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Abstract 
The optimal use of intervention strategies to mitigate the spread of Nipah Virus (NiV) using op-
timal control technique is studied in this paper. First of all we formulate a dynamic model of NiV 
infections with variable size population and two control strategies where creating awareness and 
treatment are considered as controls. We intend to find the optimal combination of these two 
control strategies that will minimize the cost of the two control measures and as a result the 
number of infectious individuals will decrease. We establish the existence for the optimal controls 
and Pontryagin’s maximum principle is used to characterize the optimal controls. The numerical 
simulation suggests that optimal control technique is much more effective to minimize the in-
fected individuals and the corresponding cost of the two controls. It is also monitored that in the 
case of high contact rate, controls have to work for longer period of time to get the desired result. 
Numerical simulation reveals that the spread of Nipah virus can be controlled effectively if we ap-
ply control strategy at early stage. 

 
Keywords 
Nipah Virus (NiV), Optimal Control, Existence of the State, Existence of the Objective Functional, 
Pontryagin’s Maximum Principle, Transversality Condition, Optimality Condition, Hamiltonian (H) 

 
 

1. Introduction 
Mathematical modeling has become an important tool for analyzing the spread as well as control of infectious 
diseases. It is also a useful tool for the measurement of the effect of different strategies for controlling the spread 
of infectious diseases within a population. In recent years epidemiological modeling of infectious disease trans-
mission has had an increasing influence on the theory and practice of disease management and control [1]. There 
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are a number of different methods for calculating the optimal control for a specific mathematical model. For 
example, Pontryagin’s maximum principle [2] allows the calculation of the optimal control for a system of or-
dinary differential equation with a given constraint. Here the optimal control strategy is used to minimize the 
infected individuals and to maximize the total number of recovered individuals. 

Nipah virus, a member of the genus Henipavirus, a new class of virus in the Paramyxoviridae family, has 
drawn attention as an emerging zoonotic virus in south-east and south-Asian region [3]. This emerging infec-
tious disease has become one of the most alarming threats of the public health mainly due to its periodic out-
breaks and the high mortality rate [4]. Epidemiology is the study of the distribution and determinants of health 
related states or events in specified populations and the application of epidemiology is to control of health prob-
lems. The crucial point is that epidemiology concerns itself with populations or groups of population in contrast 
to clinical medicine, which deals with individuals (patients). Therefore, epidemiology describes health and dis-
ease in terms of frequencies and distributions of determinants and conditions in a population or in a specific 
group of a population. Although Nipah virus has caused only a few outbreaks, it infects a wide range of animals 
and causes severe disease and death in people, making it a public health concern [5]. Treatment is mostly symp-
tomatic and supportive as the effect of antiviral drugs is not satisfactory. So the very high case fatality addresses 
the need for adequate and strict control and preventive measures. 

This paper deals with application of optimal control to a dynamic model of Nipah Virus (NiV) infections and 
its possible control and preventive strategy with the help of optimal control technique. Our aim is to minimize 
the total number of infectious individuals and the cost which is related for creating awareness and treatment. 

2. Formulation of Model 
Nipah virus infection is a zoonotic virus and transmitted first from animal to human. Once it has been transmit-
ted to human, then it continues to be transmitted through human to human (H2H) by the close contact of in-
fected individuals due to its highly infectivity [6]. Let us suppose that ( )S t , ( )I t  and ( )R t  denote the 
number of individuals in the susceptible, infectious and recovered classes at time t respectively. The total popu-
lation at time t is represented by ( ) ( ) ( ) ( )N t S t I t R t= + + . 

We consider the following system of non-linear differential equation, is a type of standard SIR disease model, 
to describe the dynamics of Nipah Virus (NiV) infections in the community. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ,

S t N t S t I t S t

I t S t I t I t

R t I t R t

N t N t I t N t

ν β µ

β γ µ α

γ µ

ν α µ

′ = − −

′ = − + +

′ = −

′ = − −

                             (1) 

with initial conditions, 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 ,S S I I R R N N= ≥ = ≥ = ≥ =                      (2) 

and where, the parameter β  represents the effective contact rate, ν  is the natural birth rate, µ  is the natural 
mortality rate, γ  is the recovery rate and α  represents the disease induced death rate. 

Since there is no proper vaccination program or appropriate drugs for NiV infections, so in the model we in-
troduce two control strategies, namely, creating awareness (u1) among the community about the risky areas be-
fore outbreak of the disease and the treatment (u2). Here the control ( )1u t  measures the effort to be needed to 
increase awareness which results in the reduction of the transmission rate ( β ) and the control ( )2u t  measures 
the effort required for giving health cares for the infected people to reduce the infected individuals. 

Now the NiV model with two control strategies is given below: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

1 2( )

,

S t N t S t I t u S t

I t S t I t I t u I t

R t I t R t u S t u I t

N t N t I t N t

ν β µ

β γ µ α

γ µ

ν α µ

′ = − − +

′ = − + + −

′ = − + +

′ = − −

                         (3) 
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with initial conditions, 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 .S S I I R R N N= ≥ = ≥ = ≥ =                     (4) 

Here our main objective is to minimize the total number of infected individuals and to reduce the cost which is 
needed for creating awareness and treatment on a specified time interval. For the fulfillment of our purpose, we 
work with the following objective function which is similar as [7]. 

( ) ( )( ) ( ) ( )2 2
1 2 1 1 1 2 20

1Minimize , d
2

T
J u t u t A I t B u B u t= + +∫  

where, B1 and B2 are weight parameters that help to balance the corresponding costs. We define the control set 
as follows: 

( ) ( )( ) ( ) ( ) [ ]{ }1 2 1 2, : 0 1, 0 1, 0, .U u t u t u t u t t T= ≤ ≤ ≤ ≤ ∈  

In the objective function, A1I represents the total number of infected individuals, 
2
1

1 2
uB  represents the cost for 

creating awareness and 
2
2

2 2
uB  represents the cost for treatment. 

3. Existence of the Optimal Control for NiV Model 
3.1. Existence of the State 
Adding first three equations of the system (3) we get, 

( ) ( ) ( ) ( ) ( )S I R N t S t I t I t R tν µ α µ µ′ ′ ′+ + = − − − −  

( ) ( ) ( ) ( )S I R N t S I R t I tν µ α′ ′ ′⇒ + + = − + + −  

( )S I R N tν′ ′ ′⇒ + + ≤  

( ) ( )S I R S I R tν′ ′ ′⇒ + + ≤ + +  

( )d
d .

S I R
t

S I R
ν

+ +
⇒ ≤

+ +
 

On integrating we get, 
[ ] [ ]0 0 0 1e , 0, .TS I R S I R M t Tν

++ + ≤ + + = ∈ ∈  
So we have 

( ) ( ) ( )1 1 1, and .S t M I t M R t M≤ ≤ ≤  

From the fourth equation of (3) we have 

( ) ( ) ( ) ,N t N tν µ′ ≤ −  

and then 

( ) ( ) [ ]0 2e , 0, .TN t N M t Tν µ−
+≤ = ∈ ∈  

So, finally we get ( ) 2 .N t M≤  
Since ( )S t , ( )I t , ( )R t  and ( )N t  are bounded above, so there exists solution for the system (3). 

3.2. Existence of the Objective Functional 
By proving the following theorem we can establish the existence of the objective functional: 

Theorem 1. Consider the control problem with system (3). Then there exists optimal controls ( )* *
1 2,u u  that 

minimize ( )1 2,J u u  over the control set U. i.e., 
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( ) ( )
1 2

* *
1 2 1 2,
, min , .

u u U
J u u J u u

∈
=                                 (5) 

Proof: To use an existence result in [8], we must check the following properties [9]. 
1) The set of controls and corresponding state variables is non-empty. 
2) The control set U is convex and closed. 
3) The right-hand side of the state system is bounded by a linear function in the state and control variables. 
4) The integrand of the objective functional is convex on U and is bounded below by ( )2 1 1 2,k k u u

η
− +  with 

1 0k > , 2 0k >  and 1η > . 
To prove the above theorem we need to use the following theorem 2 and 3. 

Theorem 2. Let each of the functions 1, , nF F  and the partial derivatives 1 1

1 1

, , , , , ,n n

n n

F FF F
x x x x

∂ ∂∂ ∂
∂ ∂ ∂ ∂

     

be continuous in a region   of 1 2, , , , nt x x x  space defined by 1 1 1 1, , , n nt x xα β α β α β< < < < < < , and 
let the point ( )0 0 0

0 1 2, , , , nt x x x
 be in  . Then there is an interval [ ]0t t h− <  in which there exists a unique 

solution ( ( ) ( )1 1 , , n nx t x tφ φ= = ) of the system of differential equations 

( )
( )

( )

1 1 1

2 2 1

1

, , , ,

, , , ,

, , , ,

n

n

n n n

x F t x x

x F t x x

x F t x x

′ =

′ =

′ =









 

that also satisfies the initial conditions 

( ) ( ) ( )0 0 0
1 0 1 2 0 2 0, , , .n nx t x x t x x t x= = =  

Theorem 3. Let ( )1, , ,i i nx F t x x=   for [ ]1,i n∈  be a system of n differential equations with initial condi-
tions ( ) 0

0i ix t x=  for [ ]1,i n∈ . If each of the functions 1, , nF F  and the partial derivatives  
1 1

1 1

, , , , , ,n n

n n

F FF F
x x x x

∂ ∂∂ ∂
∂ ∂ ∂ ∂

    are continuous in 1n+  space, then there exists a unique solution  

( ) ( )1 1 , , n nx t x tσ σ= =  that satisfies the initial conditions. 
Now with the help of the above two theorems we prove the four conditions of theorem (1). 
Proof of theorem 1: To use an existence result in [8], we must check the following properties [9]. 
1) The set of controls and corresponding state variables is non-empty. 
2) The control set U is convex and closed. 
3) The right-hand side of the state system is bounded by a linear function in the state and control variables. 
4) The integrand of the objective functional is convex on U and is bounded below by ( )2 1 1 2,k k u u

η
− +  with 

1 0k > , 2 0k >  and 1η > . 
Proof of 1): Let us consider, 

( )1
d , , , ,
d
S F t S I R N
t
=  

( )2
d , , , ,
d
I F t S I R N
t
=  

( )3
d , , , ,
d
R F t S I R N
t
=  

( )4
d , , , , ,
d
N F t S I R N
t
=  

where, F1, F2, F3 and F4 buildup the right hand side of the system (3). Let ( )1 1u t C=  and ( )2 2u t C=  for some 
constants C1, C2. F1, F2, F3 and F4 must be linear and they are also continuous everywhere. Moreover, the partial 
derivatives of F1, F2, F3 and F4 with respect to all state are constants and they are continuous everywhere. 

So by following the theorem 3, we can say that there exists an unique solution ( )1S tσ= , ( )2I tσ= , 
( )3R tσ= , ( )4N tσ=  which satisfies the initial conditions. Therefore, the set of controls and corresponding 
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state variables is non-empty. Hence the condition 1) is satisfied. 
Proof of 2): By definition, U is closed. Take any controls 1 2,u u U∈  and [ ]0,1 .θ ∈  Then 

( )1 20 1 .u uθ θ≤ + −  

Additionally, observe that 1uθ θ≤  and ( ) ( )21 1uθ θ− ≤ − . Then 

( ) ( )1 21 1 1.u uθ θ θ θ+ − ≤ + − =  

Hence, ( )1 20 1 1u uθ θ≤ + − ≤  for all 1 2,u u U∈  and [ ]0,1θ ∈ . Therefore, U is convex, and condition 2) is 
satisfied. 

Proof of 3): 
We consider, 

1 1F N u Sν≤ −  

2 1 2F K I u I≤ −  

3 1 2F u S u I Iγ≤ + +  

4 .F Nν≤  

The state system is given below: 

( )1
d , , , ,
d
S F t S I R N
t
=  

( )2
d , , , ,
d
I F t S I R N
t
=  

( )3
d , , , ,
d
R F t S I R N
t
=  

( )4
d , , , , .
d
N F t S I R N
t
=  

Now we rewrite the system in matrix form: 

( ) ( ) ( )
( )

1

2

, , , ,

S S
u tI I

F t X u m t X t n t
u tR R

N N

      
              ≤ +                         

                      (6) 

where, 

1

0 0 0
0 0 0

,
0 0 0
0 0 0

S
I k

m t
R
N

ν

γ
ν

    
    
    =    
         

                              (7) 

and 

,

0

S S
I I

n t
R S I
N

  −   
    −    =    +
         

                                 (8) 

which gives a linear function of the controls u1 and u2 defined by time and state variables. Then we can find out 
the bound of the right hand side. It is noted that all parameters are constant and greater than or equal to zero. 
Therefore we can write, 
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( ) ( ) ( )( )
( ) ( )( )( )

1 2 1 2

1 2

, , , ,

,

F t X u u m X S I u t u t

p X u t u t

≤ + +

≤ +
 

where S , I  are bounded and p includes the upper bound of the constant matrix. Hence we see that the right 
hand side is bounded by a sum of the state and the control. Therefore, condition 3) is satisfied. 

Proof of 4): 
For the proof of the condition 4) we use the result in [10] and [Fleming and Rishel (1975)]. The control and 

the state variables are non-negative values and are non-empty. In the minimization problem, the necessary con-
vexity of the objective functional in u1 is satisfied. The control variables 1 2,u u U∈  is also convex and closed 
by definition. Furthermore, from [10] we see that the integrand in the objective functional which is  

( )
2 2
1 2

2 32 2
u uAI t A A

 
+ + 

 
 is convex on the control set U. 

Now we have to prove that ( ) ( )1 2 2 1 1 2, ,J u u k k u u
η

≥ − +  with 1 0k > , 2 0k >  and 1η > . 
Here, 

( ) ( )
2 2
1 2

1 2 1 1 2,
2 2

u uJ u u A I t B B= + +  

( ) ( )
2 2
1 2

1 2 1 1 2,
2 2

u uJ u u A I t B B≥ − + +  

( ) ( ) ( ) [ ]

( )

2 2
1 2 1 1 2 1 2

2
2 1 1 2

1, let,
2

= ,

J u u A I t B u u B B B

k k u u

≥ − + + + =

− +
 

where, 2 0k >  that depends on the upper bounds of ( )I t . We can also see that 2 1η = > , 1 0k > . Hence, con- 
dition 4) is satisfied. 

4. Characterization of the Optimal Control 
In order to derive the necessary condition for the optimal control, we use pontryagin’s maximum principle [2]. 
This principle converts the system and the objective functional into a problem minimizing pointwise a Hamilto-
nian H with respect to u1 and u2. In the objective function, the value A is the balancing parameter, B1 and B2 are 
the weight parameters balancing the cost. Here we can see from the system (3) that R appears only in the recov-
ered class. So, when we build up the optimality system, we will ignore the recovered class. 

By using pantraygin’s Maximum principle we first derive the Hamiltonian which is given below 

( ) ( ) ( )

( )( ) ( )( )

2 2
1 2

1 1 2 1

2

, ,
2 2 s

I N

u uH S I N A I t B B N SI S u S

SI I u I N I

λ ν β µ

λ β γ µ α λ ν µ α

= + + + − − −

+ − + + − + − −
                (9) 

where, λS, λI, λN are the associated adjoints for the state S, I, N respectively. By differentiating the Hamiltonian 
(H) with respect to each state variable, we find the differential equation for the associated adjoint. Hence, the 
adjoint system is, 

( )
( )
( )

1

2 1

S S I

I S I I I N

N S N

u I I

S S u A

λ λ µ β λ β

λ λ β λ γ µ α λ β λ λ α

λ λ ν λ ν µ

′ = + + −

′ = + + + − + + −

′ = + −

                     (10) 

with the final conditions, 

( ) ( ) ( ) 0.S I NT T Tλ λ λ= = =  

So by differentiating the Hamiltonian with respect to two controls u1 and u2 we obtain: 
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1 11

0
u u

H
u ∗=

∂
=

∂
 

*
1 1 0SB u Sλ− =  

*
1

1

SSu
B
λ

=  

and 
2 22

0
u u

H
u ∗=

∂
=

∂
 

*
2 2 0IB u Iλ− =  

*
2

2

.IIu
B
λ

=  

5. Optimality System 
State equations: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

1 2

,

,

,

,

S t N t S t I t u S t

I t S t I t I t u I t

R t I t R t u S t u I t

N t N t I t N t

ν β µ

β γ µ α

γ µ

ν α µ

′ = − − +

′ = − + + −

′ = − + +

′ = − −

                      (11) 

with initial conditions, 

( ) ( ) ( ) ( )0 0 0 00 0, 0 0, 0 0, 0 .S S I I R R N N= ≥ = ≥ = ≥ =                    (12) 

Adjoint equations: 

( )
( )
( )

1

2 1

.

.

.

S S I

I S I I I N

N S N

u I I

S S u A

λ λ µ β λ β

λ λ β λ γ µ α λ β λ λ α

λ λ ν λ ν µ

′ = + + −

′ = + + + − + + −

′ = + −

                    (13) 

Transversality equations: 
( ) ( ) ( ) 0.S I NT T Tλ λ λ= = =                               (14) 

Characterization of the optimal control *
1u  and *

2u : 

1

*
1

1 1

1

0 if 0,

if 0 1,

1 if 1.

S

S S

S

S
B

S Su
B B

S
B

λ

λ λ

λ


<


= ≤ ≤



>


                              (15) 

and 

2

*
2

2 2

2

0 if 0,

if 0 1,

1 if 1.

I

I I

I

I
B

I Iu
B B

I
B

λ

λ λ

λ


<




= ≤ ≤



>


                               (16) 
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In compact notion we can write, 

*
1

1

min 1,max 0, SS
u

B
λ  

=   
   

                               (17) 

and 

*
2

2

min 1,max 0, .IIu
B
λ  

=   
   

                               (18) 

6. Numerical Results and Discussions 
Numerical solutions to the optimal system are executed using MATLAB. The considered two controls (u1, u2) 
depend on the adjoints λS, λI and λN of the state variables S, I and N respectively. We simulate the model without 
control and with control and then we compare the results. We considered the numerical value of the controls u1 
and u2 in between zero(0) and one(1) as they are not 100 percent effective. We also monitored the effectiveness 
of the weight parameter to see how the control is related to weight function. In this simulation we assumed the 
initial values of S, I and N as proportions instead of whole numbers. 

The parameter values used in the simulations are presented in the following Table 1. 
Figure 1 depicts the importance of the controls to the disease dynamics. From the graphs, we see that the 

control has a positive impact to reduce infection until the controls are effective enough. It is also clear from the 
figures that the disease can be controlled over finite period of time after imposing control strategies. 

Figure 2 and Figure 3 monitored the impact of the parameter (α) of disease induced death rate. Here we see 
if α is at a low rate (α = 0.3) then the controls work effectively and as a result there is a significant reduction of 
the infections. When controls do not work it resulted the increase of infected individuals. 

On the other hand for the higher rate of α (where awareness does not work, u1 = 0 and the treatment u2 works 
for a short period of time) there is a sharp decrease of infection due to death resulting the existence of fewer re-
covered people. 

Figure 4 and Figure 5 show the comparative situation of the disease dynamics for low and high contact rates. 
In the case of low contact rate (β = 0.2), the infectious individuals decrease until the controls work effectively 
and as a result there is a notable increment of recovered individual. 

On the other hand, for the very high contact rate (β = 2), which resulted a severe disease burden, the controls 
work for a longer period of time to reduce the disease burden. 

Figure 6 and Figure 7 show the influence of the various weight parameters. Here we notice that for low  
 

Table 1. Description and parameter values of the NiV model. 

Variable Description Initial values 

S0 Initial susceptible individuals 0.90 [assumed] 

I0 Initial infected individuals 0.05 [assumed] 

R0 Initial recovered individuals 0.05 [assumed] 

Parameters Description Initial values 

ν  Birth rate 0.03 [assumed] 

µ  Mortality rate 0.002 [assumed] 

β  Contact rate 0.75 [7] 

γ  Recovery rate 0.005 [assumed] 

α  Disease induced death rate 0.01 [assumed] 

A1 Weight parameter 10 [7] 

B1 Weight parameter 1 [7] 

B2 Weight parameter 2 [7] 

T Number of years 6 [assumed] 
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Figure 1. NIV model with control and without control, parameter values are taken from Table 1. 

 

   

   
Figure 2. NiV model with low disease induced death rate, α = 0.3 and other parameter values are taken from Table 1. 
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Figure 3. NiV model with high disease induced death rate, α = 3 and other parameter values are taken from Table 1. 

 

   

   
Figure 4. NiV model with low contact rate, β = 0.2 and other parameter values are taken from Table 1. 
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Figure 5. NiV model with high contact rate, β = 2 and other parameter values are taken from Table 1. 

 

   

   
Figure 6. NiV model with low weight parameters, B1 = 0.2, B2 = 0.3 and other parameter values are taken from Table 1. 



J. Sultana, C. N. Podder 
 

 
1110 

   

   
Figure 7. NiV model with high weight parameters, B1 = 2, B2 = 3 and other parameter values are taken from Table 1. 

 
weight parameters (B1 = 0.2, B2 = 0.3) the infectious individuals decrease sharply for first few years (as the con-
trols work at maximum level). It is also noticed that the infected individuals start to increase when the effec-
tiveness of the controls start to decrease. 

In the case of high weight parameter values (B1 = 2, B2 = 3) the high effectiveness of the controls are moni-
tored and as a result there is a sharp reduction of infection during that effective level. 

7. Conclusions 
The important findings are given below: 
• A comparison between with and without control strategy is monitored. The effect of control parameters is 

very much notable for reducing the infected individuals to control the disease dynamics. 
• The controls need to be effective for longer period of time in case of high incidence. 
• The optimal control is much more effective to minimize the infected individuals (as a result recovered indi-

viduals will be maximized) and also to minimize the cost of the two control measures. 
• For low weight parameter values, the controls show their effectiveness at a maximum level. 
• From the simulations it is monitored that the optimal combination of treatment and creating awareness is 

very prominent for disease elimination. 
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