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Abstract 
Polynomial splines have played an important role in image processing, medical imaging and 
wavelet theory. Exponential splines which are of more general concept have been recently inves-
tigated.We focus on cardinal exponential splines and develop a method to implement the expo-
nential B-splines which form a Riesz basis of the space of cardinal exponential splines with finite 
energy. 

 
Keywords 
Exponential Splines, B-Splines, Poisson Summation Formula 

 
 

1. Introduction 
During the past decade, there have been an increasing number of papers devoted to the use of polynomial splines 
in signal processing [1]-[4]. The interest in these techniques grew after it was shown that most classical spline- 
fitting problems on a uniform grid (interpolation, least squares, and smoothing splines) could be solved effi-
ciently using recursive digital filtering techniques. These spline-based algorithms have been found to be quite 
advantageous for image processing and medical imaging, especially in the context of high-quality interpolation, 
where it has been demonstrated that they yield the best cost-quality tradeoff among all linear techniques [5]-[8]. 
Polynomial splines have also been shown to play a fundamental role in wavelet theory [9]. 

Although there are a few applications of polynomial splines in continuous-time signal processing, splines 
have apparently had less impact in this area. Part of the reason may be that (piecewise) polynomials do only ap-
pear marginally in basic systems theory. The most prominent functions in continuous-time signal-and-systems 
theory are the exponentials, which correspond to the modes of differential systems (analog filters and circuits). 
Having made this observation and motivated by the search for a unification between the continuous and dis-
crete-time approaches to signal processing, Unser [10] deals with the task of extending the previously mentioned 
formulation to the enlarged class of exponential splines. These splines, as their name suggests, are made up of 
exponential segments that are connected together in a smooth fashion. They form a natural extension of the po-
lynomial splines and have been characterized mathematically in relatively general terms [11] [12]. 

The kind of splines that are the most appropriate for signal processing are the cardinal ones, which are defined 
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on a uniform grid. Mathematically, this corresponds to the simplest possible setup, which goes back to the pio-
neering work of Schoenberg on polynomial splines in 1946 [13]. In his early paper, it was shown that every car-
dinal polynomial spline has a unique and stable representation in terms of B-spline expansion. For cardinal ex-
ponential spline which is general concept of polynomial spline, Unser showed that if one excludes the patholog-
ical case of improperly spaced imaginary roots, then every cardinal exponential spline with suitable parameter 
has a unique and stable representation in terms of its B-spline expansion [10]. 

We present several methods to implement exponential B-splines. The paper is organized as follows. In Sec-
tion 2, we begin with abrief introduction of exponential B-splines and notations needed throughout the paper. In 
Section 3, the methods will be presented. The conclusion is given in Section 4. 

2. Preliminaries 
2.1. Notations 
Vectors are marked with an arrow and are used to represent N-tuples, i.e., 1 2( , , , )Nu u u u=



 . 

The Fourier transform of ( )f t  is denoted by ˆ ( )f ω . For 2 1( ) L ( ) L ( )f t ∈ ∩  , it is given by 

ˆ ( ) ( ) i tf f t e dtωω
∞ −

−∞
= ∫ ; 

otherwise, it is defined in the distributional sense. The Laplace transform of a causal (possibly exponentially in-
creasing) function ( )f t  is defined as 

0
{ } ( ) ( ) stL f F s f t e dt

∞ −= = ∫ . 

The one-sided power function is max{ ,0}n nt t+ = . The discrete signal [ ]a k , k ∈ , is characterized by its 

z-transform ( ) [ ] k
kA z a k z−
∈

= ∑


. 

2.2. Exponential B-Splines (E-Splines) 
Let us consider the generic differential operator of order N 

1
1 0{ } { } { } { }N N

NL f D f a D f a I f−
−= + + +  

with constant coefficients 1
0{ }N

n na −
= ∈ ,whose argument is some continuously varying time function ( )f f t= . 

Here, 
n

n
n

dD
dt

=  denotes the nth-order derivative, and 0I D=  is the identity operator. The operator L is also 

characterized by the roots of its characteristic polynomial 

1
1 0

1
{ } ( )

N
N N

N n
n

L s s a s a s α−
−

=

= + + + = −∏ . 

We will therefore use the notation Lα , where 1 2( , , , )Nα α α α=


  is a vector that specifies the roots expli-
citly. 

Definition 2.1. An exponential spline with parameter α


 and knots 1k kt t +−∞ < < < < < ∞   is a func-
tion ( )s t  such that 

{ ( )} ( )k k
k

L s t a t tα δ= −∑  

where the sequence { }k ka ∈  is bounded and where ( )tδ  is the Dirac distribution. 
The cardinal exponential splines correspond to the specialized case where the knots are at the integer, i.e., 

kt k= . This particular framework allows for important simplifications and that it is ideally suited for a signal 
processing formulation. 

We now introduce the exponential B-spline αβ   (say E-spline from now on) representation theorem, which is 
a generalization of Schoenberg’s classical result [13] for cardinal polynomial splines and which shows the im-
plementation of E-splines is enough to get for a signal processing using exponential spline. 
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Theorem 2.2. [10] The set of functions { ( )}kt kαβ ∈−



 provides a Riesz basis of Vα
 , the space of cardinal 

exponential splines with finite energy, if and only if 2 ,n m ik kα α π− ≠ ∈ , for all pairs of distinct, purely im-
aginary roots. 

Thus, if one excludes the pathological cases of improperly spaced imaginary roots first identified by Ron [14], 
this means that every cardinal exponential spline with parameter α



 has a unique and stable representation in 
terms of its B-spline expansion 

( ) [ ] ( )
k

s t c k t kαβ
∈

= −∑ 



. 

The E-splines are localized, that is compactly supported and shortest possible, versions of the Green functions 
that generate the exponential splines. The way in which such E-splines are constructed is especially easy to un-
derstand in the first-order case. One takes the green function ( )tαρ  of L D Iα α= −  and subtracts a shifted, 
and properly weighted, version of it to annihilate the exponential term 1t ≤ . This yields the first order E-spline 
with parameter α  

( ) ( ) ( 1)t t e tα
α α αβ ρ ρ= − − . 

Note that this first-order E-spline is supported in [0, 1), irrespective of α ∈ . In addition, it is non-negative, 
provided that αρ  is not oscillating, that is, when α  is real. 

The higher order E-splines are obtained by successive convolution of lower order ones: 

1 2
( ) ( )( )

N
t tα α α αβ β β β= ∗ ∗ ∗

  

which is a process that is justified by the convolution relation of the corresponding Green functions. 

3. Method to Implementing E-Splines 
In general, E-splines with parameter α



 with 2α ≥
  is compactly supported and N-2 times differentiable so 

that it has a convergent Poisson summation formula as  

2 /1 2ˆ( ) ( ) ( ) ikt N

k k

kt Nk t e
N N

π
α α α

πβ β β
∈ ∈

+ = =∑ ∑  

 

. 

From the Poisson summation formula of E-splines, we take a finite number of terms of the summation as an 
approximation of E-splines and find its truncation error bound as follows: 

Theorem 3.1. Define ( 2 1M + )-term approximation ( )tαβ   of E-splines as  

2 /1 2ˆ( ) ( ) ikt N

k M

kt e
N N

π
α α

πβ β
≤

= ∑ 

 , 

and let max { } 2j j
NC
M

α π= ⋅ < . Then we have  

1 1
1

(1 )1 1 2( ) ( ) .
2 2 1

j NN

N N
j

N e
t t

N C M

α

α αβ β
π − −

=

+
− = ⋅ ⋅

− −∏ 

  

Proof. Since  
2 /1 1j jik Ne eα π α−− ≤ +  and 2 / 2 / 2 / / (2 ) /j jik N k N k N MC N C k Nπ α π α π π− ≥ − ≥ − ≥ −  

we get 
2 /

2 /

1

1 1

1 2 1 1ˆ( ) ( ) ( )
2 /

1 (1 )1 1 1 .
(2 ) / 2

j

j j

ik NN
ikt N

k M k M j j

N N

N
k M k Mj j

k et t e
N N N ik N

e N e

N C k N N C k

α π
π

α α α

α α

πβ β β
π α

π π

−

> > =

> >= =

−
− = =

−

+ +
= = ⋅

− −

∑ ∑ ∏

∑ ∑∏ ∏
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The proof completes by 1 11 1 2 (2 1)N N N N
k M k M − −
>

≤ ⋅ −∑ . 

4. Conclusion 
In this paper, we present the method to implement exponential B-splines by its Poisson summation formula. We 
achieve an explicit formula on the truncation error bound for exponential B-spline. As the future work, one can 
generalize de Boor’s order recursion for the calculation of B-splines [15] into that for E-splines. 
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