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Abstract 

In this article, we propose a generalized ( )( )exp ξ−Φ -expansion method and successfully imple-

ment it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equ-
ation. The exact traveling wave solutions are established in the form of trigonometric, hyperbolic, 
exponential and rational functions with some free parameters. It is shown that this method is 
standard, effective and easily applicable mathematical tool for solving nonlinear partial differen-
tial equations arises in the field of mathematical physics and engineering. 
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1. Introduction 
The nonlinear partial differential equations (NPDEs) are widely used as model equations to study on the dy-
namics of many issues concerning in the field of mathematical physics, chemistry and engineering. Therefore, it 
is necessary to solve them analytically or numerically. Some of the methods to solve them analytically are the 
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Hirota method [1], the projective Riccati equation method [2], the homogeneous balance method [3]-[5], the 
tanh-function method [6]-[10], the exp-function method [11], the improved F-expansion method [12], the  

( )( )exp ξ−Φ -expansion method [13]-[19], sine-cosine method [20], the modified simple equation method [21], 

the ( )G G′ -expansion method [22] [23], the modified extended tanh-function method with Riccati equation [24] 

and others. In the references [13]-[19], we observe that the ( )( )exp ξ−Φ -expansion method provides only few 

solutions according to the nonlinear ordinary differential equation (ODE) ( ) ( ) ( )e eξ ξξ µ λ−Φ Φ′Φ = + + . There  
are a lot of previous literature, where the researchers have investigated exact travelling wave solutions to the 
NPDEs using the ( )( )exp ξ−Φ -expansion method. But there is no work to clarify why the coefficient of 

( )( )exp ξ−Φ  to the subsidiary equation is unity. This is the disadvantage of this method. Recently, Hafez and 
Akbar [25] have developed an exponential expansion method to solve NLPDEs by considering three auxiliary  

equations ( ) ( ) ( )e eξ ξξ µ λ−Φ Φ′Φ = + + , ( ) ( )( )2
e ξξ λ µ −Φ′Φ = − +  and ( ) ( ) ( )e eξ ξξ λ µ−Φ Φ′Φ = − − . Form this 

literature, we observe that the NLPDEs has almost similar types of solutions with the help of 

( ) ( )( )2
e ξξ λ µ −Φ′Φ = − +  and ( ) ( ) ( )e eξ ξξ λ µ−Φ Φ′Φ = − − . This is a good technique, but it is taking too much 

time for solving nonlinear evaluation equations. Recently, Hafez and Lu [26] have proposed a generalized 
( )( )exp ξ−Φ -expansion method for investigating the traveling wave solutions of the nonlinear fractional partial  

differential equations. We have proposed this method for solving NPDEs. On the other hand, through the pro-
posed method, not only re-derives all known solutions in a systemic way but also delivers several exact traveling 
wave solutions to the NPDEs found by influence of the related free parameters if the nonlinear ODE  

( ) ( ) ( )e eξ ξξ α β γ−Φ Φ′Φ = + +  is used.  
There is an amount of article [27]-[32], where the exact solutions of the standard SK equation are analyzed. 

Some exact solutions of the standard SK equation have been evaluated using different methods, such as the 
tanh-coth method [29], generalized the tanh-coth method [30] and the exp-function method [31]. The aim of this 
article is to establish the advance exponential expansion method and linking the method for evaluating the exact 
traveling wave solutions to the standard SK equation. The advantage of the proposed method over the other ex-
isting methods is that it provides new exact traveling wave solutions to the nonlinear PDEs. This article also  
shows that the proposed method is very effective and standard technique rather than the ( )( )exp ξ−Φ -expan- 

sion method and exponential expansion method. The ( )( )exp ξ−Φ -expansion method is only special case of 
the proposed advance exponential expansion method. 

2. The Methodology 
The traveling wave solutions of a nonlinear evolution equation in one space dimensional are solutions obtained 
by assuming  

( ) ( ), , ,u x t u k x V tξ ξ= = ±                                (1) 
where k is the wave number is and V is the speed of the wave. 

The method consists of writing the traveling wave solution in the following form: 

( ) ( )( )
0

e , 0
N i

i N
i

u A Aξξ −Φ

=

= ≠∑                               (2) 

where the coefficients ( )0iA i N≤ ≤  are constants to be determined and ( )ξΦ = Φ  satisfies the first order 
nonlinear ODE: 

( ) ( ) ( )e eξ ξξ α β γ−Φ Φ′Φ = + +                                (3) 
where α , β  and γ  are arbitrary constants. Furthermore, if we define AΦ = Φ + , with corresponding re-
labeling of the coefficients, then  

e , e ,A Aα α β β γ γ−= = =                                 (4) 
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This substitution results in a scaling of the coefficients of the expansion for ( )u ξ . Therefore one can set 
1α =  and 0γ = . It is notable that the solutions of Equation (3) are given in Ref. [26]. 

The value of the positive integer N can be determined by balancing the highest order derivative term with the 
nonlinear term of the highest order appearing in the reducing ODE according to the traveling wave variables 
transformation. By substituting (1) into the reduce ODE by means of Equation (2), we can easily obtain a system  
of algebraic equations for ( )0 , , , ,iA i N Vα β γ≤ ≤ . With the help of symbolic computation, such as Maple, we 

can solve the system and obtain the values ( )0 , , , ,iA i N Vα β γ≤ ≤ . The multiple explicit solutions of a nonli-
near evaluation equation will be obtained by combining the Equation (1) and the solution of Equation (3). 

3. Application of the Method 
In this section, the application of the proposed method to extract more explicit and exact traveling wave solu-
tions to the fifth order standard SK equation has been presented. The general form of an evolution equation with 
same scaling properties as the KdV [29] [30] is 

2 0t x x x x x x x x x x x xv v c v v bv v a v v+ + + + =                            (5) 

where a, b and c are arbitrary nonzero real parameters and ( ),v v x t=  is differentiable function.  
In this article, we have considered the following standard SK equation [31]: 

25 5 5 0,t x x x x x x x x x x x xu u u u u u u u+ + + + =                           (6) 

which is the special case of Equation (5). It is known that the SK equation belongs to the completely integrable 
hierarchy of higher-order model evolution equations and has many sets of conservation laws [32]-[34]. Here 
( ),u x t  represents the evaluation of surface at any varied natural instances. If we set 

( ) ( ), and ,u x t u x Vtξ ξ= = −                                 (7) 

where V is the speed of traveling wave, then we can be reduced the Equation (6) in to the following ODE: 
( )5 25 5 5 0V u u u u u u u u′ ′′′ ′ ′′ ′− + + + + =                              (8) 

Integrating (8) with respect to ξ , we obtain 

355 0
3

C V u u u u u′′′′ ′′− + + + =                                (9) 

where prime denotes derivative with respect to ξ  and C is the constant of integration. Balancing the higher 

order derivative of u′′′′  and the nonlinear term 3u  appearing in (9), we obtain 2N = . Therefore, the Equa-
tion (9) has the following form of solution: 

( ) ( ) ( )( )2

0 1 2 2e e , 0u a a a aξ ξξ −Φ −Φ= + + ≠                          (10) 

By substituting (10) into (9) and using the Equation (3), we obtain a set of algebraic equations by equating the 

coefficients of ( )( )e
iξ−Φ , ( )0,1,2, ,6i =  . Here the set of algebraic equations are overlooked for convenience. 

Solving the resulting set of algebraic equations, the following sets of solutions are obtained. 

Set 1: 2 4 2 2 2 3 3 3 2 2 2 4 2 2
0 0 0 0 0 0

1052 6 132 96 136 40 5 ,
3

C a a a a a aγ αβ γ αβ γ β α α β α β αβ γ γ= + + + + + + + + +   

0 0a a= , 1 6a αγ= − , 2
2 6a α= − , 2 2 2 2 4 2

0 0 022 5 76 5 40V a a aαβγ γ α β γ αβ= + + + + + . 

Set 2: 2 2 2 3 3 4 6128 232 8
3 3

C γ α β α β γ αβ γ= − − − , 2 4 2 28 16V αβ γ γ α β= − + + , 2
0 8a γ αβ= − − ,  

1 12a αγ= − , 2
2 12a α= − . 

When 1α = , the fifth order standard SK Equation (6) has the following explicit solutions: 
For Set 1: 
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( )
( )( ) ( )( )1

2

1 0
2 2, 6 6 , 0,

tanh 0.5 tanh 0.5
u x t a

x Vt x Vt
β βγ

γ γ

   
   = + − Θ >
   Θ Θ − + Θ Θ − +   

       (11) 

       

( )
( )( ) ( )( )2

2

1 0
2 2, 6 6 , 0,

tan 0.5 tan 0.5
u x t a

x Vt x Vt
β βγ

γ γ

   
   = − − Θ >
   −Θ −Θ − + −Θ −Θ − +   

      (12) 

( )
( )( ) ( )( )3

2

1 0, 6 6 , 0, 0
exp 1 exp 1

u x t a
x Vt x Vt
γ γγ β

γ γ

   
= − − = Θ >      − − − −   

               (13) 

( ) ( )
( )

( )
( )4

22 2

1 0, 6 6 , 0, 0, 0,
2 4 2 4

x Vt x Vt
u x t a

x Vt x Vt
γ γ

γ γ β
γ γ

   − −
= + − ≠ ≠ Θ =      − + − +   

               (14) 

( )
5

2

1 0
1, 6 , 0, 0.u x t a

x Vt
γ β = − = = − 

                            (15) 

where 2 2 2 4 2
0 0 022 5 76 5 40V a a aβγ γ β γ β= + + + + +  and 0a  are arbitrary constants. 

For Set 2: 

( )
( )( ) ( )( )1

2

2 0
2 212 12 , 0,

tanh 0.5 tanh 0.5
u a

x Vt x Vt
β βξ γ

γ γ

   
   = + − Θ >
   Θ Θ − + Θ Θ − +   

      (16) 

( )
( )( ) ( )( )2

2

2 0
2 212 12 , 0,

tan 0.5 tan 0.5
u a

x Vt x Vt
β βξ γ

γ γ

   
   = − − Θ >
   −Θ −Θ − + −Θ −Θ − +   

    (17) 

        

( )
( )( ) ( )( )3

2

2 0, 12 12 , 0, 0
exp 1 exp 1

u x t a
x Vt x Vt
γ γγ β

γ γ

   
= − − = Θ >      − − − −   

          (18) 

        

( ) ( )
( )

( )
( )4

22 2

2 0, 12 12 , 0, 0, 0,
2 4 2 4

x Vt x Vt
u x t a

x Vt x Vt
γ γ

γ γ β
γ γ

   − −
= + − ≠ ≠ Θ =      − + − +   

            (19) 

( )
5

2

2
1, 12 , 0, 0.u x t

x Vt
γ β = − = = − 

                           (20) 

where 2 4 28 16V β γ γ β= − + +  and 2
0 8a γ αβ= − −  are arbitrary constants. 

When 0γ = , the another type of explicit solutions to the fifth order standard SK Equation (6) are obtained in 
the followings form: 

( ) ( ){ }1

2 2 2 2
3 0 0 0, 6 tanh 5 76 40 , 0u x t a x a a tαβ αβ α β αβ αβ = + − − + + <              (21) 

( ) ( ){ }2

2 2 2 2
3 0 0 0, 6 tan 5 76 40 , 0u x t a x a a tαβ αβ α β αβ αβ = − − + + >              (22) 

( ) ( ){ }3

2 2 2 2
3 0 0 0, 6 coth 5 76 40 , 0u x t a x a a tαβ αβ α β αβ αβ = + − − + + <              (23) 

( ) ( ){ }4

2 2 2 2
3 0 0 0, 6 cot 5 76 40 , 0u x t a x a a tαβ αβ α β αβ αβ = − − + + >               (24) 

( ) ( )5

2

3 0 2 2 2
0 0

1, 6 , 0, 0
5 76 40

u x t a
x a a t

α β
α β αβ

 
 = − = >
 − + + 

               (25) 
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( ) ( )1

2 2 2
4 , 8 12 tanh 16 , 0u x t x tαβ αβ αβ α β αβ = − + − − <                   (26) 

( ) ( )2

2 2 2
4 , 8 12 tan 16 , 0u x t x tαβ αβ αβ α β αβ = − − − >                    (27) 

( ) ( )3

2 2 2 2
4 , 8 12 coth 16 , 0u x t x tαβ αβ αβ α β αβ = − + − − <                   (28) 

( ) ( )4

2 2 2
4 , 8 12 cot 16 , 0u x t x tαβ αβ αβ α β αβ = − − − >                    (29) 

From the solutions (11)-(29), we observe that the proposed advance exponential expansion method scheme 
relating to the subsidiary equation gives more valuable explicit form solutions to the standard SK equation.  

4. Comparison between Matinfar et al. [31] Solutions and Our Obtained Solutions 
Matinfar et al. [31] have investigated the solutions of the fifth order standard Sawada-Kotera equation using the 
exp-function method to the following forms 

( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

11 11

1 2
11 11

1 1e 4 e e 5 e
4 4, , , .
1 1e 1 e e 1 e
4 4

x t x t x t x t

x t x t x t x t
u x t u x t

− + − − + −

− + − − + −

+ + − + −
= =

+ + + +
 

On the other hand, twenty solutions including Matinfar et al. [31] solutions are constructed of this equation by 
applying the generalized expansion method. It is noteworthy to observe that the obtained solutions are new, rea-
listic and applicable to practical problems. The auxiliary equation used in this paper is different, so obtained so-
lutions is also different. It can be shown that this method is easier than other methods and applicable to other 
nonlinear evolution equations. 

5. Physical Explanations 
This section represents the physical explanations of the above determined solutions of the standard SK equations. 
The fifth order standard SK equation is an important model equation that appeared for describing several types 
of wave propagation such gravity-capillary waves, the propagation of shallow water waves over a flat surface 
and magneto-sound wave propagation in plasmas. It contains nonlinear terms and dispersive terms, so the soli-
tary wave solutions of this equation have investigated. The solitary wave is a wave which propagates without 
any temporal evolution in shape or size when viewed in the reference frame moving with the group velocity of 
the wave. From the above determined solutions, we observe that the advance ( )( )exp ξ−Φ -expansion method 
are given not only more new multiple explicit solutions but also many types of exact traveling wave solutions as 
well as non-traveling wave solutions. That is, the solution of the Equation (7) according to the auxiliary nonli-
near ordinary differential equations gives various types of traveling wave solutions, such as the solitary wave 
solution of bell type, the solitary wave solution of cuspon type, the solitary wave solution of compacton type, the 
solitary wave solution of singular kink type, the soliton solution and periodic wave solutions by taking the par-
ticular values of the additional free parameters. The obtaining new exact traveling wave solutions of the standard 
SK equation are shown in Figures 1-7. 

Figure 1 displays the exact conidal soliton like wave profile according to the solution ( )
11

,u x t  with the 
fixed values of 0 0a = , 1γ = , 0.01β =  and 6 , 6x t− ≤ ≤ . Figure 2 presents the exact soliton type wave 
profile corresponding to ( )

33 ,u x t  with fixed parameters 0 1a = , 0.5α = − , 0.5β = , and 5 , 5x t− ≤ ≤ . 
Figure 3 shows the exact cuspon type (that is the peak amplitude of soliton is narrow) wave profile correspond-
ing to ( )

13 ,u x t  with fixed parameters 0 5a = , 1α = − , 1β =  and 5 , 5x t− ≤ ≤ . Figure 4 exhibits the exact 
compacton type wave profile corresponding to the same solution ( )

13 ,u x t  with 0 0.5a = , 0.01α = − , 
0.05β =  and 5 , 5x t− ≤ ≤ . Figure 5 represents the exact solutions corresponding to the rational function solu-

tion ( )
41 ,u x t  for the fixed values of 0 0a = , 2γ = , 1β =  and 6 , 6x t− ≤ ≤ . Figure 6 shows the exact 

non-topological bell nature solitary wave profile corresponding to ( )
41 ,u x t  for 0.5α = − , 0.5β =  and 

5 , 5x t− ≤ ≤ . Figure 7 displays the exact periodic traveling wave profile corresponding to ( )
24 ,u x t  with fixed 

parameters 0.5α = , 0.5β =  and 5 , 5x t− ≤ ≤ . Finally, Figure 8 represents the exact solitary wave profile of 
singular soliton type corresponding to ( )

34 ,u x t  with fixed parametric values of 0.5α = − , 0.5β =  and  
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Figure 1. Surface plot of exact soliton like solitary wave solution.                         

 

 
Figure 2. Surface plot of exact multiple soliton like solitary wave solution.                 

 

 
Figure 3. Surface plot of exact cuspon like solitary wave solution.                           
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Figure 4. Surface plot of exact compacton like solitary wave solutions.                   

 

 
Figure 5. Surface plot of soliton type solitary wave solution.                             

 

 
Figure 6. Surface plot of exact bell like solitary wave solution.                           



M. Y. Ali et al. 
 

 
269 

 
Figure 7. Surface plot of exact periodic traveling wave solution.                        

 

 
Figure 8. Surface plot of exact singular soliton type solitary wave solution.                 

 
5 , 5x t− ≤ ≤ . Thus we should point out the theoretical as well as numerical investigation that are presented in 

this manuscript are useful in investigating the nonlinear traveling wave propagation in any natural varied in-
stance according to the variation of the parameters. 

6. Conclusion 
In this article, the generalized ( )( )exp ξ−Φ -expansion method has been proposed and successfully applied to 
find the new exact traveling wave solutions to the fifth order standard SK equation. This method not only pro-
vides some pre-published solutions extracted by other methods but can also pick up what we accept as true to be 
new solutions missed by other research scholar. The obtained solutions in this article provide that the proposed 
method is powerful, and straightforward and easily applicable for solving nonlinear evaluation equations arise in 
mathematical physics. The paper also shows that the proposed method is very standard mathematical tool to find 
the traveling wave solutions of nonlinear evaluation equations rather than other existing method, particularly the 
exponential expansion method and the ( )( )exp ξ−Φ -expansion method. We have applied this method to the 
fifth order standard SK equation, but it can be further applied to other evolution equations to construct new exact 
solutions. 
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