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Abstract 
A five-mode truncation of the Navier-Stokes equations for a two-dimensional incompressible fluid 
on a torus is studied. Its stationary solutions and stability are presented; the existence of attractor 
and the global stability of the system are discussed. The whole process, which shows a chaos be-
havior approached through an involved sequence of bifurcations with the changing of Reynolds 
number, is simulated numerically. Based on numerical simulation results of bifurcation diagram, 
Lyapunov exponent spectrum, Poincare section, power spectrum and return map of the system, 
some basic dynamical behavior of the new chaos system are revealed. 
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1. Introduction 
In recent years, many scholars were enthusiastic for the stability and the bifurcation of truncated model of the 
Navier-Stokes equations [1]-[5]. A pioneering work by Lorenz [6] of 1963, concerning the Saltzman equations 
for convection between plates, represents the first attempt to study the partial differential equations that govern a 
fluid flow through truncation of a suitable Fourier expansion to a finite number of components (“modes”). Later 
in the twentieth century, Valter Franceschini made a further expansion in this research field and worked with 
other scholars to study the Navier-Stokes equations. They consider the following plane incompressible Navi-
er-Stokes equations on the torus 2 [0, 2 ] [0, 2 ]T π π= × , the velocity field u , the pressure p  and (periodic) 
volume force. f  is expanded in Fourier series on a torus. Some model Lorenz-like equations have been pro-
posed, then they have studied three-dimensional Navier-Stokes, the equation in 3 3[0, 2 ]T π=  and obtained 
somenonlinear system, and discussed these complex system in detail in [3]-[5]. 

In this paper, we expand the plane incompressible Navier-Stokes equations in Fourier series on a torus and 
obtain a new five-mode equation. Dynamical behaviors of this new chaotic system, including some basic dy-
namical properties, bifurcations, and routes to chaos, etc., have been investigated both theoretically and numeri-
cally by changing Reynolds number. Our purpose is to study how the phenomena of the model changes when 
the modes in the truncation are changed. The existence of attractor and the global stability of the equations have 
been firmly verified and these theories can be used in other similar model. Furthermore, some dynamical beha-
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vior features of the new chaos system in a certain range of the Reynolds number, such as bifurcation diagram, 
Lyapunov exponent spectrum, Poincare section, power spectrum and return map, are presented. 

We expanded u , f , p  in Frourier series, and take L  as the set of vectors ( )1 1 1 ,K =  ( )2 1 0 ,K =  
( )3 2 1 ,K =  ( )4 1 2 ,K = −  ( )5 0 3K =  and their opposites. With a lot of calculation, we obtain the fol-

lowing five-mode Lorenz-like system 
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                           (1) 

Accordingly, we get the new five-mode nonlinear equation, which is similar to the Lorenz equation. We call it 
a Lorenz-like equation. By changing both the signs of 2x  and 3x , the property of the equations is unchanged. 
This indicates that system (1) has following symmetry property 

( ) ( )1 2 3 4 5 1 2 3 4 5x x x x x x x x x x− − ⇔ . 

2. The Stationary Solution and Their Stability Properties 
In the following we linearize the nonlinear Equation (1) and discuss the stability of its stationary solutions. 

a) For 10 Re 5 6R≤ < = , there is only one stationary solution 0
Re0, 0, 0, , 0
5

P  =  
 

. Substituting  

the stationary solution 0P  into the Jacobian matrix we obtain the characteristic equation of Jacobian matrix  

( ) ( )2 2 231 5 11 18 Re 0
25

λ λ λ λ + + + + − =  
 

For 10 Re 5 6R≤ < = , since all eigenvalues of the Jacobian matrix are negative, the stationary solution 0P  
is stable (this is a particular case of general results on the theory of the Navier-Stokes equations [7]), and nu-
merical evidence suggests that the 0P  is a global attract or for all 1Re 5 6R< = . 

b) For 1 2
80 6Re

9
R R< ≤ = , there are 3 stationary solutions: the old one 0P , which has become unstable  

as a consequence of the crossing of the imaginary axis by one of the eigenvalues of the Jacobian matrix) and two 
additional P±  as follow 

Re Re60 10:  6 , 0, 0, 6, 6
7 6 7 65 5

P±
 
± − ± −  
 

. 

By a similar discussion we get the characteristic equation of Jacobian matrix at P±  is: 

2 3 245 9 11 Re6 5 Re 16 Re 72( 5) 0
7 7 6 6 6

λ λ λ λ λ   + + + − + + + − =   
   

                (2) 

owing to roots of the characteristic Equation (2) have a negative real part, stationary solution P±  are stable. 
Numerical evidences indicate that any randomly chosen initial data is attracted by them, so they are global at-
tractors. When 

c) For 2
80 6Re

9
R> = , there are 7 stationary solutions: the old ones 0P , P± , and ( )1 2 3 4 5: , , , ,Pεσ γ γ γ γ γ , 

with components 

 
1246 



H. Y. Wang 
 

2
21 2

2
23 4 5

20 27   1,  Re 10   1,3 5 16
1 9 320 27 20 Re 10,  Re,  Re3 35 1610 5 16 160

γ ε ε γ σ σ

γ εσ γ γ ε

= = ± = − = ±
×

= − − = =
× ×

. 

The first three are now always unstable, while the new four are stable for 3Re 52.785R< =   and numeri-
cally they attract any randomly chosen initial data. At 3Re 52.785R= =   the fours table stationary solutions 
become unstable because a pair of complex conjugate eigenvalues crosses the imaginary axis, and four stable 
periodic orbits around the fixed points Pεσ  arise via a Hopf bifurcation, we will give a detailed discussion in 
the Section 4. 

3. The Existence of Attractor and Analysis of Global Stability 
In the following, we discuss the existence of attractor of the system (1), assume that  

( )5
1 2 3 4 5H R , u(t) x , x , x , x , x= = , by calculating we get 

2
2 2 Re2

2
d u u
dt

+ ≤ . Using the Gronwall in-

equality [8], we get 
2

2 Relim sup ( )
4t

u t
→∞

≤ . Therefore, we have 0
Relim sup ( )
2t

u t ρ
→∞

≤ = . If 0P  big enough,  

sphere (0,  )B ρ∑ =  is an not only functional invariant set but also absorbing set. As a result the system (1) has 
the global attractor [8] [9].  

We construct a following Liapunov function of the system (1):  
2 2 2 2 2

1 2 3 4 5 1 2 3 4 5(x ,x ,x ,x ,x ) x x x x x 0V = + + + + >                        (3) 

Setting 1 2 3 4 5(x ,x ,x ,x ,x )V k= , obviously, when k is a positive constant, it represents a sphere, which is la-
beled as E. By calculating we obtain the following derivative 

2
2 2 2 2 2
1 2 3 4 5

d Re Re2[2x x 5x 5(x ) 9x ]
dt 10 100
V
= − + + + − + −                     (4) 

Obviously, 
2

2 2 2 2 2
1 2 3 4 5

Re Re2x x 5x 5(x ) 9x
10 100

+ + + − + =  represents an ellipsoid in H, which is labeled as C. 

From (4) we know that 0dV
dt

<  on outside of C, 0dV
dt

=  on C, and 0dV
dt

>  inside of C. If k is big enough, 

E will include C. Therefore, from (4) we know that 0dV
dt

< , 0dVV
dt

<  on outside of C. From the Liapunov  

theory we know that the orbits of system (1) will enter E. Namely E is the trapping region of the equations (1). 
Though the stationary solutions 0P , P± , and Pεσ  are all unstable, the system (1) still has the global stability, 
orbits of system (1) contract into the trapping region and oscillates in the trapping region. Finally the orbits form 
an invariant set in the trapping region, which is called the strange attractor. 

4. Numerical Simulation  
In this section we present the numerical experiment results. 

1) For Re < R3 = 52.785…, the stationary solutions Pεσ  of system (1) is stable, Numerical evidences indi-
cate that any randomly chosen initial data is attracted by one of them, so they are global attractors. 

2) At Re = R3 = 52.785… the four stable stationary solutions Pεσ  become unstable because a pair of com-
plex conjugate eigenvalues of Jacobian matrix at stationary point crosses the imaginary axis, each of the four 
stable fixed points generated by the preceding bifurcations loses stability undergoing a Hopf bifurcation, and 
each generates a stable periodic orbit (hence foursymmetric orbits ( 1, 2,3, 4)i

n iξ =  are generated), and four sta-
ble periodic orbits around the fixed points Pεσ  arise via a Hopf bifurcation (Figure 1) are stable up to Re = R4 = 
55.36 ∙∙∙ and numerical results shows that they attract any point chosen at random. 

3) At Re = R4 = 55.36 ∙∙∙, the periodic orbits lose stability. As predicted by the general theory of bifurcation 
[7], Numerical evidences indicate that each one of the periodic orbit gives rise to a new periodic orbit, the new 
orbits are very similar in shape to the previous ones, only they wind up twice (Figure 2). With the increasing of  
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Figure 1. Re = 52.26. 

 

 
Figure 2. Re = 52.785. 

 
the Reynolds number Re, the number of periodic orbits also increases, the computer simulation shows that other 
similar bifurcations take place at Re = R5 = 55.365 ∙∙∙, Re = R6 = 55.40 ∙∙∙ and Re = R7 = 55.60 ∙∙∙, each time the 
new orbits wind up around the fixed points twice, at this point, the system is in a state of quasi-periodic. the se-
quence of period doubling bifurcations should accumulate (according to Feigenbaum’s theory); in another re-
gion of phase space a pair of periodic orbits *( 1, 2)i

n iξ =  (one stable and one unstable) are created, therefore, a 
hysteresis (i.e., coexistence of attractors) phenomenon appears. 

4) As discussed above, at Re = R7 = 55.64 ∙∙∙, a new kind of periodic orbit appears. Each of the previous four 
orbits bifurcates into anew orbit, the new orbits wind up around two of the fixed points Pεσ , instead of only one 
like the previous ones. More precisely there are two orbits winding around P++  and P−+  and the other two 
around P+−  and P−−  (one stable and one unstable) (Figure 3). 

The attraction basin of the stable periodic orbit rapidly extends, as Re grows within a very small interval. 
While Re in this interval a hysteresis phenomenon occurs and some initial data are attracted by the new stable 
orbit and others are attracted by the doubling periodic orbits (see Figure 3). Soon the attraction basin of the new 
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orbit appears to swallow the region where the doubling periodic should be located. A “collision chaos” seems to 
take place. 

5) The stable periodic orbit become unstable at Re = R8 = 55.76 ∙∙∙, increasing Re we have a sequence of bi-
furcations in which each time the period doubles and the number of loops around each fixed point doubles. We 
found four further bifurcation points of such nature, for the following values of Re:Re  55.80..., Re  55.84, Re  
55.92. Since the period doubles each time and the orbits become increasingly intricate requiring higher precision, 
we did not look for further bifurcations. So we cannot definitely state whether we have just a finite number of 
bifurcations and the only obstacle to observe more seems to be the numerical precision needed, then the strange 
attractor appears, namely, the period doubling bifurcations transition into chaos (Figure 4 & Figure 5).  

6) Figure 6 shows bifurcation diagrams of the system (1). Figure 7 shows the corresponding largest Lyapu-
nov exponents. The periodic motions generated by the period doubling bifurcation continue to double in ever 
faster succession (as Re grows) eventually generating a chaotic attracting set. Moreover, these bifurcation dia-
grams show self similarity. 

 

 
Figure 3. Re = 55.84. 

 

 
Figure 4. Re = 57.49. 
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Figure 5. Re = 58.01. 

 

 
Figure 6. Re = 52.26. 

 

 
Figure 7. Re = 53.36. 

 
7) Figures 8-10 show Poincare section, return map and power spectrum of the system (1) at Re = 57.95. They 

indicate chaos feature of the new system (1). 
8)  From bifurcation diagrams Figure 7, we find that the chaotic region contains periodic-orbit windows of  
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Figure 8. Re = 57.95. 

 

 
Figure 9. Re = 57.95. 

 

 
Figure 10. Re = 57.95. 

 
1251 



H. Y. Wang 
 

 
Figure 11. Re = 58.88. 

 
varying width, the strange attractors and limit cycles appear alternately at some Reynolds number. Through 
more delicate and difficult calculation we obtain the following details: at Re = 58.88... the strange attractor 
shrinks into a symmetrical limit cycles (Figure 11), at Re = 59.90..., the limit cycles become unstable and the 
periodic orbits generated by the period doubling bifurcation continue to double in ever faster succession even-
tually generating a chaotic attracting set (Figure 11). At Re = 68.48..., the strange attractor shrinks into a symme-
trical limit cycles again, if followed backwards with decreasing Re, this bifurcation is an “inverse” bifurcation. 

5. Conclusion 
This paper has presented and studied a five-mode Lorenz-like system of the Navier-stokes equations for a two- 
dimensional incompressible fluid on a torus. Dynamical behaviors of this new chaotic system, including some 
basic dynamical properties, bifurcations, and routes to chaos, etc., have been investigated both theoretically and 
numerically by changing Reynolds number. We have found period-doubling bifurcations to chaos, intermittent 
scenario, periodic windows, hysteresis and coexistence of periodic attractors. The chaotic behavior was dis-
cussed with the aid of bifurcation diagram, Lyapunov exponent spectrum, Poincare section, power spectrum and 
return map. Furthermore, the existence of attractor and the global stability of the equations have been firmly ve-
rified and our theories and methods can be used in other similar systems. 
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