does not impose any limitation on this 
type of probabilistic quantum memories. The Holevo theorem applies to the situation 



M. C. Diamantini, C. A. Trugenberger 
 

2107 

in which Alice codes information about a classical random variable in a quantum state 
and Bob tries to retrieve the value of this random variable by measurements on the re-
ceived quantum state. In the present case Alice gives to Bob also corrupted or incom-
plete classical information about the random variable (the input) and Bob can use also a 
unitary transformation that encodes both the memories and the input (operator ( )R i  
in (47)) in addition to measurements, a completely different situation. Contrary to what 
the authors of [45] affirm, a memory that “knows the patterns it is supposed to retrieve” 
not only makes sense but it is actually the very definition of an associative memory: if 
the memory would not “know” the data it has to retrieve it would just be a random 
access database, exactly the architecture that one wants to improve by content associa-
tion, the mechanism whose goal is to recognize and correct corrupted or incomplete 
inputs. The dynamics of the classical Hopfield model “knows” the patterns it is sup-
posed to retrieve: they are encoded in the neuronal weights. So does any human brain. 
Finally, the third critique is partially correct. The complexity of the memory operator M 
is ( )O pn  and thus the original claim [16] [17] of an exponential capacity gain by 
quantum associative memories is excessive. This, however, does not invalidate the main 
claim, a large gain in capacity is made possible by quantum mechanics, albeit only a 
polynomial one. This correction has been incorporated in the present review. 

4.3. Efficiency, Complexity and Memory Tuning 

In this last section we would like to address the efficient implementation of probabilis-
tic quantum memories in the quantum circuit model [4] [5] and their accuracy tuning. 

We have stressed several times that all unitary operators involved in the memory 
preparation can be realized as a sequence of one- and two-qubit operators. It remains to 
prove that this is true also for pattern retrieval and that all these operators can be im-
plemented in terms of a small set of universal gates. To this end we would like to point 
out that, in addition to the standard NOT, H (Hadamard), XOR, 2XOR (Toffoli) and 
nXOR gates [4] [5] we have introduced only the two-qbit gates iCS  in Equation (22) 
and the unitary operator ( )exp π 2i n . The latter can, however also be realized by sim-
ple gates involving only one or two qbits. To this end we introduce the single-qbit gate 

π
2e 0 ,
0 1

i
nU

 
 =
 
 

                          (68) 

and the two-qbit controlled gate 
2 20 0 1 1 1 .CU U− −= ⊗ + ⊗                     (69) 

It is then easy to check that ( )exp π 2i n  in Equation (41) can be realized as fol-
lows: 

( )
π

22
2 2

1 1
e ,

ji

n ni
n

mcm
i j

CU Uψ ψ−

= =

=∏ ∏


                  (70) 

where c is the control qbit for which one is currently repeating the algorithm. Essen-
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tially, this means that one implements first ( )exp π 2Hi d n  and then one corrects by 
implementing ( )exp π Hi d n−  on that part of the quantum state for which the control 
qbit c  is in state 1 . 

Using this representation for the Hamming distance operator one can count the total 
number of simple gates that one must apply in order to implement one step of the in-
formation retrieval algorithm. This is given by ( )6 2n +  using the auxiliary register for 
the input and by ( )4 2n +  otherwise. This retrieval step has then to be repeated for 
each of the b control qbits. Therefore, implementing the projection by repeated mea-
surements, the overall complexity C of information retrieval is bounded by 

( ) M6 2 ,C Tb n C≤ +                           (71) 

where MC  is the complexity of the memory preparation, given by the operator M or a 
probabilistic cloning machine. In particular, it is given by 

( ) ( )( )6 2 2 3 1 ,C Tb n p n= + + +                     (72) 

for the simplest version of the algorithm, using memory preparation by M and an aux-
iliary input register. 

The computation of the overall complexity is easier for the information retrieval al-
gorithm which uses the amplitude amplification technique. In this case the initial 
memory is prepared only once by a product of the operators M, with complexity 
( )2 3 1p n + +  and ( )R i , with complexity ( )4 2b n + . Then one applies T times the 

operator Q, with complexity ( ) ( )
0

4 6 8 4 2 S Sp n b n C C+ + + + + + , where SC  and 

0SC  are the polynomial complexities of the oracles implementing S and 0S . This gives 

( ) ( ) ( ) ( )
0

4 6 8 4 2 2 3 4 2 1.S SC T p n b n C C p n b n = + + + + + + + + + + +      (73) 

As expected, the memory complexity (be it (72) or (73)) depends on both T and b, 
the parameters governing the recognition and identification efficiencies. The major li-
mitation comes from the factor p representing the total number of stored patterns. 
Note however that, contrary to classical associative memories, one can efficiently store 
and retrieve any polynomial number of patterns due to the absence of spurious memo-
ries and crosstalk. 

Let us finally show how one can tune the accuracy of the quantum memory. Suppose 
one would like to recognize on average inputs with up to 1% of corrupted or missing 
bits and identify them with high accuracy. The effective i/o Hamming distance   
shown in Figure 2 can then be used to determine the values of the required parameters 
T and b needed to reach this accuracy for the average memory. For 410b =  e.g., one 
has 0.018= , which gives the average i/o distance (in percent of total qbits) if the 
minimum possible i/o distance is 0.01. For this value of b the recognition probability is 
3.4 × 10−4. With the measurement repetition technique one should thus set the 
threshold 3000T  . Using amplitude amplification, however, one needs only around 

54T =  repetitions. Note that the values of b and T obtained by tuning the memory 
with the effective i/o Hamming distance become n-independent for large values of n. 
This is because they are intensive variables unaffected by this “thermodynamic limit”. 
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For any fixed p polynomial in n, the information retrieval can then be implemented ef-
ficiently and the overall complexity is determined by the accuracy requirements via the 
n-independent parameters T and b. 

5. Conclusions 

We would like to conclude this review by highlighting the fundamental reason why a 
probabilistic quantum associative memory works better than its classical counterpart 
and pointing out about some very intuitive features of the information retrieval process. 

In classical associative memories, the information about the patterns to recall is typi-
cally stored in an energy function. When retrieving information, the input configura-
tion evolves to the corresponding output, driven by the dynamics associated with the 
memory function. The capacity shortage is due to a phase transition in the statistical 
ensemble governed by the memory energy function. Spurious memories, i.e. spurious 
metastable minima not associated with any of the original patterns become important 
for loading factors p/n above a critical value and wash out completely the memory, a 
phenomenon that goes by the name of crosstalk. So, in the low p/n phase the memory 
works perfectly in the sense that it outputs always the stored pattern which is most sim-
ilar to the input. For p/n above the critical value, instead, there is an abrupt transition 
to total amnesia caused by spurious memories. 

Probabilistic quantum associative memories work better than classical ones since 
they are free from spurious memories. The easiest way to see this is in the formulation 

0 .m M=                             (74) 

All the information about the stored patterns is encoded in the unitary operator M. 
This generates a quantum state in which all components that do not correspond to 
stored patterns have exactly vanishing amplitudes. 

An analogy with the classical Hopfield model [7] [8] can be established as follows. 
Instead of generating the memory state m  from the initial zero state m , one can 
start from a uniform superposition of the computational basis. This is achieved by the 
operator MW defined by 

2 1

0

1

1 ,
2

.

n

n j

n

j
j

m MW j

W H

−

=

=

=

≡

∑

∏
                       (75) 

Now, this same result can also be obtained by Grover’s algorithm, or better by its ge-
neralization with zero failure rate [47]. Here the state m  is obtained by applying to 
the uniform superposition of the computational basis q times the search operator X de-
fined in 
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0

0
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2

,

n
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−

=

=

≡ −

∑                         (76) 
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where J rotates the amplitudes of the states corresponding to the patterns to be stored 
by a phase φ  which is very close to π (the original Grover value) for large n and 0J  
does the same on the zero state. Via the two equations (75) and (76), the memory oper-
ator M provides an implicit realization of the phase shift operator J. Being a unitary 
operator, this can always be written as an exponential of an hermitian Hamiltonian 

M , which is the quantum generalization of a classical energy function. By defining 
( )exp MJ i≡ −   one obtains an energy operator which is diagonal in the computa- 

tional basis and such that the patterns to be stored have energy eigenvalues πE φ= − −  
while all others have energy eigenvalues 0E = . This formulation is the exact quantum 
generalization of the Hopfield model; the important point is that the operator M realizes 
efficiently a dynamics in which the patterns to be stored are always, for any number p 
of patterns, the exact global minima of a quantum energy landscape, without the ap- 
pearance of any spurious memories. 

The price to pay is the probabilistic nature of the information retrieval mechanism. As 
always in quantum mechanics, the dynamics determines only the evolution of probability 
distributions and the probabilistic aspect is brought in by the collapse of this probabili-
ty distributions upon measurement. Therefore, contrary to the classical Hopfield model 
in the low p/n phase, one does not always have the absolute guarantee that an input is 
recognized and identified correctly as the stored pattern most similar to the input, even 
if this state has the highest probability of being measured. But, after all, this is a familiar 
feature of the most concrete example of associative memory, our own brain, and should 
thus not be so disturbing. Indeed, it is not only the probabilistic nature of information 
retrieval that is reminiscent of the behaviour of the human brain but also the properties 
of the involved probability distributions. These are such that inputs very similar to a 
cluster of stored patterns will be much easier to recognize than i. 
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