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Abstract 
The electrodynamics both in RF with prescribed law of motion and in FR with prescribed structure 
is considered. Parallel comparison for solutions in “uniformly accelerated” NRF Möller system and 
in uniformly accelerated rigid NFR in the space of the constant curvature is carried out. The sta-
tionary criterion is formulated. On the basis of this criterion, one of the “eternal physical prob-
lems” concerning the field at uniformly accelerated charge motion is considered. The problems of 
electromagnetic wave spreading, Doppler’s effect and field transformations are discussed. 
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1. Introduction 
To solve radiolocation and inertial navigation problems taking into account relativistic corrections, the analytical 
apparatus of relativistic non-inertial reference frames (NFR) is needed. However, in relativistic theory, a single 
analytical definition both reference frames and rules ascertaining a transition between them does not exist. Ac-
cording to physical encyclopaedia, “reference frames (FR) are collections of coordinate system and clock con-
nected with a body relatively what a motion (or equilibrium) of some other material points or bodies is stu-
died”… Therefore, to study a motion (equilibrium) of other bodies, the analytical specifying of a body proper-
ty—the basis of RF itself is needed. In the general relativity theory (GR), we define the FR as “…a collection of 
infinite number of bodies filling all space like some ‘medium’ [1]”. When considering the most elementary NFR 
in the special relativity theory (SR) such as uniformly accelerated and uniformly rotating ones, we face logical 
difficulties. Let us consider these difficulties in a uniformly accelerated NFR. 
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One assumes [2] that the transition to a rigid uniformly accelerated NFR is realized by means of the known 
Möller transform. However [3], the situation when an acceleration of all medium particles in the co-moving FR 
is constant and identical and the congruency of the world lines is a Born-rigid is impossible. The analysis of the 
Möller transform shows that in the Fermi-Uolker basis to which the accelerometer readings are related [4], the 
accelerations of different particles are not identical. They are calculated in accordance with the formula 

( ) ( )2
0 01a y a a y c= + , 

where 0a  is the particle acceleration along the y axis located at the origin of the Lagrangian co-moving coor-
dinate system; c is the velocity of light in a free space. Thus, the Möller transform does not describe the transi-
tion to the globally uniformly accelerated NFR. Each Lagrangian particle moves with constant acceleration, but 
these accelerations are not equal each other [5].  

The Logunov transform [6] is an alternative of the Möller transform describing the transition from the inertial 
reference frame (IFR) to relativistic uniformly accelerated NFR where each Lagrangian basis particle moves 
with constant acceleration. Such reference frame can be realized when considering charged non-interacting each 
other similar dust particles moving with zero initial velocity in uniform electric field. However, if one calculates 
by means of standard procedure [1] three-dimensional metric tensor specified at the hyper surface orthogonal to 
the world lines of basis particles, one can be convinced that “physical” space distance between adjacent world 
lines will increase with time. Thus, the globally uniformly accelerated Logunov system is not a Born-rigid. 

We obtain a paradoxical result. Similar physical situation for all particles resulted in a motion of the particles 
relatively each other (the Logunov system). In order to make these particles be mutually immovable, the differ-
ent forces are needed (the Möller system).  

One can show the paradoxicality of such situation on an illustrative example.  
Let two identical automobiles connected with a fragile weightless rod simultaneously start along x axis. This 

rod breaks if in the reference frame, connected with the rod, the distance between these automobiles changes. 
This rod breaks if at the distance to accelerate the engines deliver identical thrust (the Logunov system), and the 
rod does not break if the second automobile delivers higher power than the first one (the Möller system). The 
known Bell paradox is connected with this situation. In [7]-[9], it is shown that the Bell paradox is solved only 
by means of the transition to Riemannian space-time without the connection with the Einstein equations. 

The description of rigid NFR in SR results in logical difficulties, which one overcomes by means of going out 
of a flat space-time. Similar ideas were expressed by V. I. Rodichev.  

All NFR are divided into two classes: 
1) NFR with specified law of motion. 
2) NFR with specified structure. 
The routine method of transition from IFR to NFR [10] is connected with the non-linear transformation of 

coordinates containing the time, i.e. with the law of continuum motion in the Lagrangian coordinates, for exam-
ple, by means of integration of motion equations in Euler variables. 

It is clear that if the motion equations were specified in Minkowski space then one cannot exceed the limits of 
flat space-time by no transformations of coordinates both containing the time and non-containing the time as one 
cannot obtain the nonzero Riemann-Christoffel tensor if it was absent in IFR. Such NRF are the first class NFR. 
However, in NFR of the first class one can introduce the nonzero relative Riemann tensor! (This is our 
terminology.) If one uses non-holonomic transformations from IFR to NFR in accordance with Shouten [11], we 
also obtain zero curvature tensor. However, from this zero tensor one can obtain the general Riemann tensor 
with the holonomic connectedness, which is called the relative curvature tensor. In our opinion the mistake in 
transition to the first class NFR is connected with the misapplication of the transition formula from the Lagrange 
coordinates to the Euler coordinates 

( )x yµ µ α= Ψ .                                      (1.1) 

The Greek indices will run values from 1 to 4. The Latin indices values from 1 to 3. Wherein is the cause of 
error? In classical mechanics of continua the transition into Lagrangian co-moving NFR is derived at the fixed 
instant of time t. In relativistic continuum mechanics the total differential dxµ  is derived and the element of 
physical spatial distance is constructed 
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0 00kl kl k olg g g gγ = − + .                                  (*) 

In regard to the time domain element, in our opinion the factors 0kg  are unnecessary. It is clear that in our 
calculation method 

2 2d dS S≠� . 

This results in the interval element 

( )2 ˆ ˆˆ2 0
ˆ ˆ2

0

1d d d dξ δ ∂Ψ ∂Ψ
= − +

∂ ∂
�

m n
l k

mn m n l k
S V V y y

V y y
.                      (1.2) 

It is clear that in our case the physical space and the time are orthogonal. For example, rotating nonrelativistic 
NFR is represented in the form 

2 2 2 2
2 2 2 2 2

2 2 2

2

dd 1 d d d
1

r rS c t r z
c r

c

ϕ Ω
= − − − −  Ω  −

� .                      (1.3) 

To compare we present interval value in the standard consideration 

2 2
2 2 2 2 2 2 2 2

2d 1 d 2 d d d d drS c t r t z r r
c

ϕ ϕ
 Ω

= − − Ω − − − 
 

.                  (1.4) 

Both formulas are correct if 1r cΩ <  and they satisfy to the stiffness criterion both classic and relativistic 
one (in Born sense). However, there is the essential difference between these metrics: metric (1.3) is realized in 
Riemannian space-time and metric (1.4) is realized in plane Minkovsky space. At constt =  metric (1.3) cor-
responds to the element of “physical” spatial interval in revolving reference frame in accordance with formula 
(*). In (1.3) unlike (1.4) 0kg  components of metric tensor are absent, this means the possibility of watches 
synchronization along any closed circuit [1]. 

A continuous medium in the four-space-time is described by the following characteristics: the four-accelera- 
tion, the strain-rate tensor, and the tensor of angular velocity of rotation. The four-acceleration enters the motion 
law, and, with a known flat metric, integration of the motion equation yields the four-velocity field and the fun-
damental tensors of the medium. For the frames of reference with properties specified by physical requirements, 
one must know additional conditions imposed on the fundamental tensors of the medium, which depend on 
four-velocities and four-accelerations. An example is the requirements to the rotation and rigidity. The number 
of equations for determining the four-velocity is over determined; therefore, the integrability conditions must be 
satisfied. This will held true if not only the four-velocities of the medium but also the metric coefficients are de-
sired values. 

In NFR of the second class not only knowledge of law of continuum motion is needed, but the properties of 
FR are specified beforehand. These properties are determined with the strain-rate tensor and the tensor of angu-
lar velocity of rotation. 

In description the properties of arbitrary deformed reference frames in the form of continuum either the field 
of four-velocity (Euler’s view point) or the law of continuous medium motion establishing a connection between 
Euler and Lagrangian variables is specified. Space-time is considered either plane in the case of SR or Rieman-
nian in the case of general relativity (GR). If one can neglect with gravitational interaction between the particles 
and external force acting on the body is not a gravitational one then to describe a medium motion SR relativistic 
mechanics is applied. In SR the fields do not distort the space-time both in IRF and in co-moving NFR of conti-
nuum keeping its space-time geometry as a plane. Only “space sections” are bent. The geometry of the sections 
in the general case ceases to be Euclidean geometry. Such viewpoint is the most widespread in theory of relativ-
ity. 

Works of V. I. Rodichev [12] and A. A. Vlasov [13] stand apart from standard interpretation. In [13] consi-
dering the theory of growth of crystalline, plasma and biological structures with conservation of their similarity 
the author ascertained that growth of such structures is possible in non-Euclidean space time. It is provided to be 
that Minkowski space is “tight” in order to simultaneously satisfy the simplest requirements: Born rigidity and 
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uniformly acceleration.  
Our approach is based on development and modernization of Rodechev’s and Vlasov’s ideas and it includes 

the following: 
Let continuum is at rest in a plane Minkovsky space-time with signature (+ − − −). In some instant of time 

0t t=  any force field (except gravitational one) switches on and the continuum starts moving. What properties 
of space-time will be after switching on the force field? In accordance with the orthodox version space-time 
properties will be invariable [6]. Our answer this question will not be so categorical. We assume that switching 
on of force field can change space-time property transforming it to curved one in limits of world tube.  

We want to determine that structure on prescribed structure of force field and also on such continuum charac-
teristics as tensor of deformation rate µνΣ , tensor of angular rotational velocity µνΩ , first curvature vectors of 
world lines of medium particles Fµ  (equations of motion).  

Let us assume that a continuous medium moves in four-dimensional space-time with signature (+ − − −). The 
medium satisfies the expansion 

V V Fµ ν µν µν µ ν∇ = Σ +Ω + .                             (1.5) 

Here, Vμ is the field of four-velocity, which satisfies the normalization condition 

1g V Vµ ν
µν = .                                  (1.6) 

gμν is the metric tensor in the Euler frame of reference; Σμν is the strain-rate tensor; Ωμν is the tensor of angular 
velocity of rotation; and Fμ are the first curvature vectors of the world lines of particles of the medium (four- 
accelerations): 

( ) ( )V V Fµν µ ν µ νΣ = ∇ − ,                              (1.7) 

[ ] [ ]V V Fµν µ ν µ νΩ = ∇ − ,                              (1.8) 

F V Vν
µ ν µ= ∇ .                                 (1.9) 

The Greek indices run values from 0 to 3. The Latin indices values from 1 to 3. Expansion (1.5) can be inter-
preted from the following two points of view: 

1) The field of four-velocity Vμ is assumed to be known, for example, as a result of integration of the Euler or 
the Navie-Stokes relativistic motion equation at a specified flat metric. The continuum characteristics Σμν, Ωμν, 
and Fμ can be obtained from Formulas (1.7) to (1.9), and expansion (1.5) turns to identity. 

2) The functions Σμν, Ωμν, and Fμare assumed to be specified. Expansion (1.5) is transformed into a system of 
differential equations with respect to Vν and gμν. The number of Equations (1.5) and (1.6) exceeds the number of 
unknown functions; therefore, the integrability conditions must be satisfied: 

2 2V V
x x x x

ν ν
ε σ σ ε

∂ ∂
=

∂ ∂ ∂ ∂
.                                (1.10) 

To determine the relationship between the geometric and kinematic characteristics of the continuum, we will 
calculate the expression 

[ ] [ ]2 2V V V
x x

µ µ
µ ρ µ ρεν σν

ε σ ν ε σ ν σρ εν ερ σν µσ ε

 ∂Γ ∂Γ
∇ ∇ = ∂ ∂ + − + Γ Γ −Γ Γ 

∂ ∂ 
 

with allowance for (1.5) to (1.10), it follows from this expression that 

( ), [ ] [ ] [ ]2 2 2R V V Fµ
εσ ν µ ε σ ν ε σ ν ε σ ν= ∇ Σ + ∇ Ω + ∇                       (1.11) 

Integration of System (1.5), (1.11), where ,Rµ
εσ ν  is the curvature tensor (which is conventionally expressed in 

terms of the metric tensor), yields a solution to the problem on the space-time geometry, in which an NFR with a 
specified structure is implemented. Equation (1.11) will be referred to as structural equations for the frame of 
reference [1]. The metric of a linearly accelerated NFR takes the form  



S. A. Podosenov et al. 
 

 
810 

( ) ( ) ( ) ( )
1 2 2 2 22 0 1 2 30

2
2d exp d d d da yS y y y y

c
 

= − − − 
 

                   (1.12) 

where the acceleration 0a  is directed along the 1y  axis [1]. The linear acceleration of NFR (1.12) can be ve-
rified directly: 

( )
1 1 1121 1 0 1 00 0

00 00 1 2
00 00

d 1
d d 2

g aDV V gF V
S S g g y c

∂
= = + Γ = Γ = − =

∂
                (1.13) 

The other components of the four-acceleration are zero. Let us find the space-time geometry in the NFR using 
the known formula for the curvature tensor [1] 

( )
2 2 22

, ,
1
2

βγ αγ βδ µ ν µ ν σαδ
αβ γδ µν βγ αδ βδ αγ ασ β γδβ γ α δ β δ α γ

 ∂ ∂ ∂∂
= + − − + Γ Γ −Γ Γ =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

g g gg
R g g R

y y y y y y y y
,    (1.14) 

where the Christoffel’s symbols µ
αβΓ  are calculated in accordance with the formulas 

,
1
2

g g g
y y y
µα µβ αβ

µ αβ β α µ

∂ ∂ ∂ 
Γ = + − 

∂ ∂ ∂ 
,                          (1.15) 

1
2

γα γβ αβµ µγ
αβ β α γ

∂ ∂ ∂ 
Γ = + − 

∂ ∂ ∂ 

g g g
g

y y y
.                         (1.16) 

The single independent component of the curvature tensor, calculated from metric (1.12), has the form 

2

22 2 1
00 00 0 0

10.10 1 4 21
00

21 1 exp
2 2

g g a a y
R

g y c cy

    ∂ ∂
 = − − = −   ∂ ∂     

.                (1.17) 

The components of the Ricci tensor ,R g Rαγ
βγ αβ γδ= can be written as 

00 10.10= −R R , 
2
0

11 4

a
R

c
= − , 10 0R = .                        (1.18) 

and the scalar curvature is 
2 4
02R a c= .                                 (1.19) 

Thus, one can realize the relativistic rigid uniformly accelerated NRF in a space of constant curvature. 
Substitution of the ( )21 2

00 01g a y c= +  value (which corresponds to the Möller’s metric [5]) instead of me-
tric (1.12) into the right-hand side of (1.17) yields 10,10 0R = . One would expect this result, because the Möller’s 
metric is obtained by transforming the coordinates from the Minkowski space. In the case under consideration, 
the joint requirement of rigidity and linear acceleration does not turn the right-hand side of structural equations 
(1.11) to zero, as a result of which the Riemann−Christoffel tensor is nonzero. Formulas (1.12) and (1.17) were 
derived in [1] and these ones were repeated in [14] [15]. The problems of electrodynamics in NRF of the first 
and second class are considered in this article. 

2. Electrodynamics in NRF with Prescribed Law of Motion 
Let us apply the theory of transition to arbitrary NRF determined with the law of motion ([16], (10.1)) for the 
transformation of electrodynamic equations from IRF to NRF.  

Let the continuum motion law in an arbitrary force field in Minkowski space is determined by the equations 

( )ˆ 0̂,kx yµ µ ξ= Ψ ,                                  (10.1) 

where xµ  are the Eulerian coordinates and k̂y  are the Lagrangian coordinates which are constant along each 
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fixed world line, ( ) 0̂1 с ξ  is some time parameter, for example, proper time. Let us agree that µ  indices be-
long to Eulerian coordinates and µ̂  indices belong to Lagrangian coordinates. 

The Maxwell equations in vacuity in IRF Cartesian coordinates have the form [1] 

4πF j
cx

µν
µ

ν

∂
= −

∂
, 0F F Fα βγ β γα γ αβ∂ + ∂ + ∂ = , [ ]2F Aµν µ ν= ∂ .                 (2.1) 

In Correlation (2.1), F µν  is the tensor of electromagnetic field; jµ  is the four-dimensional current vector; 
Aµ  is the 4-potential. 

The transition to the NRF realized by means of ([16], (10.1), (10.2)) 

( )ˆ ˆk k
h V V

y

ε
µ µ µ

ε εδ ∂Ψ
= −

∂
, ˆ ˆ0 0

h V
µ

µ µ

ξ
∂Ψ

= =
∂

, 

ˆ
ˆ

k
k yh

xµ µ

∂
=
∂

, 0̂h Vµ µ= .                                 (10.2) 

results in equations 

ˆˆ ˆ
ˆ

4πF j
c

µν µ
ν∇ = −� � � , ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ 0F F Fα γα γβγ β αβ

∇ +∇ +∇ =� � � � � � , 

0̂
ˆ ˆ ˆ ˆˆ ˆ ˆ 0

ˆˆ 2F F C Aµν µν µν= +� , [ ]ˆˆ ˆˆ
ˆ ˆˆ 2F Aµν µ ν= ∂ , ˆ ˆÂ h Aµ

ν ν µ= ,                     (2.2) 

where 

ˆ ˆ ˆˆ b
F h h Fµ ν

γ µνβγ
=� , ˆ ˆj h jµ µ ν

ν=� .                             (2.2a) 

It follows from Formula (2.2) that absolute tensor of electromagnetic field ˆˆFµν
�  is decomposed on the rela-

tive tensor of electromagnetic field and the “transposed” one. The relative field tensor ˆˆF̂µν  can be presented in 
the form  

[ ] [ ]ˆˆ ˆ ˆˆ ˆ
ˆ ˆ ˆˆ ˆ2 2F A Aµν µ ν µ ν= ∂ = ∇ ,                              (2.3) 

where ∇̂  is calculated by means of the Christophel’s part of the connectedness ([16], (10.6)). 

ˆ ˆ
ˆ ˆˆ ˆ

ˆ
,ˆˆb bb

σ σ
α α

σ

α

  Γ = + Τ 
  

 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ.ˆ ˆ ˆ ˆ.

.
b b b b

C g g C g g Cσ σ σν ε σν ε
αε ανα α ν ε

Τ = − + +                  (10.6) 

Transferable field tensor is the product of scalar potential 0̂Â  and nonholonomity object, i.e. it contains in-
formation about an acceleration and reference frame rotation in accordance with ([16] (10.11)) 

0̂
ˆˆ ˆˆkl kl

C = Ω , 0̂
ˆ ˆ0̂

2
k k

C F= , 
ˆ

ˆˆ 0k
b

C
α

= .                         (10.11) 

We point out, that the partition of the field tensor on two parts is conditional, since the field information in the 
form of the scalar potential is contained and in the “transposed” field. Let us rewrite the Maxwell equations in 
more detail.  

We present the first Equation (2.2) in the form  

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

4πˆF F T F T F j
c

µν µν µ νγ γ µν µ
ν ν γν γν∇ = ∇ + + = −� �
� � � � � � , 

( )ˆˆ
ˆˆ

ˆ ˆ

ˆ ˆ1ˆ
ˆˆ

gF
F

g y

µν

µν
ν ν

∂ −
∇ =

− ∂

�
� . 

Whence after simple transformations we obtain 
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( ) ( ) ( ) ( )
ˆ0̂

ˆˆ ˆˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ0̂
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ0 0 0 00 0

ˆ ˆˆ 4πˆ ˆ ˆ ˆˆ ˆ ˆ2 2
ˆ ˆ

k
kl kl k kl kl l k k k

l l l

F F A F A F F A F F A j
cyξ

∂ ∂
+∇ + Ω − − + Ω +Σ − = −

∂ ∂

� � , 

( ) ( ) ( )ˆ ˆ ˆˆ ˆˆ0̂ *
ˆ ˆ ˆˆ ˆ0 0

ˆ ˆˆ ˆ 2 4πk k kl kl
k kl

F F A F A U Vν
µρ∇ + +Ω + Ω = −

�
,                   (2.4) 

where 
k̂

∇
�

 is the covariant derivative calculated by means of three-dimensional Christophel connectedness; 
*ρ  is the scalar charge density, *j c Uµ µρ= . It is known that potentials Aµ  are determined ambiguously. For 

example, known Lawrence conditions in Galilean coordinates having the form  

0A
x

µ

µ

∂
=

∂
,                                    (2.5) 

will reduce in NRF to the form 
0̂

ˆ ˆ ˆ0̂
ˆ ˆ ˆ0̂

ˆ ˆ ˆ ˆ ˆ 0
ˆ

k k k
k k k

A A A F A
ξ
∂

+∇ +Σ − =
∂

�
.                           (2.6) 

Let us introduce three-dimensional vector of electric intensity E , vector of electric induction D , vector 
magnetic intensity H  and vector of magnetic induction B  in accordance with determinations borrowed from 
the Maxwell equations in NRF for the specified gravitational field [2] with the substitution of partial derivatives 
by directional ones  

ˆ ˆ0̂k k
E F= � , ˆˆ ˆˆkl kl

B F= � , 
ˆ ˆ0̂

ˆ ˆ00
ˆk kD g F= − � , 

ˆˆ ˆˆ
ˆ ˆ00

ˆkl klH g F= � .                  (2.7) 

Unlike [1] the metric is synchronous ([16], (10.9)) 

ˆ ˆ ˆˆ
ˆ

b b
g g h hµ ν

µν αα
= , ˆ ˆ00

ˆ 1g = , ˆ0̂
ˆ 0

k
g = .                           (10.9) 

We introduce vector operations in accordance with determinations: 

( ) ˆˆ ˆˆ ˆ ˆ
ˆ ˆ

ˆˆ1
ˆˆ2

a abc c b
cb

EE
e

yyγ

 ∂∂
 × = −
 ∂∂ 

E∇ , ˆˆ ˆ ˆ
ˆ ˆ

1
2

a abc
bc

H e H
γ

= − , 

( )ˆˆ ˆ
ˆ ˆˆ ˆ

1
2

cab
a ab b

e F E F E
γ

− − = ×F E , ˆˆ ˆ ˆ
ˆ ˆ2

a abc
bc

c e
γ

Ω = − Ω , 

( ) ˆˆ ˆˆ ˆ ˆ
ˆ ˆ

ˆˆ1
ˆˆ2

a abc c b
cb

HH
e

yyγ

 ∂∂
 × = −
 ∂∂ 

H∇ , ( )ˆ
ˆ

ˆ1
ˆ

a
a

E
y

γ
γ

∂
⋅ =

∂
E∇ .                (2.8) 

In (2.8) 

ˆ ˆˆ ˆ ˆ ˆabc abc
eη γ= , ˆ ˆˆ ˆ ˆ ˆ1abc abceη

γ
= , 123

123 1e e= = , 

where ˆˆ ˆabc
η  is the unit antisymmetric tensor in curvilinear coordinates. 

On the basis of made remarks the Maxwell Equation (2.2) in the reference system connected with the moving 
charges ([16], (10.1)) on which arbitrary forces (unnecessary electromagnetic ones) act will reduce to the form 

( )
0̂

1 γ

γ ξ

∂
× = − − ×

∂

H
E F E∇ , *2 4π

c
ρ⋅ = ⋅ +E H∇ Ω , 

( )
0̂

1 γ

γ ξ

∂
× = − ×

∂

E
H F H∇ , 2

c
⋅ = − ⋅H E∇ Ω .                     (2.9) 
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The Maxwell equations are added with continuity equations expressing the charge conservation law 

( )*

0̂

1 0
γ ρ

γ ξ

∂
=

∂
.                                  (2.10) 

We point out that unlike the general Maxwell Equation (2.2) suitable for arbitrary NRF unnecessary con-
nected with moving charges, in Equation (2.9) (because of concomitance) the space component of 4-current is 
absent. This component should be added when considering the general case.  

Found three-dimensional form of the Maxwell equations obtained by means of nonholonomic transformations 
coincides with the three-dimensional chronometrically invariant form presented in N.V. Mitskevich book [17].  

To solve the set of the Maxwell equations it is convenient to introduce electric field potentials. Let us present 
some necessary formulas obtained from the nonholonomic vector analysis to transit from field strength to poten-
tials. For arbitrary three-dimensional vector field ( )ˆyαa  and scalar field ( )ˆyαφ  following correlations are 
valid:  

( )( ) ( )( )
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ. 0
2

k k k k l kn n
l

a
a R a

ξ
∂

× × = ⋅ − ∆ + + Ω
∂

�
a a∇ ∇ ∇ ∇ , 

0̂
2

c
φφ
ξ
∂

× =
∂

Ω
∇ ∇ , ( )

ˆ
ˆ

0̂
2

k
k

a
c ξ

∂Ω
⋅ ⋅ =

∂
a∇ ∇ , 

( )ˆ ˆ ˆ0 0 0

D
cξ ξ ξ

∂ ∂ ∂
× = × + × − ×
∂ ∂ ∂

a aa a F∇ ∇ ∇ , 

( ) ( )ˆ ˆ ˆ0 0 0

D D
c сξ ξ ξ

∂ ∂ ∂
⋅ = ⋅ − ⋅ − ⋅ − ⋅
∂ ∂ ∂

a a aa F a F∇ ∇ ∇ .                   (2.11) 

The values included in (2.11) are determined in ([16], (10.38)) 

ˆ
ˆ ˆ ˆ ˆ ˆ\ˆ ˆ

1 1, ,ˆ , ,ab ab
a

ca aab a cb ah D A D
c c

g = − Σ = − Ω = − Σ =  

. 2
ˆ

ˆ 2
ˆ ˆ

ˆ ˆ.
1 1 1 1, , , ,n a a

c c b
n a a
c c b

D A F F F F
c c c c

Σ Ω = = = −=  

ˆ 0̂

ˆ ˆ* 1 *, .
ˆˆ kk c tx yy

∂ ∂ ∂ ∂
= =

∂∂ ∂∂
                            (10.38a) 

In accordance with determination (2.7) let us present electric and magnetic intensities in a vector form via po-
tentials in the form 

( ) ( ) ( )
ˆ ˆˆ ˆˆ ˆ

ˆ ˆˆ 0 00

ˆ
ˆ ˆk kk kl l

A
A Aγ

ξ

∂
= − − −

∂
E F∇ .                         (2.12) 

0̂
ˆ ˆ2 A

c
= × +H A Ω
Ω .                               (2.13) 

Expressions (2.12) and (2.13) reduce the first and the fourth Equation (2.9) to an identity. This follows di-
rectly from (2.1) when the second Equation (2.1) is satisfied identically, if the tensor of electromagnetic field is 
expressed via delayed potentials in the form [ ]2F Aµν µ ν= ∂ .  

We will express two other Maxwell equations from (2.9) via delayed potentials. We take into account correla-
tions (2.11) and kinematics identities ([16], (10.17), (10.34))  

ˆˆ0̂ ˆ ˆ[ ]

ˆ
ˆ

ˆ .
kl k l

F
y

Ω ≡ ∇
∂

∂
                               (10.17) 
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ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ\ˆ ˆ ˆ ˆ 0.a ca c a ca cbc b ab bc b ab
F F FΩ Ω Ω Ω Ω+ + + + Ω + ≡∇ ∇ ∇                    (10.34) 

which we will present in the vector form 

( )
0̂

2 0
с

γ

γ ξ

∂
− × =

∂
F

Ω
∇ , 0⋅ − ⋅ =F∇ Ω Ω .                      (2.14) 

Taking into account the Lawrence Conditions (2.6) after enough tiresome transformations we obtain 

( ) ( ) ( )ˆˆ ˆˆ0 0
ˆ ˆˆˆ ˆ0 0 0

2
*

ˆ2 0

ˆ1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 2ˆ ˆ 4π .

ak
a k

D DA A D A D A
c c c c

A
cc

ξ ξ

ρ

∂ ∂ + ⋅ + + ⋅ + ⋅ + ⋅ − − 
 ∂ ∂

Ω Ω  = + ⋅ × + 

AF A A F A F F

A

 ∇ ∇ ∇

∇

      (2.15) 

ˆ ˆ ˆ ˆ ˆˆˆ ˆˆ00 0
ˆˆ ˆ.0 0

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ0 0 0 00 0

ˆ ˆˆ 2ˆ ˆ ˆ ˆˆ 2

ˆ 22 2ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

k k k l kn n
l

k k
k l k k k l k
l l

A AADA A R A
c c

D AD A A F A D A A F A
c c c

ξ ξ

ξ ξ

    ∂ ∂     −∇ + ⋅ + + + Ω + ×
    ∂ ∂    

 ∂ ∂     = − + +∇ + − +∇ + − × × −         ∂ ∂ 

F A

F A

�
�


Ω

∇

∇ [ ]
ˆ0̂

ˆ
.kA

c
×F Ω

(2.16) 

In Formulas (2.15) and (2.16)  

2

2
ˆˆ

ˆ ˆ0̂
ˆ ˆkl

k l
γ

ξ
∂

= − ∇ ∇
∂

                                 (2.17) 

is the chronometrically invariant space-covariant D’Alembert operator and tensor ˆ ˆ
ˆ ˆˆ ˆ ˆ ˆ,

aq
bc ab cq

R Rγ=
� �

, where ˆˆ ˆ ˆ,ab cq
R
�

 
is the three-dimensional curvature tensor determined from ([16], (10.31)). 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ˆ ˆ ˆ ˆˆˆ ˆ ˆ, \ ]
2 2 .q a ac qa cqb c qbab c bc abq

R = Σ Σ +Ω Ω −Ω Ω − Ω Ω
�

                   (10.31) 

Derived equations are valid in arbitrary deformed NRF connected with moving charges forming the conti-
nuum. It is clear to solve equations in NRF in general form is difficult, however in some particular cases the ex-
perimentation in NRF is significantly simpler and more evident than in IRF.  

3. Stationary Criterion in NRF with Prescribed Law of Motion  
It is interesting to investigate the Maxwell equations in relativistic rigid NRF determined as 

ˆˆ ˆˆ
1 0

kl kl
D

c
Σ = − = .                                  (3.1) 

This results in the form of the Maxwell equations 

( ) ( )
2

0̂ *
ˆ ˆˆ ˆ 20 00 0

ˆ 4 2ˆ ˆ ˆ ˆ ˆ 4πA A A
cc

ρ
ξ ξ
∂ ∂ Ω Ω  + ⋅ + ⋅ − = + ⋅ ∇× + ∂ ∂

AF A F F A
�

 ∇ .           (3.2) 

[ ]

ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ0 0
ˆˆ ˆ.0 0

ˆ ˆˆ ˆ 0̂
ˆ ˆˆ 0 00

ˆ ˆˆ 2ˆ ˆ ˆˆ 2

ˆ2ˆ ˆ ˆˆ .

k k k l kn n
l

k kk k

A AAA R A
c

A
A F A

c

ξ ξ

ξ

    ∂ ∂     −∇ + ⋅ + + Ω + ×
    ∂ ∂    

∂     = − ∇ + − × × − ×    ∂

F A

F A F

�


Ω
∇

∇ Ω

                 (3.2a) 

Let us find out which properties a rigid NRF with “trapped” charges should have in order to the Maxwell sys-
tem permitted time independent solutions in it? (We consider that external fields are absent and the field is de-
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termined only by “trapped” charges.) Obviously the Maxwell equations can have stationary solutions relatively 
rigid NRF, if characteristics determining NRF do not explicitly depend on 0̂ξ  time. i.e., at zero tensor of de-
formation velocities (3.1) Conditions (3.3) have to be met: 

ˆˆ

0̂
0kl

ξ

∂Ω
=

∂
, ˆ

0̂
0

Fα

ξ
∂

=
∂

.                                  (3.3) 

In accordance with the identity ([16], (10.17)), (3.3) and equalities 0̂ 0F = , ˆ ˆ0 0
α

Ω =  we have 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ [ [ˆ ˆ ] ] ]0

ˆ ˆˆ 0ˆ b b b b
F F F

y α α αα

∂
Ω ≡ ∇ = ∂ = ∇ =

∂
� .                           (3.4) 

Whence  
ˆˆ

ˆ ˆ[ ]
0b

b
h h Fα
µ ν α∇ =� ,                                    (3.5) 

that gives  

0
F F
x x
µ ν
ν µ

∂ ∂
− =

∂ ∂
.                                    (3.6) 

Equality (3.6) determines Lorentz—covariant stationary condition of possible solutions of the Maxwell equa-
tions.  

Multiplying (3.6) by Vν  provided that 0µνΣ =  we obtain the equality  

0
F

F F V F
S
µ ν α

ν µ αµ

∂
+ − Ω =

∂
.                              (3.7) 

Let us introduce 4-vector of force g µ  determined with the equality  
2

.
2 d
3 d
e Fg F F V F
c S

µ
µ ν µ α µ

ν α
 

≡ + − Ω 
 

                           (3.8) 

and we name it as generalized force of radiation friction. In this equality e is the charge of the particle “trapped” 
in NRF (to simplify we consider only identical particles). 

For one charge moving progressively 0µνΩ =  and generalized force g µ  passes to usual braking force 
with the radiation [1]. If the electromagnetic field in NRF is stationary then 0g µ = . 

Let us find out what simplest NRF satisfy to stationary conditions formulated.  
a) Let us consider the rectilinear rigid in Born sense uniformly accelerated (for each fixed medium particle) 

continuum motion. As it has been showed [16] the progressive medium displacement obtained by means of the 
Möller transformation satisfies to such motion.  

For Möller transformation the law of motion has the form ([16], (2.11)) 

( ) ( ) ( )1 1 1 2
0 0 0, cosh cosh 1 ,x y T y a T c c a a T c = + −   

( ) ( )2 2 3 3 1 2 0
0 0 0, , 1 sinh , ,x y x y t c a a y c a T c y cT= = = + =                 (2.11) 

and Möller metric is expressed with the interval element ([16], (2.12)) 

( ) ( ) ( ) ( ) ( )2 2 2 222 1 2 2 1 2 3
0d d d1 d d ,S a y c c T y y y= + − − −                   (2.12) 

here with the parameter numbering the hyper surfaces orthogonal to world lines of the basis particles plays the 
time role T [3]. As in Möller transformations the space vectors connecting two any close Lagrange particles re-
main in the “physical” space, then the transition to the Möller NRF in accordance with the developed transition 
scheme one can realize by means of holonomic transformations (particular case of nonholonomic transforma- 

tions). However to generalize we obtain by means of formulas ([16], (10.2)) taking into account 0kV
y

ε

ε
∂Ψ

=
∂

 



S. A. Podosenov et al. 
 

 
816 

and 4-velocity 
0̂

V
µ

µ

ξ
∂Ψ

= Θ
∂

, 0̂ cTξ =  following transformation factors:  

ˆ ˆk k
h

y

µ
µ ∂Ψ
=
∂

, ˆ ˆ0 0
h V

µ
µ µ

ξ
∂Ψ

= Θ
∂

, 
ˆ

ˆ
k

k yh
xµ µ

∂
=
∂

 

0̂h Vµ µ= , 
1̂

0
2

1

1 a y
c

Θ =

+

, ˆˆ ˆˆˆ
kl kl

g δ= − , ˆ ˆ00
ˆ 1g = , 

1̂ 0
2

a
F

c
= Θ , 

ˆ ˆ2 3 0F F= = , ˆ ˆ

ˆ ln
ˆk k

F
y

∂ Θ
=

∂
.                         (3.9) 

We point out that the pseudoeuclidness of interval (3.9) (unlike Möller interval [16], (2.12)) is stipulated for 
the obvious equality 

( )2
0̂

2
2

d
d

ξ
=

Θ
s ,                                 (3.10) 

which is valid along each fixed world line of basis particles.  
As it has been shown [3] one can represent the field of 4-velocity of Möller basis in Minkowski space in Euler 

variables in the form  

1 0

21 2 2
0 0

2 21

a t
V

a x a tc
c c

=
 
+ − 

 

.                           (3.11) 

One can make sure with direct calculation that (3.11) satisfies to the stationary condition (3.6). Consequently, 
the Maxwell equations in such NRF permit the stationary solution.  

One can obtain stationary Maxwell equations in such NRF from Formulas (3.2), (3.2a) and (2.11). 

( )0̂ *
0̂

ˆ ˆ 4πA A ρ∆ + = −F∇ ,                            (3.12) 

( )ˆ ˆ ˆ  ∆ + ⋅ = × ×  A F A F A∇ ∇ .                        (3.12a) 

Lorentz Condition (2.6) for stationary solutions reduces to the form 
ˆ ˆ

ˆ ˆ
ˆ ˆ 0k k

k k
A F A+∇ − =

�
.                              (3.13) 

To analyze we use the identity ([16], (10.16)) 

( ) ( )( )ˆ ˆ
ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ0 ˆˆ ˆˆ

ˆˆ
ˆ

,
ˆ

mn
kl kl l l k ln ln km km k

g F F F
y

Σ +Ω ≡ Σ +Ω Σ +Ω +∇ −
∂

∂
                 (10.16) 

which for the case of rigid eddyless motions is equivalent to  

ˆ ˆ ˆ ˆ
ˆ

k l k l
F F F∇ ≡ .                                    (3.14) 

As for the Möller metric ˆ ˆ
ˆ

k k
∇ = ∇
�

 then comparing (3.13) and (3.14) we find the solution for the vector po-
tential ˆˆ kA  in the form  

ˆ ˆˆ k kA Fα= , constα = .                                (3.15) 

It follows from Correlations (2.13), (2.14) and Solution (3.15) that charges “trapped” in the rigid eddyless 



S. A. Podosenov et al. 
 

 
817 

NRF for which stationary Condition (3.6) are valid do not create a magnetic field in this system i.e. 

0=H .                                     (3.16) 

Let us consider the solution of Equation (3.2) for the particular case of the point charge located at the origin of 
NRF coordinates. Instead of the tetrad time component ˆ ˆ0 0Â h Vµ µ=  from (3.9) we introduce the affine time 
component ˆ ˆ0 0

ˆ ˆA A′ = Θ  for which Equation (3.12) will reduce to the form 

( ) ( ) ( )
2

ˆ ˆ ˆˆ ˆ 1 2 30 0
ˆˆ ˆ ˆ

ˆ ˆ
4π

kk k k

A A
F Q y y y

y y y
δ δ δ

′ ′∂ ∂
+ = −

∂ ∂ ∂
.                     (3.16a) 

Solution of Equation (3.16a) in accompanying Möller and Whittaker systems has been obtained by Ts. I. 
Gutsunaev [18]. For our case we have  

( )
( )

2ˆ2 1 2 4 2
0 00

ˆ 2 1 20 22ˆ2 1 2 4 2 4 2 2
0 0 0

ˆ

/ 4

y c a c aQa
A

c
y c a c a c a

ρ

ρ ρ

+ + +
′ =

   + + − +     

,                (3.16b) 

where ( ) ( )2 2ˆ ˆ2 2 3y yρ = + .  

Transition to IRF in accordance with our method we realize by the rule  

ˆ ˆˆ 0 1
ˆ 1̂

ˆ ˆ ˆ .A h A A A A
y

µ
µ µ α µ

α
∂Ψ

= = +
∂

 

We determine constant α  in (3.15) from the correspondence principle, this constant is equal to the charge 
value –Q.  

As a result of calculations using the motion law ([16], (2.11)) taking into account that the field of 4-velocities 
V1 in Euler variables has the form (3.11) and easily examined expressions  

2 21̂ 1 2 2
0 0 0

2 2 21 1
a y a x a t
c c c

   
+ = + −       

,                           (3.17) 

we obtain 

( )

22 2 4
1 2 1 2 2

2
0 0 00

22 1 2 2 22
1 2 2 0

0

c c cx x c t
a a a ctA Q

x c a c tcx c t R
a

ρ
       + + + − +   
       = − 

   + − 
 + −  
     

, 

( )
( ) ( )

22 4
2 1 2 2

2 1 20 0 2 21 2 2 30
22 1 2 2 22

1 2 2 0

0

,

c cct x c t
a a x c a

A Q x x
x c a c tcx c t R

a

ρ

ρ

     + + − + 
    +  = − = + 

   + − 
 + −  
     

, 

( )
222 1 2 2 2 4 2 2 4 2

0 0 04R x c a c t c a c aρ ρ = + + − − +  
.                 (3.18) 

Firstly Solution (3.18) was obtained by Born [19] and later by means of retarded potentials by Schott [20]. 
Solution (3.18) also was obtained by Gutsunaev by means of the transition to Möller NRF and inverse transfor-
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mation to IRF.  
b) It is easy to check that the classic uniformly rotating RF also satisfies to the stationary Condition (3.6). 

Consequently for the charge system or for the one charge “trapped” to the uniformly rotating disk, i.e., with one 
side always “faced” to the disk centre, the generated force of the radiation friction (3.8) 0g µ = . So Maxwell 
equations in such system permit the static solution. 

The stationary criterion permits to reduce the Maxwell equations to the solution of one equation for the com-
plex potential. This follows from the fact that for the stationary case vector Maxwell equations from (2.9) are 
invariant relatively the substitution ↔E H . So one can find H  in two forms  

0̂
ˆ ˆ2 A

c
ψ ψ= × + = − −H A FΩ

∇ ∇ ,                         (3.19) 

and E  vector for the stationary case will have the form  

φ φ= − −E F∇ , 0̂Âφ ≡ .                             (3.20) 

Using Identities (2.14), the Expressions (3.19) and (3.20) we find from (2.9) the expressions for scalar Max-
well equations  

2 0
с
φψ ψ ∆ + ⋅ + = 

 
F Ω

∇ ,                            (3.21) 

*2 4π
с
ψφ φ ρ ∆ + ⋅ − = − 

 
F Ω

∇ .                          (3.22) 

Let us introduce the complex potential Φ  in accordance with the determination 

iφ ψΦ = + , 2 1i = − .                              (3.23) 

Summarizing Equation (3.21) multiplied by i up Equation (3.22) we obtain 

*2 4πi
c

ρΦ ∆Φ + ⋅ Φ + = − 
 

F Ω
∇ .                         (3.24) 

Equation (3.24) permits to find fields from charges “trapped” in relativistic rigid moving bodies. 
It should be pointed out that from commutation correlations ([16], (10.10)) and nonholonomic objects ([16], 

(10.11)) 
2 2

ˆ
ˆˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ
.ˆˆ ˆ ˆ ˆ

2
yy

C
y y y

γ
αβ γβ α α β

∂ ∂ ∂
− =

∂∂ ∂ ∂ ∂
                         (10.10) 

ˆˆ ˆ0 0
ˆˆ ˆˆ ˆ ˆˆ ˆ0

\
ˆ, 2 , 0k

kl kl k k
C C F C

αβ
= Ω = =                           (10.11) 

it follows that for stationary solutions one can substitute directional derivatives 
ˆˆ ˆ ky∂ ∂  by usual partial deriva-

tives k̂y∂ ∂ .  
Let us consider the example of the stationary field calculation in a classic rigid rotating frame of reference. 

Let the charge or the charge system is trapped in this NRF. The Maxwell Equation (2.4) for this case are reduced 
to the form 

( ) ( )ˆˆ ˆˆ ˆˆ ˆˆ
ˆ ˆ ˆ ˆ0 0

ˆ ˆˆ ˆ2 2 0kl kl kl kl
l l

F A F F A∇ + Ω − + Ω =
�

, 

( ) ( )ˆ ˆ ˆˆ ˆˆ0̂ *
ˆ ˆ ˆ ˆ ˆ0 0

ˆ ˆˆ ˆ 2 4πk k kl kl
k k l

F F A F A ρ∇ + +Ω + Ω = −
�

.                     (3.25) 

One can write down the first Equation (3.25) in the form  
ˆˆ ˆˆ

ˆ ˆ
kl kl

l l
F F F∇ =
� � � , ( )ˆˆ ˆˆ ˆˆ

0̂
ˆˆ 2kl kl klF F A= + Ω� .                        (3.26) 
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To solve (3.26) we use identity ([16], (10.33)) 

ˆ ˆ ˆ ˆˆ ˆ[ [ˆ ˆ] ] ˆ
ˆ ˆ+∇ Σ ∇ Ω = Ωa a cb ac cb b

F ,                             (10.33) 

it follows from this identity for rigid motions  

( )ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ

1 ˆ ˆ
2 a ac cbc b ab

F∇ Ω −∇ Ω = −Ω ,                            (3.27) 

this is equivalent to  
ˆˆ ˆˆ

ˆ ˆ
ˆ 2kl kl

l l
F∇ Ω = Ω .                                 (3.28) 

Comparison (3.26) and (3.28) permits to find Solution (3.26) in the form 
ˆˆ ˆˆkl klF ε= Ω� .                                   (3.29) 

Substitution (3.29) into (3.26) results in equality 

ˆˆ
ˆˆ

ˆ ln 0
ˆ

kl
ll

F
y
ε ∂
+ Ω =  ∂ 

,                               (3.30) 

in particular, it follows from this equality 

ˆˆ

ˆ ln
ˆ ll

F
y
ε∂
= −

∂
.                                  (3.31) 

To solve Equation (3.31) the fulfillment of integrability condition is necessary. As follows from ([16], 
(10.17)) the integrability condition will be satisfied in the case of rigid stationary motions. In particular, the 
classic rigid rotating RF satisfies to this condition. For this RF 

ˆˆ ˆ ˆˆ [ ]0

ˆ ˆ0 ˆ kl k l
F

y
∂

= Ω ≡ ∇
∂

.                              (3.32) 

Let us consider in more detail the transition from IRF to classic rigid rotating NRF. We consider the IRF in-
terval element in cylindrical coordinates  

2 2 2 2 2 2 2d d d d dS c t r r zφ′ ′ ′ ′= − − − ,                         (3.33) 

For which metric tensor components gµν  and coordinates have the form 

00 1g = , 11 11 1g γ− = = , 2
22 22g rγ ′− = = , 33 33 1g γ− = = , 

1̂y r= , 2̂y φ= , 3̂y z= , 0̂y cτ= , 

1x r′= , 2x φ′= , 3x z′= , 0x cτ= . 

We assign in usual form the transition to the rotating NRF and inversely to IRF 

ˆ ˆ ˆ ˆ2 2 0 2 2 0 1 1 3 3. , , ,  x y x y x x x y x y
c c
Ω Ω

= + = − = =                     (3.34) 

The field of 4-velocities V µ  of the rotating NRF basis relatively IRF has the form 
2

0 2 0 0
0 22

1 , , ,
1

rV V V V V V
c cβ

Ω Ω
= = = = −

−
 

3 1
3 10, 0, .V V V V r

c
β= = = = ≡

Ω                           (3.34a) 
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We find Lame coefficients in accordance with the specified velocity law and coordinate transformations  
ˆ

ˆˆ ˆ ˆ ˆ ˆ0 1 1 3 3, , , ,
k

k yh V h h h
xµ µ µ µ µ µ µµ δ δ∂

= = = =
∂

 

ˆ ˆ ˆ2 2 0 2 2
ˆ ˆ ˆ20

1, , ,
1k k

h h V h
c

µ µ
µ µ µδ δ δ

β
Ω

= − = =
−

 

( )
2

1 1 3 3 0 2
ˆ ˆˆ 2ˆ ˆ ˆ, , .

1k k kk k k

rh h h
c

δ δ δ
β

Ω
= = =

−
                          (3.35) 

Using obtained Lame coefficients we calculate metric coefficients in the rotating NRF  
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 211 11ˆ 22ˆ 22
ˆ ˆˆ ˆ, 1, ,

1
ˆ rg h h gg gµ
α µ ββ

ν
ν α γ γ

β
= − = = − = =

−
 

ˆ ˆ ˆ ˆ ˆ ˆ11 11 00
ˆ ˆ ˆ ˆ ˆ ˆ11 11 00

ˆ ˆˆ ˆ ˆ ˆ1, 1, 1, 1,g g g gγ γ− = = = − = = =  

( )ˆ ˆ ˆ ˆ22 22 2 2ˆˆ 1 .g rγ β−− = = −                               (3.36) 

We point out that the metric obtained differs from the metric for relative interval ([16], (10.72)) 
2 2 2 2

2 2 2 2 2
2 2 2

2

dd 1 d d d
1

ϕ Ω
= − − − − 

Ω  −

� r rS c t r z
c r

c

                       (10.72) 

with ˆ ˆ00ĝ  coefficient which in our case is equal to unit. This means that we select the proper time as the NRF 
time, and in ([16], (10.72)) the IRF time was used in NRF. The obtained metric using nonholonomic transforma-
tion is strongly differed from the standard metric ([16], (10.73)). 

2 2
2 2 2 2 2 2 2 2

2d 1 d 2 d d d d drS c t r t z r r
c

ϕ ϕ
 Ω

= − − Ω − − − 
 

                   (10.73) 

As it was pointed out earlier for stationary processes and stationary fields directional derivatives commutate 
that is the result of commutation correlations ([16], (10.13)). 

2 2

ˆ ˆ ˆˆˆ ˆ 0̂

ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆ

2 ,
k l l lkk yy y y y

−
∂ ∂ ∂

∂∂ ∂ ∂
=

∂
Ω  

2 2

ˆ ˆ ˆˆ ˆ 00 0 ˆ

ˆ ˆ ˆ
.

ˆˆ ˆ ˆ ˆk k k yy y y y
F∂ ∂ ∂

∂
=

∂
−

∂ ∂ ∂
                            (10.13) 

So in differentiation one can consider these derivatives as usual partial ones. 
On the assumption of made remarks we try to integrate system (3.25). The first equation of this system we 

nearly solved. It is necessary to determine only ( )rε  function. In order to determine this function we must 
know 4-accelerations F µ  of the rotating RF. Let us calculate beforehand Christophel symbols in the rotating 
NRF in accordance with formula ([16], (10.44)).  

( )ˆˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ 1 ˆ ˆ ˆˆ ˆ ˆ ˆˆ 2ˆ
,g g g gσγ

α γα χβγ β αβ

σ

αβ

   = ∂ + ∂ − ∂ 
  

 

ˆ ˆ

ˆˆ .ˆyα α

∂
∂

≡∂                                  (10.44) 

ˆ ˆ ˆˆ 0 00
ˆ ˆˆˆ ˆ ˆ ˆ ˆ00 00 0

0,
k

k kl

             = =       
             

=


=  
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( )
ˆ ˆ22

22

ˆ1 ,
2

1̂ 1
ˆ ˆ22 1r

γ

β

   = − 
 

=
∂ −

∂


−  

( )
2̂

2

ˆ ˆ ˆ2 22
ˆ ˆ1 ˆ

2
2 1 .
ˆ ˆ 112 r r

γ
γ

β

   = 
−

∂

∂
=


                            (3.37) 

In IRF in cylindrical coordinates Christophel symbols will obtain from Formula (3.37) when 0β = . Using 
this property we calculate 4-acceleration F µ  of NRF basis relatively IRF. As the angular velocity is constant 
and the velocity vector and the acceleration vector are orthogonal in each point differed from zero, the only 
component of 4-acceleration F µ will be equivalent to the centripetal acceleration. Obviously that 

( )
1 1 2

1 2 2 1
12 2

1d , .
22d d 1

DV V rF V V F F
s s c β

  Ω
= = + = − = − 

− 
                  (3.38) 

The component differed from zero relatively rotating NRF will be 

( )
2

ˆ ˆ 11 1 2 2
.

1
rF h F F

c
µ

µ β
Ω

= = =
−

                            (3.39) 

This permits to integrate Equation (3.31)  

( )
2

2
32 2

ln d , 1 ,
1

r r c
c

ε ε β
β

Ω
= − = −

−∫                         (3.40) 

where 3c  is the arbitrary constant which we will determine hereinafter. Thus, the solution of Equation (3.26) is 
reduced to the form 

ˆ
3

ˆ ˆˆ 21kl klF c β= − Ω�                                   (3.41) 

We present the second Equation (3.25) in the form  

( )ˆ ˆ ˆˆ0̂ 2 *
ˆ ˆˆ0ˆ 3

ˆˆ 1 4π ,k k kl
klk

F F A c β ρ+ + − Ω Ω = −∇
�

                       (3.42) 

which after the use of the equality  

( )
2

ˆˆ
ˆˆ 22 2

2 ,
1

kl
kl

r

β

β
Ω Ω =

−
                                (3.43) 

and the opening of covariant derivatives by means of calculated Christophel symbols after simple but exhausting 
transformations reduce to one equation of the form  

( )
2 2 2

2 2

22 2 *
3

2 2 222 2
0

21 1 1 4π ,
1 1

c
r rr r z Vr

ββ β ρ

βφ β
− +

+ + + + = −
− −

∂ Ψ ∂ Ψ ∂ Ψ ∂Ψ
∂∂ ∂ ∂

 

0 00̂ 2

1, .
1

ˆ V VA
β

= Ψ =
−

                               (3.44) 

Equation (3.44) permits in principle to solve any problems for the system of charges “trapped” to the classical 
rigid uniformly rotating RF, however in order to prove the operating capacity of proposed method we will solve 
the simplest problem rotating a long hollow thin-walled dielectric cylinder with the electrostatic charge on the 
wall around the axis. It is clear that in accordance with the nature of magnetic field distribution this problem 
should be equivalent to the problem of magnetic field of infinite solenoid with the continuous winding. Direct 
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current in solenoid wraps is equivalent to the convective current of the rotating cylinder. We shall find electro-
magnetic field outside of these charges both outside of and inside the cylinder.  

Equation (3.44) for this considered problem reduces to the form  

( )
22

3
2 22 2

21 1 , .
1 1

d
d

c
P P

r r
P
r r

ββ
β β

+ ∂Ψ
+ = − =

∂− −
                       (3.45) 

It is easy to check up by direct substitution that the sum of the general solution of the homogeneous Equation 
(3.45) and the partial solution of the inhomogeneous equation is represented in the form 

( )2
1 3

1
,

c c
P

r

β

β

−
= −                                 (3.46) 

where 1c  is the arbitrary constant which will be determined hereinafter. It is possibly to make sure that 

0̂
ˆ ˆ ˆ ˆ0 0 1 01

ˆ
ˆ .

A
V A F F

rr
∂

− = − +
∂

=
∂

Ψ
∂

�                             (3.47) 

Let us calculate the electromagnetic field tensor Fµν  of the rotating hollow cylinder in the IRF cylindrical 
coordinates 

( ) ( )

ˆ ˆ0 0ˆ ˆ ˆ
ˆ ˆˆ ˆ0 0

ˆ 1 1

ˆ ˆˆ
ˆ ˆˆ

0
0̂

ˆ

ˆ
ˆ .  

b k
l l

l l l
b kl

F h h h h h hF F F Fh h

A
V V A V F V F

r

µν µ ν µ ν µ ν ν µ
α

α

µν ν µ µ ν µ ν ν µε δ δ

= = + +

∂
= Ω + − + −

∂

� � � �

                 (3.48) 

In the last expression only 01 10F F= −  and 12 21F F= −  components of electromagnetic field tensor will be 
differed from zero, for which we have: 

0̂
ˆ01 01 0 0 1 3 10

ˆ 1ˆ ,
A

F V A V F c c
r c

ε
β

 ∂ Ω  = Ω − − = −  ∂   
                       (3.49) 

02 12 12 0 .V V
r

F c rε= Ω = −
∂Ψ

+
∂

                              (3.50) 

We point out that the last expressions for the field tensor are assigned in Minkowski space cylindrical coordi-
nates. To compare with the standard record for the field tensor it is conveniently to transit to the Cartesian coor-
dinates. As 1 cosx r ϕ= , 2 sinx r ϕ= , 3x z=  the 12F ′  component in the Cartesian coordinates is connected 
with the 12F  component in cylindrical coordinates in accordance with the law of three-dimensional tensors 
transformation  

1 2 2 1

12 21 1212 .x x x xF F F
r r

F r
ϕ ϕ

∂ ∂ ∂ ∂′ ′ ′+
∂

=
∂ ∂ ∂

=                          (3.51) 

But in IRF Cartesian coordinates in accordance with the determination [1] 12 zF H′ = − . Hence and from (3.50) 
we have the expression for magnetic field 

1.zH c=                                     (3.52) 

Let us determine 1c  and 3c  constants. We will consider the solution for electromagnetic field inside the cy-
linder shell. Electric field 01 rF E=  inside the cylinder in IFR should be equal to zero. Whence we find from 
(3.49) equating this expression to zero  

1 3 ,c
c

c=
Ω                                   (3.53) 

3 .zH
c

c=
Ω                                   (3.54) 
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One can determine 3c  constant from the external solution for electric field which (when the rotation is ab-
sent) from the correspondence principle should coincide with the static field outside of the charged cylinder. 
Whence when 1 0c =  we have 

3
3

2 , 2 ,r
c

E c
r r
χ χ= = =                               (3.55) 

where χ  is the charge density per unit of the cylinder length. Thus, we obtain the expected result. Electric field 
inside the cylinder is equal to zero, and magnetic field is constant, differed from zero and it is equal to  

2 cons when   t, , 0zH r R
c
χΩ

= = = <E                        (3.56) 

where R is the cylinder radius. Outside of the cylinder 1 0c = , magnetic field is equal to zero, and electric field 
is differed from zero.  

  w2 , 0 .hen  rE r R
r
χ

= = >H                           (3.57) 

Let us calculate magnetic field value through the convection current per length unit. Obviously that jTχ = , 
where j is the convection current through the length unit and T is the period of the cylinder rotation. Substituting 
in (3.56) we find  

4π const when , ,  z
jH r R

c
= = <                          (3.58) 

that exactly coincides with the field inside the infinite ideal solenoid. The detailed calculation carried out is 
some test problem of the legitimacy of the constructed nonholonomic apparatus of electrodynamic equations 
transformation from IRF into NRF and vice versa. Calculating 1c  and 3c  constants values we return to the 
analysis of electromagnetic field of the rotating hollow cylinder from the standpoint of the observer connected 
with this cylinder. Obviously that the correlation between Constants (3.53) will be correct inside the cylinder 
both in IRF and in NRF, however this does not result in zero electric field inside the cylinder. Electric field in-
side the cylinder in NRF is differed from zero and it changes in accordance with the law 

2
0̂

ˆ ˆ ˆ ˆ01 0 1 2
when

ˆ 2 1ˆ , .
1

    r

A
F A F r R

r r
E χβ

β

∂
= = − + = <

∂ −
��                  (3.59) 

For small β  the last correlation reduces to the form  
2 2

ˆ ˆ 201 when  2   2 , .r
rF r R

r c
E χβ χΩ

= = = <� �                       (3.60) 

One can see from the last formula that in NRF electric field at the centre of the cylinder is equal to zero and 
further it linearly increases reaching the maximum on the radius of the cylinder, however, the field at the inter-
nal boundary is a value of the order of 2β  from the field at the external boundary. Outside of the cylinder in 
NRF (as in IRF) 1 0с = . So we obtain the expression for electric field  

ˆ ˆ01 2

2 1 when  ,  .
1

 rE F r R
r
χ

β
= = >

−
� �                         (3.61) 

It follows from the last correlation that the formula is applied for the finite distances, for which 1β < . This 
difficulty is typical for the classic rotating RF. In our description of the rotating rigid RF presented earlier this 
difficulty is absent.  

Let us investigate the magnetic field behavior in NRF. In accordance with (3.41) 

3ˆˆ ˆˆ
21 .

kl kl
F c β= − Ω�                               (3.62) 

ˆ ˆ12Ω  is the component of the angular velocity tensor in NRF differed from zero, for this component from 
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(3.43) we have 

( )
ˆ ˆ ˆ ˆ11 22

ˆ ˆ ˆ ˆ12 2 22 21

2

.ˆ
1r

γ γ β

β−
Ω Ω =                           (3.63) 

Using (3.36) and selecting the negative root for ˆ ˆ12Ω  we find  

( )
3 2

2 2
ˆ ˆ ˆ ˆ 312 12, .

1
1

F cβ β
β

β
Ω = −

−
−

= − �                        (3.64) 

Inside and outside of the cylinder the constant 3 2с χ= . We point out that in NRF the magnetic field is dif-
fered from zero both inside and outside of the cylinder. The physical sense of this is connected with the cir-
cumstance that magnetic field in NRF is determined with the tensor of the angle velocity of the NRF basis. This 
tensor is differed from zero both inside and outside of the cylinder. Magnetic field in IRF is determined by the 
convection currents of the rotating cylinder. It follows from the law determining the magnetic field in accor-
dance with the specified current that magnetic field is present only inside the cylinder. In the rotating NRF the 
convection current is identically equal to zero and magnetic field is differed from zero in all space.  

Tetrad components of the field tensor (but not affine ones) have a physical sense. As metric (3.36) is ortho-
gonal then to construct the tetrad field one can superpose the vectors of ortho bench mark αe  and the vectors of 
the affine bench mark, and the tetrad field can be written in the form  

( )
( ), ,e e g

g

µ
αµ αα
µ µ ααα

αα

δ
δ= =                             (3.65) 

where the summation on α  axis is absent. Tetrad components of these tensors coincide with “physical” ones. 
For example, for the space component of the field tensor differed from zero and connected with magnetic field 
we have 

( )( )
2

2 1ˆ ˆ1 2 , .
1

when  0  z
cF H r

c
χ

β

Ω
= − = − < <

Ω−
� �                     (3.66) 

We point out that the affine field component ˆ ˆ01rE F=� �  automatically coincides with the tetrad one in accor-
dance with the metric (3.36).  

Let us clear up the contribution to “absolute” magnetic field of its “relative” and “carry” constituents. From 
(3.26) and (3.29) we find the expression for the relative tensor of magnetic field  

( )ˆˆ ˆˆ ˆˆ ˆˆ0ˆ 0̂
ˆ2 ˆˆ .2

kl kl kl kl
F F A Aε= − Ω = − Ω�                           (3.67) 

As ˆ 00Â V= Ψ  then to compute ˆˆ
ˆ
kl

F  the Ψ  calculation both in internal and in external cylinder are as is 
sufficient. Considering that at the centre of the cylinder at zero electric intensity ( )0 0Ψ =  and that at the cy-
linder surface Ψ  function is continuous, integrating for two different areas Equation (3.46) of the form  

( )2
1 3

1d ,
d

c c
r r

β

β

−Ψ
= −                                (3.68) 

we find 
2 when, ,  r RχβΨ = − <                               (3.69) 

0
2
0 w  2 ln , ,h n  .e  r Rr R

R c
χ β β  Ω Ψ = − + > =    

                     (3.70) 

This gives for internal solution  

( )
ˆ ˆ 212 2

2 , ,
1

ˆ when  F r Rχβ

β
= − <

−
                            (3.71) 
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and for external solution  

( )

2
0

ˆ ˆ 212 2

2 2l
when,  

n
ˆ . 

1

r
R

F r R
χβ β

β

  +     = − >
−

                         (3.72) 

Both for inertial frames of reference and for noninertial ones one can constitute invariant values being con-
stant when transforming from IRF to NRF and vice versa. It is easy to determine the form of invariants from 
following equalities 

ˆˆ
ˆˆ .F F iF nF vµν

µν
αβ

αβ
= =� �                                 (3.73) 

In particular for our problem of the rotating cylinder Expression (3.73) is equivalent to equality 

( ) ( ) ( ) ( ) ( ) ( )
2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2211 22 00 1 2 2

ˆ ˆ ˆ ˆ 1
1 11 22 00 11

2 0112 01 .ˆ ˆ ˆ ˆ z rF g g F g g F g F g g Eg H= =− − −� �              (3.74) 

One can make sure by direct test using the calculations made above for fields in IRF and NRF that for the ex-
ternal solution the invariant value is equal to ( )2

rE−  and internal solution corresponds to invariant ( )2
zH . 

Concerning the second known invariant corresponding to scalar product of electric and magnetic fields then be-
cause of orthogonality of these fields this invariant is identically equal to zero. Fulfillment of Equalities (3.74) 
also is the verification of the made calculations when determining the electromagnetic field.  

Let us analyze obtained results. The nature of electromagnetic field of rotating hollow charged cylinder in IRF 
results in expected result namely: magnetic field inside the cylinder is constant and it coincides with the field of 
corresponding solenoid, outside of the cylinder magnetic field is absent. Electric field inside the cylinder is 
equal to zero and electric field outside of the cylinder coincides with the field of the charged cylinder being at 
rest.  

The result of calculations of electromagnetic field in NRF is unexpected: usually one considers that in magni-
tostatics magnetic field is stipulated for an electric current. As the charged cylinder in NRF is being at rest then 
the current in this system is identically equal to zero. However, magnetic field in NRF is differed from zero both 
inside the cylinder and outside of it. The presence of almost constant magnetic field outside of the cylinder (in 
the real case in Formula (3.66) one can neglect 2β  as compared with the unit) and inside the cylinder coincid-
ing with magnetic field in IRF inside the cylinder (3.56) at first thought is enough strange. However, the rotating 
system is noninertial with other physical laws then in IRF. Appearance of magnetic field in NRF inside the cy-
linder and outside of it is stipulated for the rotation which is absolute (3.62). “Relativity of the rotation” does not 
exist [21]. The second NRF surprise is the appearance of electric field differed from zero inside the cylinder. In 
accordance with (3.59) this field is the second-order term infinitesimal 2β  as compared with the external field 
(3.61). However, principle existence of the field inside the infinite charged hollow cylinder vanishing at the axis 
indicates that not only electric charges are the source of electric field in NRF. This follows from one of Maxwell 
Equation (2.9) in NRF, in accordance with this equation  

*2 4π
c

ρ= ⋅⋅ +E H∇ Ω  

the scalar product of vector of angular velocity and vector of magnetic field can be the source of electric field.  
Let us compare obtained results and results of other works. In [22] [23] the expression for transformation of 

electromagnetic fields is presented. This transformation has the form  

( )
( )

( ) ( )
2

2 ,
1c c
γγ

γ
× × 

= − − × ⋅ × ′
+ 

r H
E E r E r

ω
ω ω                   (3.75) 

( )
( )

( ) ( )
2

2 ,
1c c
γγ

γ
× × 

= + − × ⋅ × ′
+ 

r E
H H r H r

ω
ω ω  

2
.1

1
γ

β
≡

−
                                  (3.76) 
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In Formulas (3.75) and (3.76) the primed values relate to the rotating NRF and non-primed values relate to 
IRF. For our problem of rotating charged hollow cylinder the last terms in presented formulas disappear as the 
fields of RF velocities × rω  are orthogonal to the E  and H  fields both inside and outside of the cylinder. 
One can show that accurate within a sign selection of the vector of angular velocity ω  obtained field values for 
particular case of rotating hollow charged cylinder coincide with similar values [22] [23].  

From the view point of rotating RF the presence of electric field inside the cylinder should result in radial 
movement of the charge being at rest in IRF inside the cylinder cavity. However this is not correct.  

It is clear from obtained solution from the IRF view point that inside the cylinder electric field is absent and 
relatively to magnetic field the test charge being at rest in IRF inside the cavity is motionless. So from the IRF 
view point there are no any forces acting on the test charge inside the rotating charged cylinder. The situation 
with the test charge is equivalent to the placing of this charge inside the solenoid when the charge is being at rest 
relatively the solenoid.  

From the view point of the observer locating at the rotating cylinder the charge being at rest in IRF will move 
relatively NRF on the circle with radius r with the velocity r−Ω  inversely to the rotating disk. Now it is im-
portant to clear up how the radial component of external force from the side of electromagnetic field from NRF 
view point changes if from IRF view point it was equal to zero. In non-relativistic mechanics [24] the equation 
of motion of material point relatively uniformly rotating frame of reference has the form 

[ ] [ ]d 2 ,
d

m m m
t
= + +   

v F v rΩ Ω Ω                             (3.77) 

where v  is the relative velocity; F  is the force acting on the particle from the side of electromagnetic field. 
If inside the cavity the particle is being at rest relatively IRF then [ ]= −v rΩ . Substitution of last correlation to 
(3.77) results in the correlation 

0,=F                                        (3.78) 

which is equivalent to the circumstance that the sum of the Coriolis force and the centrifugal one stipulates for 
the relative centripetal acceleration. The F  force from the side of electromagnetic field on the test particle in 
the cylinder cavity consists of the sum of the force from the side of electric field (3.59) and the force from the 
side of magnetic field (3.66). Let the test charge q being at rest in the cavity in IRF is positive and the cylinder is 
charged positively too. Then obviously that the force from the side of electric field is directed on the radius from 
the centre and the force from the side of magnetic field is directed on the radius to the centre. The summation 
forms  

2

2 2

2 1 2 1 0.
1 1

r z
v vF q E H q
c r c c

χβ χ

β β

 Ω   = − = − =     − − 

� �                  (3.79) 

Thus, the absence of the particle radial motion is the invariant factor both from IRF and from NRF. We point 
out that the last formula is relativistic.  

4. Comparison of Electromagnetic Fields in Möller’s NRF and in NRF in the Space  
of Constant Curvature. Discussion 

Electrodynamic equations in NRF with specified structure outwardly do not differ from electrodynamic equa-
tions when the gravitational field is present [1], where metric coefficients are determined from ([16], (2.18)).  

( ) ( ) ( ) ( )
1 2 2 2 22 0 1 2 30

2
2d exp d d .d da yS y y y y

c
−

 
= − − 

 
                    (2.18) 

The Maxwell equations for NRF with specified structure and Lorentz conditions will have the form [1] 

( ) ( )1 4π 1, 0.jgF g A
cy yg g

µ
µν ν

ν ν

∂ ∂
− = − − =

∂ ∂− −
                     (4.1) 

So we present only simplest correlations on the basis of the concrete form of the metric ([16], (2.18)). For 
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example we consider one of the “eternal problems” [25] concerning the field when the charge motion is un-
iformly accelerated. From (4.1) and metric ([16], (2.18)) we find the solution from Lorentz conditions 

( )1 1 2 3 0
2exp , 0, . 

a
A Qa ay A A a

c
= − = = ≡                          (4.2) 

For the potential of the point charge 0A  trapped to the origin of NRF coordinates when the Lorentz condi-
tions are satisfied the static Maxwell equations are reduced to the form  

2 2

2 2 0
00 000 0 0

1 1 2 3

1 4π .
A A A jg g g

cy yg y y

  ∂ ∂ ∂∂
− + + = −    ∂ ∂− ∂ ∂   

                   (4.3) 

or after simplifications  

( ) ( ) ( )1 1 2 30
0 1 4π e .ayAA a Q y y y

y
δδ δ∂

∆ − = −
∂

                         (4.4) 

We find the Solution (4.4) in the form 

( ) ( )1 2 3 1
0 , , exp , . 

2
aA u y y y yλ λ= =                             (4.5) 

Whereupon equation for u will reduce to the form 

( ) ( ) ( )
2 1

1 2 34π exp ,
4 2
a ayu u Q y y yδ δ δ

 
∆ − = −  

 
                       (4.6) 

and its solution will be 

exp .
2

Q aru
r

 = − 
 

                                 (4.7) 

We point out though the space ([16], (2.18)) is Riemannian but its space section is Euclidian in which the ra-
dius-vector exists. It follows from the considered material that the solution of Equation (4.4) has the form 

( )0
0 2   

1 cos
exp .  

2
a rQA

r c
θ−  = − 

  
                           (4.8) 

For electric intensity E  we have  

( )0 0
2 2 2

1 cos
exp ,

2
  

2
a r a rQ

r rr c c
θ−     = − + −         

r rE i                    (4.9) 

where r is three-dimensional (Euclidian) distance from the origin of coordinates coinciding with the charge to 
the observation point; θ  is the angle between the radius—vector r  and i , 0 0=i a a .  

For the convenience of the transformations between RF we rewrite the solutions in the tensor form. In accor-
dance with (4.9) 0 0k kF F= −  field tensor components differed from zero have the form 

( ) ( )0 10
0 2 2 2

1 cos
exp ,

2 2k k k k

a r a rQF n n
r c c

θ
δ

−   = − + −      
                 (4.10) 

kn  is the unit vector along r in three-dimensional space with the metric klδ .  
For space components of electromagnetic field tensor klF  from (4.2) we have 

0.klF =                                    (4.11) 

This means that in NRF magnetic field is absent. As it is known [1], tensor of pulse-energy Tµν  of electro-
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magnetic field in curvilinear coordinates can be presented in the form 

1 1 ,
4 4

 
π

T F F F F gβ βγ
µν µβ ν βγ µν

 = − + 
 

                      (4.11a) 

It follows from ([16], (2.18), (4.10), (4.11)) that the Pointing vector 0k kS cT=  

0,kS =                                    (4.12) 

that means the absence of the radiation in NRF. The transition to quasi-IRF is presented in accordance with the 
rules of the section 4, and it results in the law of motion from the correlations ([16], (3.5)) and ([16], (3.6)).  

( ) ( )
1 2

2 1 1 2
0 0

0

d tan , ln cos .
d
y ca S c y x a S c
S a
= − = +                       (3.5) 

( )
( ) ( ) ( )

1 20 2
0 0 2 1 2

0 02 2
00

expd , tan exp .
d cos

a x cy cy a S c a x c
S aa S c

−
= = −                   (3.6) 

( )
2

1 1 2
0

0

ln cos ,cy x a S c
a

= +  

( ) ( )
2

0 2 1 2
0 0

0

tan exp .cy a S c a x c
a

= −                          (4.13) 

From (4.13) in accordance with the usual rules of tensor transformations we have 

.y yF F
x x

µ

µνα β

ν

αβ
∂ ∂

=
∂ ∂

�                                (4.14) 

From whence we find 

( )
( ) ( )

1 2
0 2 0 2 1

0 0 0 012 0 2
0

exp
sin ,

cosp p p

a x c
F F a x c F

a x c
δ

−
= − 

 
�                   (4.15) 

( ) ( )1 2 0 2 1 1
0 0 0 0exp tan .kl l k k lF a x c a x c F Fδ δ= − −  

�                   (4.16) 

The transition to the standard coordinates is realized in accordance with the rule 

* ,  x xF F
X X

µ ν

αβ µνα β

∂ ∂
=
∂ ∂

�                               (4.17) 

2 22
0 0

2
0

arccos exp 1 1 ,
a Tcx

a c

  
  = − +

    
                        (4.18) 

where in accordance with ([16], (6.1)) 

2 2
0

2
0

arccos exp 1 1 .
a Tct

a c

  
  = − +

    
                          (6.1) 

we convert only t time coordinate expressing it via the T time of the Minkowski space and leaving constant 
space coordinates, i.e. 1 1 2 2 3 3, ,x X x X x X= = = . As a result we obtain 

* *
0 00 0 , ,k k kl klF g F F F= =� �                               (4.19) 

where 00g  is the time component of the metric tensor in standard coordinates ([16], (6.2)).  
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( ) ( ) ( )2 2 22 2 2 1 2 3
00 11d d d d d ,S g c T g x x x= − − −  

( )( )
( ) ( )( )

1 22 2

00 1 22 2

exp 2 1 1
,

1 1 exp 2 1 1
g

β β

β β

 − + 
 =

  + − − +    

 

( )( )1 22 0
11 exp 2 1 1 , .

a T
g

c
β β = − + = 

 
                          (6.2) 

By means of tetrads ([16], (7.1)) 

( )
( ),e e g

g

µ
αµ αα
µ µ ααα

αα

δ
δ= =                               (7.1) 

we find tetrad components of the field tensor in standard coordinates 

( )( ) ( ) ( )

*
* * .

F
F e e F

g g
µ ν

µν
αβ

αα

α

β

α β β

β

= =                            (4.20) 

Considering the electromagnetic field tensor as correspondence invariant and identifying tetrad components 
of the field tensor in standard coordinates with affine components in IRF ([16], (2.4)) 

( ) ( ) ( ) ( )2 2 2 22 0 1 2 3d d d d d ,S x x x x= − − −                           (2.4) 

we obtain expressions for components of electromagnetic intensities in cylindrical coordinates in the form 

( )0 0 0
2 2 2 2

1 cos
exp cos 1 ,

2 2 2x

a r a r a rQE
r c c c

θ
θ

+    = − + −   
     

                  (4.21) 

( ) 2
00

3 2 2
0

2

21 cos
1 exp 1 1 ,

2 2
a ra r a cQE

r c c Tρ

θρ  +  = + − − + +  
    

                 (4.22) 

where ρ  is the polar radius, ( ) ( ) ( ) ( )2 2 2 22 2 3 2 3x x y yρ = + = + . The value ( )22 2 1r yρ= +  can be expressed 
via IRF coordinates by means of the law of motion ([16], (2.5)) or ([16], (3.9)) and the correlation ([16], (6.1)) 

( ) ( )1 1 1 2 2 2 2
0 0, 1 1 ,x y t y c a a t c = + + −  

 

2 2 3 3 0 0, ,x y x y x y= = =                               (2.5) 

( )
2

1 1
0

0

ln cos , .cx y a t c t t
a

= − =                              (3.9) 

and it has the form  

( )( ) 2
2 2 1 2 2 2 2

0 01 1 ,r x c a a T cρ  = + + − +  
 

cosθ  is determined from the formula 1cos y rθ = , where 1y  is determined by the expression in the 
brackets in 2r . Calculation of magnetic field results in correlations:  

( )0sin , 0,xH a t c E H Hφ ρ ρ= = =                           (4.23) 

where t is connected with the T time IRF by the formula ([16], (6.1)). To compare let us present the Born results 
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[19] rewritten in our designations.  

( )1 24 4
0

2 3 2 3
0 0

8 , 0, 8 ,x

x c ac c cTE Q H H H Q
a R a Rρ ρ φ

ρ ρ+
= = = =� � � �

 

( ) ( )
2 22 1 2 2 2 44

0 0

2 3
0

4 , 0,x

x c a c T c acE Q E
a R φ

ρ − + + +
= − =� �  

( )
222 1 2 2 2 4 2 2 4 2

0 0 04 .R x c a c T c a c aρ ρ = + + − − +  
                  (4.24) 

Let us carry out some preliminary analysis of obtained solution for the point charge field in the space-time of 
the constant curvature and compare this one with the Born solution. In particular, it follows from the obtained 
solution  

( ) ( )( )1 22 0
0sin 1 exp 2 1 , . 1

H a T
a t c

E c
φ

ρ

ββ  = = − − + =    
                (4.25) 

From the Born solution a similar relation in accordance with (4.24) has the form 

1 2 1
0

1 1.
11

H cT
E x c a y

cT

φ

ρ

β

= = <
+  

+ + 
 

�

�                       (4.26) 

It follows from last correlation that 1 2
0cT x c a< = . Only on this understanding the 00g  component of the 

Möller metric is positive.  
Analysis of obtained results shows that for components of electric intensities xE  and Eρ  the expansion in 

a power series ( )2 2 2
0a T c , ( )1 2

0a y c , ( )2
0a r c  taking into account specified terms results in similar expan-

sion obtained from the M. Born solution.  
The problem concerning the charge radiation with uniformly accelerated motion is discussed. After the pub-

lishing of survey [25] in which the author considers that the “eternal problem” of the classic physics is closed, 
works [18] [26]-[31] appear, where the discussion is continued. For example, in [18] the presence of the radia-
tion in NRF is connected with the existence possibility of negative value of 00g  metric tensor component, for 
the Möller metric this is equivalent to the transition to the complex plane for space variables and time. The tran-
sition from the Möller metric to the Whittaker metric does not change the problem, since the connection be-
tween two metrics is determined with the substitution of the Lagrange coordinate 1y  by other Lagrange coor-
dinate z in accordance with the formula 

( ) ( )( )1 21 2 2
0 01 2 1 ,y c a a z c= + −  

which transforms the Möller metric ([16], (2.12)) 

( ) ( ) ( ) ( ) ( )2 2 2 222 1 2 2 1 2 3
0d 1 d d d dS a y c c T y y y= + − − −                   (2.12) 

into the Whittaker metric 

( ) ( ) ( ) ( )
1

2 22 22 2 2 30 0
2 2d d d2 2 d1 .d1 a z a zS c T z y y

c c

−
   = + − + − −   
   

              (4.27) 

00g component of metric ([16], (2.12)) is connected with similar component of the Whittaker metric by the 
correlation  

( ) ( )21 2 2
0 01 1 2y a c a z c+ = +  
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and the demand of 00g  negativity in the Whittaker metric results in complexity of 1y  in the Möller metric.  
On the other hand as it has been shown in [3] in the Möller metric the “horizon” exists, i.e. such NRF can be 

realized with bodies of finite dimensions along the movement direction. If in the initial moment the body was at 
rest and afterwards it began to move with uniform acceleration as a unit then initial dimensions of this body are 
restricted with the 2 1

0c a y− < < ∞  inequality. This inequality in Euler variables is equivalent to the 
( )1 2

0 01 a x c a T c+ >  correlation determining the permitted area of the determination of coordinate and time 
values in IRF occupied by the moving body. As shown in [18], in analyzing the Born solution, when the last in-
equality is valid at the fixed T time moment fields do not form the wave zone and consequently the radiation is 
absent. It is this standpoint is presented in the known V. Pauli book [32].  

The demand [18] to extend the IRF space-time on the area of complex values of coordinates and time results 
in the forming of the wave zone outside of the “horizon”, from our standpoint the physical sense of this zone is 
very mistakable. In [26]-[31] the so-called invariant radiation criterion is considered, the sense of this criterion 
reduces to the division of electromagnetic field of moving charge on the “connected” and “free” parts. The full 
energy-pulse tensor of electromagnetic field decomposed on parts satisfies both in whole and separately to laws 
of conservation. Basing on the determination [30] the NRF, in which the Pointing vector in all points is equal to 
zero, is introduced. However, on the assumption of the accepted field decomposition into connected and radiated 
parts the vanishing of the Pointing vector does not mean the absence of the radiation in the NRF under consider-
ation. In such NRF the energy flux of the connected field completely compensates the flux of the radiation 
energy. To our mind such division on the connected field and the radiation field is artificial. One can always di-
vide the total zero into two or more nonzero parts, and the problem concerning the radiation of the charge mak-
ing the hyperbolic motion remains open.  

To our mind the reason of the paradox arising consists of following: 
The particular solution of the Maxwell equations in the form of retarded potentials or the solution for the Lie-

nard-Wiechert potentials in the case of the point charge in accordance proposes the presence of the radiation in 
the system. i.e. from the Lienard-Wiechert solution one can conclude: “The radiating charge moves with the ac-
celeration”. Inverse statement: “The charge moving with the acceleration radiates” to our mind is not always va-
lid. The search of the particular solution does not depend only on the form of the equation but on the physical 
situation. For example, solving the Maxwell equation outside of the single point charge being at rest we select 
the static solution instead of the wave one.  

Let us consider the second example. In the constant gravitational field (in the Newton theory) the charge be-
ing at rest hangs on the thread. Other similar charge is hung at the rocket flying with the acceleration, which is 
equal to the earth one far off gravitating bodies. Forces of the thread tension in these cases are the same. As 
physical situations in each of these systems are equivalent, so solutions of the Maxwell equations should be 
equivalent. But solutions in the first system are obviously static, consequently solutions in the second system 
should be static too. The second system is the uniformly accelerated NRF. Thus, in the problem concerning the 
field of the charge moving hyperbolically our standpoint coincides with the M. Born, V. Pauli and V. Ginsburg 
standpoint, that the charge moving hyperbolically does not radiate sufficiently long and “on the contrary if two 
rectilinear uniform movements transform in each other by means of the hyperbolic motion then the radiation 
takes place” [25] [32].  

We propose the following criterion of the absence of the moving charge radiation (or the charge system radia-
tion). 

If the charge (or the charge system) is “frozen” into the moving rigid in the Born sense body and if for the 
observer in this NRF the Maxwell equations permit the stationary solution for the fields created with this charge 
(the charge system), then such charge (the charge system) does not radiate.  

Formulated condition of radiation absence is equivalent to the constancy of electromagnetic field (i.e. its in-
dependence on NRF time) relatively to the Lagrange rigid co-moving NRF, when the charge world line (or the 
congruency of world lines of the charge system) belongs to the congruency of world lines of NRF basis particles. 
Our determination of the constancy of tensor field and connected condition of the radiation absence differs from 
similar determination [33] (where the field constancy is the existence of the permitted coordinate system, in 
which field components do not depend on the time coordinate in some field of space-time).  

One can obtain the analytical criterion of the radiation absence from the stationary criterion considered above 
by the author in Section 3. The criterion is determined by Formula (3.6) or the vanishing of the generalized force 
of the radiation friction (3.8).  
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For one charge moving progressively 0µνΩ = , and the generalized force g µ  coincides with the usual radi-
ation braking force [1]. If electromagnetic field in NRF is stationary then Condition (3.7) is met and 0g µ =  
that in accordance with Pauli [32] means the absence of the radiation.  

The Born solution investigated above fulfills to the condition of the radiation absence (3.6) if the charge 
making the hyperbolic motion is “frozen” in the Möller NRF ([16], (2.12)), and the movement of the Möller ba-
sis is considered in Euler IRF coordinates. If the world line of the considered charge belongs to the congruency 
of world lines of Logunov system basis particles ([16], (2.7), [16], (2.8)) 

( )
( ) ( ) ( )

12 2 2 2 22 1 2 30
2 2 2 1 22 2 2
0 0

2 d ,
1 1

d ddd d da t t yc tS y y y
a t c a t c

= − − − −
+ +

              (2.7) 

( ) ( ) ( ) ( ) ( )2 2 222 2 1 1 2 3
0d d d d d d2sinh ,dS c a c c y y y yτ τ τ= − − − −               (2.8) 

then Maxwell equations in such system do not permit the stationary solution, since this system is not the relati-
vistic rigid system. However, we point out that one can’t say from this fact that the uniformly accelerated charge 
in the Logunov system radiates! The stationarity criterion is not applied in non-rigid systems. If to the world line 
of the uniformly accelerated charge from the Logunov system one “mentally adds” the world lines of uncharged 
particles from the Möller system, then the charge from the standpoint of our criterion does not radiate. Another 
example: the rubber bundle is joined to the charge attached to the wall. Other end of the bundle moves arbitrari-
ly. It is clear, that in RF connected with the bundle Maxwell equations for the considered charge have 
non-stationary solutions, however the radiation is absent.  

The charge “frozen” to the uniformly accelerated NRF ([16], (2.18)) does not radiate, it follows from Formu-
las ([16], (3.7), [16], (3.13)) 

( ) ( ) ( ) ( )2 2 22 2 2 2 1 2 3
0d cos d d dd ,S c t a t c x x x= − − −                     (3.7) 

( ) ( ) ( )0 1 2
1 0 0 0

0

1sin , , exp
cos

V a t c V V a y c
a t c

= − = = Θ = −                (3.13) 

and resulting correlations ( ) ( )2
0 0 0tanF a c a t c= , 2

1 0F a c= − . Substitution of these correlations to (3.6) 
reduces it to an identity. Thus, obtained Solutions (4.21 - 4.23) in the Riemannian space-time is the analogue of 
the Born solution in the Minkowski space. Unlike the Born solution obtained one has no the “horizon” behind 
which the wave zone forms [18]. So the radiation is absent on whole IRF space-time domain.  

One can check up that except the hyperbolic motion the uniformly rotating disk satisfies to criteria (3.6), (3.7). 
The radius of the disk is r c< Ω , where Ω  is the angular velocity. As it has been shown in [18] in the rotat-
ing reference frame determined by usual method [1] the charge does not radiate if 2 2 2

00 1 0g r c= −Ω >  and it 
radiates, when 00 0g < .  

In [34] the author constructed the relativistic rigid uniformly rotating reference frame realized in the Rieman-
nian space-time. Obtained solution is valid at any r distance from the rotation axis and 00g  metric tensor com-
ponent is always positive. The generalized force of the radiation friction calculated in such system (3.8) be-
comes zero for all disk points that in accordance with the accepted criterion means the radiation absence for the 
charge system or one charge (“frozen” in the disk) being at any distance from the disk centre.  

5. Spreading of Electromagnetic Fields in the Space of the Constant Curvature.  
Doppler Effect 

Let us consider the wave spreading at the uniformly accelerated NRF ([35], (2.6)) 

( ) ( ) ( ) ( )
1 2 2 2 22 0 1 2 30

2
2d exp d d d d .a yS y y y y

c
−

 
= − − 

 
                    (2.6) 

on the basis of the Maxwell equations written in three-dimensional form as for the case of the static gravitational 
field [1] outside of sources 
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1 1, , 0,
c cξ ξ

∂
× = − × = ⋅ = ⋅ =

∂ ∂
∂D BE H B D∇ ∇ ∇ ∇  

00, , .h g
h h

= = =
E HD B                              (5.1) 

Acting with the ∇  operator on vector equations we obtain 

[ ] ( )
2

2
2 2
1 1 0,  h

c h hξ
  −∇ − × × + =  

∂


⋅

∂  

E E E E∇ ∇ ∇ ∇  

1· .
h h

= − ⋅
EE∇ ∇                                  (5.2) 

[ ] ( )
2

2
2 2
1 1 0,  h

c h hξ
  −∇ − × × + =  

∂


⋅

∂  

H H H H∇ ∇ ∇ ∇  

1 .
h h

⋅ = − ⋅
HH∇ ∇                                 (5.3) 

Equation for H  proved to be exactly similar for E . Let us consider some partial solutions of Equations 
(5.2), (5.3). We will find solutions in the TEM wave form, directing E  along 2y  axis with 2i  unit vector, 
H  along 3y  axis with 3i  unit vector and considering that both vectors depend only on the time coordinate 
and on one space coordinate 1y  with the 1i  unit vector collinear to the acceleration.  

Omitting intermediate calculations, we find equations for waves spreading in directions collinear to the acce-
leration  

2 2
0

2 2 2 2

1 0.
aE E E

xc h x cξ
∂

− − =
∂∂ ∂

∂ ∂                              (5.4) 

2 2
0

2 2 2 2

1 0.
aH H H

xc h x cξ
∂

− − =
∂∂ ∂

∂ ∂                             (5.5) 

Here ( )1 0
1 3 2 1 2 3, , 0, , , 0,x y y c E E E E x t H H H Hξ= = = = = = = = . To solve (5.4) we will consider the 

preliminary expression  

2
0

2 2 .
aE Eh

xx c
 ∂

+ ∂∂ 

∂                                   (5.6) 

Let us introduce a new ( )p p x=  function. Then one can represent the Expression (4.6) in the form  
22 2

2
2 2

d d de .
d d d

ax E p E p pa
x p xp x

 ∂  + +   ∂∂

 ∂


   


  
                          (5.7) 

Supposing that the expression in the parentheses (5.7) is equal to zero we obtain the equation  
2

2

d d 0,
d d
p pa
x x
+ =  

the solution of which is 

( )d e , 1 e  , const.
d

ax axp p
x a

αα α− −= = − =  

Thus, the Expression (5.7) is represented in the form  
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22 2 2
2 2

2 2 2

d d de .
d d d

ax E p E p p Ea
x p xp x p

α
   + +

 ∂ ∂ ∂
  =   ∂∂   ∂  

                       (5.8) 

If at small x the equality p = x is satisfied, we obtain 1α =  and Equation (5.4) is equivalent to 
2 2

2 2 2

1 0,E E
c pξ

−
∂
∂

=
∂
∂                                   (5.9) 

i.e. it is equivalent to usual wave equation. In accordance with the considered problem the Solution (5.4) has the 
form 

0 0
1 22 2

0 0

exp 1 exp 1
a x a xc cE E E

a ac c
ξ ξ
   
 

      = + − − + − − −      
      

 
  

              (5.10) 

where 1E  and 2E  are arbitrary functions. The solution for magnetic field H is obtained as similar (5.10). The 
phase velocity v from the found solution obtained by the differentiation with respect to ξ  of the constant phase 
at 1E , forms ( )1 2v c εµ= , where  

( ) ( )1 2 2
00 01 expg a x cε µ= = = − . 

Thus, as well as in the static gravitational field [1] one can say that in respect to its influence on electromag-
netic field inertia forces change dielectric constant and magnetic permeability of the medium in which waves 
propagate. But this resemblance is only formal, since for waves, propagating along the acceleration direction 

1E  at 0, 1x ε µ> = < , and the phase velocity increases with x, always remaining greater then light velocity in 
vacuum. At 0x <  for 2E  wave spreading in the opposite direction 1ε µ= > , and the phase velocity de-
creases with the removing from the source, remaining always smaller then light velocity in vacuum. From clas-
sic representations on the basis of the Galilean velocity addition one can expect the inverse result, so the phase 
velocity determined as the derivative of coordinate with respect to the world time is not a “physical” one. One 
can obtain the same value of the phase velocity by equalization interval ([16], (2.18)) to zero at fixed 2y  and 

3y  values that checks calculations carried out. 
The value of the phase velocity measured in tetrads ([16], (8.1)) will be the physical value of it 

2 2
2 2 2 2 2 2 2 2

2d 1 d 2 d d d d drS c t r t z r r
c

ϕ ϕΩ
= − −
 

Ω


− −


−                    (8.1) 

of the NFR metric ([16], (2.18)) 

( ) ( ) ( ) ( )
1 2 2 2 22 0 1 2 30

2
2d exp d d d d .a yS y y y y

c
−

 
= − − 

 
                   (2.18) 

determined with the equality  

( )

1

1 2 0
00

d ,
d

c yv
g y

=  

which results in values 1v c=  for 1E  and 2v c= −  for 2E .  
Equating interval ([16], (6.2)) to zero  

( ) ( ) ( )
( )( )

( ) ( )( )

2 2 22 2 2 1 2 3
00 11

1 22 2

00 1 22 2

d d d d d ,

exp 2 1 1
,

1 1 exp 2 1 1

S g c T g x x x

g
β β

β β

= − − −

 − + 
 =

  + − − +    
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( )( )1 22 0
11 exp 2 1 1 ,

a T
g

c
β β = − + = 

 
                         (6.2) 

or converting the phase in obtained solution from NRF to standard quasi-IRF coordinates we find by two ways 
the same result for the phase velocity of the electromagnetic wave spreading relatively quasi-IRF in coordinates 
and time of the Minkowski space. 

( ) ( )( )
1

1 21 2 1 22 2

d ,
d

1 1 exp 2 2 1

x cv
T

β

β β
= =

 + − − + 
 

                    (5.11) 

where 0a T cβ = .  
The tetrad components of the phase velocity relatively quasi-IRF having directly a physical sense are obtained 

from (5.11) using metric ([16], (6.2)) and tetrads ([16], (8.1)) 

( )
( )

( )

1 21 1
1 11

1 20 0
00

d d
.

d

e x g x
v c c c

e g x

µ
µ

ν

= = =                            (5.12) 

Thus, it follows from the wave solution of the Maxwell equation in NRF that the phase velocity of the elec-
tromagnetic wave spreading measured in the tetrads ([16], (8.1)) of the NRF metric ([16], (2.18)) or quasi-IRF 
metric ([16], (6.2)) is constant and it is equal to the light velocity in vacuum. Analysis of Formula (5.11) shows 
that the phase velocity of the wave spreading in coordinates and time of the Minkowski space does not exceed 
the light velocity in vacuum, at T = 0 and T →∞  the velocity v c→ , and at 3 2β =  the phase velocity is 
minimum and it is equal to 0.931c. 

On the basis of the obtained Solution (5.10) we will make the calculation of the longitudinal Doppler effect 
when the source of plane monochromatic electromagnetic waves is located at the accelerated object at the origin 
of the Lagrange coordinate system, and at the time moment T = 0 Lagrange coordinates coincide with Euler 
coordinates. The expression for the eikonal 1ψ  and 2ψ  of plane waves from (5.10) in NRF ([16], (2.18)) has 
the form 

0 0
1 0 2

0

exp 1 ,
a xcy c

a c
ψ ω

  = − + − − 
 
 
  




                       (5.13) 

0 0
2 0 2

0

exp 1 ,
a xcy c

a c
ψ ω

  = − − − − 
 
 
  




                       (5.14) 

and in quasi-IRF ([16], (3.7)) 

( ) ( ) ( ) ( )2 2 22 2 2 2 1 2 3
0d d cos d d dS c t a t c x x x= − − −                     (3.7) 

it is described by the formulas  

( ) ( )

0
2

0
1 0

0 0

exp
tan 1 ,

cos

a x
c ca t c

a a t c
ω

ψ

  −  
  = − + −

 
 
 

                      (5.15) 

( ) ( )

0
2

0
2 0

0 0

exp
tan 1 ,

cos

a x
c ca t c

a a t c
ω

ψ

  −  
  = − − +

 
 
 

                      (5.16) 

where 0ω  is the angular frequency.  
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The wave 4-vector Kµ  determined as 4-gradient from the eikonal is the correspondence invariant, and for it 
tetrad components in quasi-IRF ([16], (6.2)) coincide with tetrad IRF components (which simultaneously are the 
affine components) ([16], (2.4)) 

( ) ( ) ( ) ( )2 2 2 22 0 1 2 3d d d d .dS x x x x= − − −                         (2.4) 

Herewith ([16], (2.4)) and ([16], (6.2)) are specified in the general coordination. Using formulas ([16], (6.2)), 
([16], (8.1)), (5.15), (5.16) and ([16], (3.10)) 

( ) ( ) ( )1 1 1
0 11 0tan , sinv c a t c v g v v c a t c= = − =                     (3.10) 

we find the expression for the 1ω  frequency in IRF ([16], (2.4)) for the longitudinal Doppler effect when the 
source is approached to the receiver  

( ) ( ) ( )
( )

1 2
1 2

1 0 0 1 20

1
exp

1

v c
K c a y c

v c
ω ω′

+
= = −

−
,                      (5.17) 

where v is the transmitter velocity determined from ([16], (3.10)).  
If the source is removed from the receiver then the received frequency has the form 

( ) ( ) ( )
( )

1 2
1 2

2 0 0 1 20

1
exp .

1

v c
K c a y c

v c
ω ω′′

−
= = −

+
                      (5.18) 

 
In Correlation (5.17) 1 0y >  and in (5.18) y < 0. Analysis of Formulas (5.17) and (5.18) shows that the fre-

quency change depends on two factors: inertial force potential characterized by the ( ) ( )1 2
00 0

2 11 expg a y c= −  
multiplier and the source velocity relatively the receiver that exactly corresponds to the STR Doppler effect [1]. 
First multiplier reduces the frequency when the source approaches to the receiver (red shift), and it increases the 
frequency when the source removes from the receiver (violet shift). The physics of this phenomenon is clear and 
it bases on the equivalence principle. One can rewrite Formulas (5.17) and (5.18) in Euler coordinates of the 
Minkowski space in the form  

( )1 2
1 0 0

1exp ,
1

a x c
v c

ω ω= −
−

                          (5.19) 

( )1 2
2 0 0

1exp ,
1

a x c
v c

ω ω= −
+

                          (5.20) 

where the dependence of the source velocity v ([16], (3.10)) versus the time of the Minkowski space T is deter-
mined from ([16], (6.3)] 

( )( ) ( )
1 22

0
0 0

1 exp 2 1 1 sin .c c a t c
a a

τ β     
=


= − − +                    (6.3) 

To compare these results we present expressions for the Doppler effect obtained from the solution of wave 
Maxwell equations in the Möller NRF ([16], (2.12)) (we point out that in ([16], (2.12)) T is the parameter num-
bering hyper surfaces orthogonal to world lines, but not a time of the Minkowski space. The solution of the 
problem results in  

( )
( )
( )

1/2

1 00 1 2 1/2
0

11 ,
1 1

v c
K c

a y c v c
ω ω

+
′= =

+ −
�                        (5.21) 

( )
( )
( )

1/2

2 00 1 2 1/2
0

11 ,
1 1

v c
K c

a y c v c
ω ω

−
′′= =

+ +
�                        (5.22) 
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or going to Euler variables we obtain 

1 0 1 2
0 0

1 ,
1 a T c a x c

ω ω=
− +

�                              (5.23) 

2 0 1 2
0 0

1 ,
1 a T c a x c

ω ω=
+ +

�                              (5.24) 

where 1ω�  is the frequency received by the receiver at the point 1x  at the T time moment in Galilean coordi-
nates of the Minkowski space for the source approaching to the observation point, and 2ω�  is the corresponding 
value for the source removing from the observation point. Because of the presence of the Möller metric “hori-
zon” Formulas (5.23) and (5.24) are applied provided  

( )1 2
0 01 a x c a T c β+ > = . 

Obviously if one selects the Lagrange coordinate 1 0y =  that means, that at initial time the receiver and the 
transmitter coordinates coincided then Formulas (5.17) and (5.18) exactly coincide with the classic formulas for 
the SRT Doppler effect [12]. However, it only seems, as the velocities at the observation points from the Min-
kowski and Riemann space viewpoint will be different.  

For example, we will continue the consideration of the problem presented in paragraph 6.6 [9] when astro-
nauts fly by the nearest star of the Centaurus stellar system moving with uniform acceleration. From the stan-
dard viewpoint for the relativistic uniformly accelerated straight motion with the uniform acceleration 0a  at the 
intrinsic frame of reference [1] the rocket velocity at any instant is determined with the formula ([9], (6.84a)) 

( ) 0
1 2 2

0
21

a T
v T

a T
c

=

+

                              (6.84a) 

From our viewpoint the velocity value ( )v T  of the aircraft in accordance with ([9], (6.73a)) is 

2 2
0

2
0

arccos exp 1 1
a Tct

a c

  
  = − +

    
                        (6.73) 

and ([9], (6.42))  

( ) ( ) ( )1 1 1
0 11 0tan , sinv c a t c v g v v c a t c= = − =                   (6.42) 

at the standard coordinates has the form 

( ) ( )
1 2

2 2
0

2 0 2sin 1 exp 2 1 1 .
a T

v T c a t c c
c

   
   = = − − −

      
              (5.24a) 

At the same time, the aircraft removes from the signal receiver located at the 1 0y =  point.  
In Figure 1 relative dimensionless velocities ( ) ( )1vk t v T c=  and ( ) ( )2vn t v T c=  depending on dimen- 

sionless t time are presented. Here t is determined with the formula 0 ,
a T

t
c

≡  where T is the standard time of 

the Minkowski space. 
One can see that from the viewpoint of two different theories the velocities of rocket overflying by the Prox-

ima Centaurus will be different. In accordance with ([9], (6.84)) 

( ) 0
1 1 2 2

0 1
2

0.981 ,

1

a T
v T c

a T
c

= =

+

                           (6.84) 
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1 0 0
0 0

21 1.215 4.86 years.cT T T
a T

= + = =                        (6.82) 

For our case ( )2 1v T c≈  that is observed in Figure 1.  
By this reason, the identical frequency of electromagnetic waves radiated with the transmitting rocket device 

should differently receive with receivers at the spaceport (from the viewpoint of two different theories). Only the 
experiment can decide what theory is preferential. 

In Figure 2 the frequency reduction calculated in accordance with the different theories is presented. 
( ) ( )2 0Ak t tω ω=  is calculated according to classical Doppler’s Formula (4.18) at 1 0y = , where ( )1v T  is 

substituted from the classical formula ([9], (6.84a)) instead of v. 
( )An t  is also calculated in accordance with Formula ([9], (8.41)). 

*2· 4πi
c

ρΦ ∆Φ + Φ + = − 
 

F Ω
∇                           (8.41) 

 

 
Figure 1. Comparison of rocket velocities in two theories.     

 

 
Figure 2. Comparison of the Doppler effect for two different 
theories.                                              
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where 1 0y = , however ( )2v T  from ([9], (8.147a)) is substituted instead of v. 

( ) ( )
1 2

2 2
0

2 0 2sin 1 exp 2 1 1 .
a T

v T c a t c c
c

   
   = = − − −

      
               (8.147a) 

When overflying by the nearest star the frequency received with the detector at the spaceport from the clas-
sical viewpoint should be 0.12 from the frequency radiated with the generator. In the case under consideration, 
the frequency received with the detector should be 0.02 from the radiated frequency. 

When the velocity of removing source approaches to the speed of light the frequency received with the detec-
tor located at 1 0y =  point tends to zero. It follows from ([16], (16.18)) and Figure 2.  

Let us find the transformation of electromagnetic field of monochromatic plane wave from NRF of the Rie-
mannian space ([16], (2.18)) to the IRF of the Minkowski space ([16], (2.4)) in accordance with the transition 
rules considered in previous section  

( ) ( ) ( ) ( )2 2 2 22 0 1 2 3d d d d dS x x x x= − − − .                          (2.4) 

Let electric field of the wave, propagating on the acceleration direction in NRF ([16], (2.18)) (along 1y  
axis), has the amplitude 0E  and it is directed along the 2y  axis, and magnetic field is directed along 3y  and 
it has 0 0H E=  amplitude. For the wave travelling from the source in opposite direction the electric field keeps 
the direction and the magnetic field changes the sign on opposite. Tensor of electromagnetic field Fµν  has 

02F  and 12F  components differed from zero. In accordance with [1] we find field tensor components for static 
gravitational fields in the form 

( ) ( )02 0 1 0 2sin sin ,F E Eψ ψ= − + −                             (5.25) 

( ) ( )( )12 0 1 0 2
00

1 sin sin ,F H H
g

ψ ψ= − − + −                         (5.26) 

where the phases in arguments are specified with Formulas (5.13), (5.14). The transition to quasi-IRF ([16], 
(3.7)) is realized in the ordinary way in accordance with the correlations  

,y yF F
x x

µ ν

αβ µνα β

∂ ∂
=
∂ ∂

�  

in which the dependence ( )y xµ α  is specified with the law of motion ([16], (3.5), (3.6)).  

( ) ( )
1 2

2 1 1 2
0 0

0

d tan , ln cos
d
y ca S c y x a S c
S a
= − = + ,                      (3.5) 

( )
( ) ( ) ( )

1 20 2
0 0 2 1 2

0 02 2
00

expd , tan exp .
d cos

a x cy cy a S c a x c
S aa S c

−
= = −                   (3.6) 

Hereinafter by means of the time coordinate transformation ([16], (6.3)) we convert the Fαβ
�  tensor to quasi- 

IRF ([16], (6.2)) in standard coordinates, and then by means of tetrads ([16], (8.1)) we obtain physical compo-
nents of the field tensor in the standard quasi-IRF, which in accordance with the proposed scheme coincide with 
field tensor components in IRF Galilean coordinates of the Minkowski space. Omitting intermediate calcula-
tions, we obtain finally  

( ) ( ) ( ) ( )( )0 1 0 1 2 0 2sin sin ,E E ω ω ψ ω ω ψ= − + −                     (5.27) 

( ) ( ) ( ) ( )( )0 1 0 1 2 0 2sin sin ,H H ω ω ψ ω ω ψ= − − −                     (5.28) 

where 1 2,ψ ψ  are determined from (5.15), (5.16), and 1ω , 2ω  are determined from Correlations (5.19) and 
(5.20).  
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To compare we present the solution of this problem in the Möller NRF transformed to the IRF of the Min-
kowski space. Omitting the calculations, we present the result  

( ) ( ) ( ) ( )( )0 1 0 1 2 0 2sin sin ,E E ω ω ψ ω ω ψ= − + −� � � � �                     (5.29) 

( ) ( ) ( ) ( )( )0 1 0 1 2 0 2sin sin ,H H ω ω ψ ω ω ψ= − − −� � � � �                     (5.30) 

where 1ω�  and 2ω�  are determined from (5.23), (5.24), and the phases 1ψ�  and 2ψ�  are specified by formulas 

( )1 2
1 0 0

0

ln 1 ,c a x c a T c
a
ωψ = + −�                          (5.31) 

( )1 2
2 0 0

0

ln 1 .c a x c a T c
a
ωψ = − −�                          (5.32) 

The comparison shows that the solution of this problem by different ways (about the propagating of plane 
electromagnetic waves in the NRF and their receiving in the IRF) results in different results and only the expe-
riment can clear up which calculation method is valid.  

6. Conclusions 
The main problems solved in this article are:  

1) Reference frames 
All NFR are divided into two classes: 
a) NFR with specified law of motion. 
b) NFR with specified structure. 
It was shown that: 
1) TheMöller transformation (the first class NFR) does not describe the transition into the globally uniformly 

accelerated NFR. Each Lagrangian particle moves with constant acceleration, but these accelerations are not 
equal each other. Therefore, the interpretation of the Möller transformation with the transition into the relativis-
tic uniformly accelerated NFR is illegal. 

2) The Logunov transformation (the first class NFR) describing the transition from NFR to the relativistic un-
iformly accelerated NFR in which each Lagrangian basis particle moves with constant acceleration results in the 
rigidity breaking. Thus, the globally uniformly accelerated Logunov system is not a relativistic rigid one.  

Paradoxial result is obtained. Identical physical situation for all particles resulted in the motion of the particles 
relatively each other (the Logunov system). In order to make these particles be mutually immovable, one must 
apply different forces (the Möller system). 

Thus, in the SR on the basis of the first class NRF, the logically elasticity theory [36]-[38] based on the lack 
of the deformations and tensions in the solid is not constructed, if this body moves freely in a uniform force 
field. Equal steady-state physical conditions for each medium particle result in non-stationary metric. 

The description of rigid NFR in SR results in logical difficulties, which one can overcome by means of the 
going beyond the frames of flat space-time. 

It follows directly from the obtained equations of structure.  
2) On the basis of the structure equations, the theory of relativistic rigid uniformly accelerated NFR of the 

second class is constructed. This theory is realized in the Riemannian constant curvature space. When con-
structing NFR the approach is based on the obvious demand of the lack of the deformations and tensions in the 
solid in its translatory motion in the uniform force field. This results in the solution of the known Bell paradox. 
This paradox is on principle unsolvable in Minkowsky space.  

As the NFR metric is the Riemannian one, then no transformations of coordinates including ones containing 
the time one cannot transform from IFR of Minkowski space to the NFR of the Riemannian space. It is impossi-
ble to create or obtain zero Riemann-Christoffel tensor using any transformations of coordinates. We obtain zero 
Riemannian tensor by means of the nonholonomic transformations from Minkowski space. However, one can 
divide this zero tensor into the parts from which one can eliminate nonzero standard Riemannian tensor.  

Therefore, in interpretation of the measurements of physical values expressed by means of geometrical ob-
jects, the difficulties arise. These difficulties are partially got over by means of introduction of the “standard” 
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coordinates, which coincide with the Galilean coordinates in Minkowski space. On the basis of “inoculating” 
coordinates of the flat space-time, we construct the NFR metrology in Riemannian space-time. That permitted to 
clarify the metric sense of measured physical values.  

The field of a point charge being at rest in IFR is the Coulomb spherically symmetric one. It does not depend 
whether this charge is free or the sum of forces acting on the charge is equal to zero. On the other hand, the field 
of this charge moving uniformly accelerated in accordance with the classical electrodynamics for the NFR ob-
server will be axially symmetric regardless of the NFR transition method.  

Thus, identical physical situation in which the charges are (identical thread tension) results in the fields with 
different symmetry! The paradox is present. An attempt to solve it was undertaken in this article.  

3) Exact static solution for the charge field in the uniformly accelerated NFR realized in the Riemannian 
space-time in aggregate with the “postulate of equivalent situations” permits in principle to find the space-time 
structure and determine the fields of charged arbitrary shape conductors. For positively charged bodies the “rela-
tivistic corrections” are small and usual electrostatics in Minkowski space is correct. For negatively charged 
conductors or ones located at external electric field, these corrections can be significant. The reason of this phe-
nomenon is ascertained and the simplest experiments to corroborate or disprove the predicted effects are pro-
posed in this article.  

4) Electrodynamics in the 1st and 2nd class NFR. The stationarity criterion (the absence of radiation) 
The examples of calculation of electromagnetic fields in uniformly accelerated NFR are considered. The cri-

terion of radiation absence of a charge or a charge system connected with zero generalized force of radiative 
friction is formulated. It was shown, that the charge executing a hyperbolic motion does not radiate electromag-
netic energy long enough. It consists with the M. Born, V. Pauli, V. Ginzburg viewpoint. Obtained solution in 
the Riemannian space-time proved to be an analog of the M. Born solution in Minkowski space. As opposed to 
the M. Born solution obtained one does not have a “horizon” beyond which the wave zone forms, therefore the 
radiation is absent over the whole area of IFR space-time.  

In constructed [38] rigid uniformly revolving reference frame realized in the Riemannian space-time the crite-
rion of the radiation absence is also satisfied for charged particles “trapped” into the rotating disk.  

The problem about electromagnetic wave propagation in uniformly accelerated NFR was solved and the field 
transformation from NFR to IFR was considered. The calculation of the longitudinal Doppler effect and the cal-
culation of this effect at the Möller NFR were carried out. The comparison showed different results, and only the 
experiment can ascertain which approach is legitimate. 

Thus, the development of the unconventional approach to NFR jointly with the postulate of equivalent situa-
tions resulted in origin a new field of research and revision of some regulations of the classical field theory. 
Proposed model eliminated the basic contradiction between the stippling of the charged particles and their infi-
nite proper energy. It appears that not only gravitational, but electromagnetic fields can bend space-time geome-
try. 
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