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Abstract 
In this paper, pursuing a new advised method called Delta method which is basically similar to 
variational method, we find the ground and excited states, according to a typical quantum Hamil-
tonian. Moreover, applying this method, the upper bound values for the eigenenergies of the so- 
called ground and excited states are estimated. We will show that this new method, is as beneficial 
as the traditional variational method which is common in deriving eigenenergies of some of the 
quantum Hamiltonians. This method helps physics students to broaden their knowledge about the 
possible mathematical ways; they can use to obtain eigenenergies of some quantum Hamiltonians. 
The advantage of Delta method to variational method is in its simplicity and reduction of the cal-
culation procedures. 
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1. Introduction 
Most problems encountered in quantum mechanics cannot be solved exactly. Exact solutions of the Schrodinger 
equation exist only for a few idealized systems. So, in order to solve general problems, one must resort to ap-
proximation methods. Up to now, a variety of such methods have been developed, and each has its own area of 
applicability. There are many methods for solving Schrodinger equation, i.e. perturbation theory [1], the varia-
tional method [1], and the WKB method [1], Supersymmetry quantum mechanics [2]-[6], Nikivorov-Uvarov 
method [7]-[9], Romanovski polynomials in quantum mechanics [10]-[12], etc. [12]-[23]. 

Three conventional approximation methods for studying the stationary states corresponding to time-indepen- 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2016.41016
http://dx.doi.org/10.4236/jamp.2016.41016
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


F. Payandeh, T. Mohammadpour 
 

 
131 

dent Hamiltonians, are: perturbation theory, the variational method, and the WKB method. Perturbation theory 
is based on the assumption that the problem we wish to solve is, in some sense, only slightly different from a 
problem that can be solved exactly. In the case where the deviation between the two problems is small, perturba-
tion theory is suitable for calculating the contribution associated with this deviation; this contribution is then 
added as a correction to the energy and the wave function of the exactly solvable Hamiltonians. So perturbation 
theory builds on the known exact solutions to obtain approximate solutions. 

But, about those systems whose Hamiltonians cannot be reduced to an exactly solvable part plus a small cor-
rection, the variational method or the WKB approximation are considered. The variational method is particularly 
useful in estimating the energy eigenvalues of the ground state and the first few excited states of a system for 
which one has only a qualitative idea about the form of the wave function. The WKB method is useful for find-
ing the energy eigenvalues and wave functions of systems for which the classical limit is valid. Unlike perturba-
tion theory, the variational and WKB methods do not require the existence of a closely related Hamiltonian that 
can be solved exactly [1]. 

The application of the approximation methods to the study of stationary states consists of finding the energy 
eigenvalues nE  and the eigenfunctions nψ  of a time-independent Hamiltonian Ĥ  that does not have ex-
act solutions: 

ˆ
n n nH Eψ ψ=  

Depending on the structure of Ĥ , we can use any of the three methods mentioned above to find the approx-
imate solutions to this eigenvalue problem. 

In this paper, we will use a new approximation method called Delta method for finding the ground and ex-
cited energy state of stationary states. This method, with a difference in the way of calculation, is somehow sim-
ilar to the variational method at the beginning. Like the variational method, we first find the time-independent 
Hamiltonian Ĥ  that does not have exact solution, using a supposed trial function and calculating the value of 
energy nE  in terms of a parameter α . Then, we will estimate the upper bound values for the eigenenergies of 
ground and excited states applying the Delta conditions 0∆ ≥  and 0D ≤  on the second and third order equa-
tions, respectively. The difference between Delta and variational methods is that in variational method the de-
rivative of E to α  is calculated and the solution for α  is obtained with affecting the conditions on E. But, in 
Delta method, we obtain the physical solutions with writing α  in terms of E in the form of a two or three order 
equation and applying the mathematical Delta conditions. Moreover, in variational method, after calculating the 
derivative of E to α  and equating it with zero to find the α  which minimizes ( )E α , i.e. in Hydrogen atom, 
sometimes one of the solutions for α  is infinite which is an unphysical solution, since it leads to a zero value 
for the ground or excited state energy. While, in delta method, only the physical solution is attained.  

It should be noted that Delta method could be applied to all of the problems to be solved through variational 
method and exactly give the same result. However, the advantage of Delta method is first in its simplicity, and 
then in reduction of the calculation procedures.  

In Section 2, we will have a review on the variational method [1]. In Section 3, we will explain Delta method 
and in Section 4, we will show the applicability and simplicity of Delta method with some examples. 

2. Variational Method  
There exist systems whose Hamiltonians are known, but they cannot be solved exactly or by a perturbative 
treatment. That is, there is no closely related Hamiltonian that can be solved exactly or approximately by per-
turbation theory because the first order is not sufficiently accurate. One of the approximation methods that are 
suitable for solving such problems is the variational method, which is also called the Rayleigh-Ritz method. This 
method does not require knowledge of simpler Hamiltonians that can be solved exactly. The variational method 
is useful for determining upper bound values for the eigenenergies of a system whose Hamiltonian is known 
whereas its eigenvalues and eigenstates are not known. It is particularly useful for determining the ground state. 
It becomes quite cumbersome to determine the energy levels of the excited states. 

In the context of the variational method, one does not attempt to solve the eigenvalue problem: 
ˆ

n n nH Eψ ψ=                                    (1) 

But rather one uses a variational scheme to find the approximate eigenenergies and eigenfunctions from the 
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variational equation: 

( ) 0Eδ ψ =                                       (2) 

where ( )E ψ  is the expectation value of the energy in the state ψ : 

( )
Ĥ

E
ψ ψ

ψ
ψ ψ

=                                   (3) 

If ψ  depends on a parameter α , ( )E ψ  will also depend on α . The variational ansatz (2) enables us to 

vary α  so as to minimize ( )E ψ . The minimum value of ( )E ψ  provides an upper limit approximation for  
the true energy of the system. The variational method is particularly useful for determining the ground state 
energy and its eigenstate without explicitly solving the Schrodinger equation. Not that for any (arbitrary) trial 
function ψ  we choose, the energy E as given by (3) is always larger than the exact energy 0E : 

0

Ĥ
E E

ψ ψ

ψ ψ
= ≥                                   (4) 

The equality condition occurs only when ψ  is proportional to the true ground state 0ψ . Because, ex-

panding the trial function ψ  in terms of the exact eigenstates of Ĥ : 

n n
n

aψ φ= ∑                                     (5) 

with 
ˆ

n n nH Eφ φ=                                     (6) 

and since 0 nE E≥  for nondegenerate one-dimensional bound systems, we have: 
2 2

0

02 2

ˆ n n n
n n

n n
n n

a E E aH
E E

a a

ψ ψ

ψ ψ
= = ≥ =

∑ ∑

∑ ∑
                         (7) 

which proves (4). 
To calculate the ground state energy, we need to carry out the following four steps: 
• First, based on physical intuition, make an educated guess of a trial function that takes into account all the 

physical properties of the ground state (symmetries, number of nodes, smoothness, behavior at infinity, etc.). For  
the properties we are not sure about, they can be included in the trial function adjustable parameters 1 2, ,α α �  

(i.e., ( )0 0 1 2, ,ψ ψ α α= � ) which will account for the various possibilities of these unknown properties. 

• Second, using (3), calculate the energy; this yields an expression which depends on the parameters 
1 2, ,α α �  : 

( )
( ) ( )
( ) ( )

0 1 2 0 1 2

0 1 2
0 1 2 0 1 2

ˆ, , , ,
, ,

, , , ,

H
E

ψ α α ψ α α
α α

ψ α α ψ α α
=

� �
�

� �
                        (8) 

In most cases ( )0 1 2, ,ψ α α �  will be assumed to be normalized; hence the denominator of this expression is 
equal to 1. 
• Third, using (8) search for the minimum of ( )0 1 2, ,E α α �  by varying the adjustable parameters iα  until 

0E  is minimized. That is, minimize ( )1 2, ,E α α �  with respect to 1 2, ,α α �  : 

( ) ( ) ( )
( ) ( )

0 1 2 0 1 20 1 2

0 1 2 0 1 2

ˆ, , , ,, ,
0

, , , ,i i

HE ψ α α ψ α αα α
α α ψ α α ψ α α

∂ ∂
= =

∂ ∂

� ��
� �

                    (9) 
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with 1, 2,i = � . This gives the values of ( )0 01 2, ,α α �  that minimize 0E . 

• Fourth, substitute these values of ( )0 01 2, ,α α �  into (8) to obtain the approximate value of the energy. The 

value of ( )0 00 1 2, ,E α α �  thus obtained, provides an upper bound for the exact ground state energy 0E . The 

exact ground state eigenstate 0φ  will then be approximated by the state ( )0 00 1 2, ,ψ α α � . 

About the energies of the excited states, it should be said that the variational method can also be used to find 
the approximate values for the energies of the first few exited states. For instance, to find the energy and eigens-
tate of the first excited state that will approximate 1E  and 1φ , we need to choose a trial function 1ψ  that 

must be orthogonal to 0ψ : 

1 0 0ψ φ =                                     (10) 

Then proceed as we did in the case of the ground state. That is, solve the variational Equation (2) for 1ψ : 

( ) ( )
( ) ( ) ( )

1 1 2 1 1 2

1 1 2 1 1 2

ˆ, , , ,
0; 1, 2,

, , , ,i

H
i

ψ α α ψ α α

α ψ α α ψ α α
∂

= =
∂

� �
�

� �
                 (11) 

Similarly, to evaluate the second excited state, we solve (2) for 2ψ  and take into account the following two 
conditions: 

2 0 2 10, 0ψ ψ ψ ψ= =                             (12) 

These conditions can be included in the variational problem by means of Lagrange multipliers, that is, by 
means of a constrained variational principle. 

In this way, we can in principle evaluate any other excited state. However, the variational procedure becomes 
increasingly complicated as we deal with higher excited states. As a result, the method is mainly used to deter-
mine the ground state. 

3. Delta Method 

In this section, we obtain the expectation value of energy in a supposed state ψ , like the variational method, 

ψ  depends on a parameter α , and finally ( )E ψ  will depend on α , too. Then, instead of minimizing 

( )E ψ  leading to a minimum value of ( )E ψ  as an upper approximate limit for the real energy of system, we 

use a new method in which we write the expectation value of energy in a supposed state ψ  in the form of a 

second order equation in terms of α , i.e. 2 0a b cα α+ + = , and using the method of finding the solution of a 

second order equation, we calculate 2 4b ac∆ = −  and then, write α  in terms of ( )E ψ , so that we have: 

2

1,2
4

2
b b ac

a
α − ± −

=                                 (13) 

where , ,a b c  are constants and the term 2 4b ac−  will be a function of E. For having a solution for α  in 
terms of E, we should have: 

20 4 0b ac∆ ≥ ⇒ − ≥                                 (14) 
Then, using this inequality, just like the variational method, an upper limit for energy is obtained that leads to 

finding the approximate value of ground or excited state energy. 
In some of the problems, the expectation value of energy in terms of α  leads to a third order equation in 

terms of E in the form of 3 2 0a b c dα α α+ + + =  using which by writing the required conditions for having 
real roots of α  in terms of E, one can find the desired solutions, i.e. the ground or excited state energy. Writing 
the required conditions for solving third order equation 3 2 0ax bx cx d+ + + = , we first write the parameters 
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, ,f q D  as the following: 
2

2
1 3
3

c bP
a a

 
= − 

 
                                    (15) 

3

3 2
1 2 9 27
27

b bc dq
aa a

 
= − + 

 
                                (16) 

3 2

3 2
p qD    = +   

   
                                   (17) 

Now, according the sign of D , the solutions for the third order equation are obtained as: 
3
2

if 0 : arccos
2 3

pqD φ
− 

  ≤ = −      

 

1
2

1 2 cos
3 3
p

y φ 
=  

 
                                  (18) 

1
2

2,3
π2 cos

3 3
p

y φ  ±
= −  

 
                                (19) 

Then, three distinct real solutions are obtained for α  in terms of E. Moreover: 
1 1

1 13 3
2 2if 0; ,

2 2
q qD u D v D

   
> = − + = − −      

   
 

1 ,y u v= +                                       (20) 

( ) 1
2

2,3 3
2 2

u v u vy i
+ − = − ±  

 
                               (21) 

then, one real solution and two complex solutions are obtained [24]. Of course, since in physical problems α  
is a real scale factor, so without the need for calculating α  in terms of E, it is sufficient to apply the Delta con-
ditions 0∆ ≥  and 0D ≤  on the second and third order equations respectively, and estimate the ground or ex-
cited state energies. It should be noted that the reason for using the condition 0D ≤  is to ensure the real solu-
tions. This method can be applied for higher order equations in terms of α , too. 

In the next section, we will consider a few examples of quantum mechanics and estimate their upper limit of 
the ground or excited state energies, using Delta method. We remark that this method can be applied as another 
approach to approximate solutions for all the problems of quantum mechanics to be solved through the varia-
tional method. In the case of selecting a suitable trial function, Delta method can be applied to a complex prob-
lem such as Poschl-Teller, Rosen-Morse, or another shape invariant potential in quantum mechanics, too. How-
ever, the main point is that proposing and guessing the suitable trial function which is based on physical intui-
tion, is very important. For example, it can be shown that with some proposal trial wave functions and applying 
some simplification, exactly the same result could be achieved for Poschl-Teller and Rosen-Morse potentials 
through both variational and Delta methods. Of course, it should be noted that up to now, a variety of approxi-
mation methods have been developed, and each has its own area of applicability. However, the main purpose of 
introducing Delta method is to show that this new method, is as beneficial as the traditional variational method 
which is common in deriving eigenenergies of some of the quantum Hamiltonians, and to help physics students 
to broaden their knowledge about the possible mathematical ways to obtain eigenenergies of some quantum 
Hamiltonians with a simpler method than the conventional variational method. 
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4. Examples 
In this section, using Delta method, we estimate the upper limit of the ground or excited state energies for a few 
examples of quantum mechanics that are obtained from the variational method, before. 

Exp. 1 
Calculating the ground and excited state energies of a one-dimensional harmonic oscillator using Delta me-

thod.  
Choosing the trial function for ground state in the form of ( ) 2

0 , e xx A αψ α −=  and writing the expectation 
value of E0 in terms of α : 

( ) 2 2
2 2

2 2 2
0 0 0 2

d 1e e d
2 2d

x xE H A m x x
m x

α αα ψ ψ ω
+∞ − −

−∞

 
= = − + 

 
∫

�  

Neglecting the calculations, we get: 

( )
2 2

0 2 8
mE

m
ωα α
α

= +
�  

In Delta method there is no need for obtaining the derivative of ( )0E α  to α . It is just sufficient to form the 
second order equation for α  in terms of E: 

( )
2 2 2 2

0
4

8
mE

m
α ωα

α
+

=
�  

Using the Delta method, the solutions for α  will be: 

( ) ( )( )2 2 2 2
0 0

1,2 2

8 8 4 4

2 4

mE mE mα α α ω
α

α

± − −
=

�

�
 

( )( ) ( ) ( )2 2 2 2
0 0 08 16 8 4

2
mE m mE m E ωα ω α ω α≥ ⇒ ≥ ⇒ ≥

�
� �  

As it can be seen, 
2
ω�  is an upper limit for ( )0E α  which is the value of the ground state energy. For ob-

taining the excited state energy, writing the trial function in the form of ( ) ( ) 2
0

1 , e E xx Bx αψ α −= , we have: 

( ) ( ) ( ) 2 2
2 2

2 2 2
1 1 1 2

2 2

d 1e e d
2 2d

3 3
2 8

x xE H B x m x x x
m x

m
m

α αα ψ α ψ α ω

ωα
α

+∞ − −

−∞

 
= = − + 

 

= +

∫
�

�
 

Again, forming the second order equation of α  in terms of ( )1E α , we get: 

( )2 2 2 2
112 8 3 0m E mα α α ω− + =�  

and then, 

( ) ( )( )2 2 2 2
1 1

1,2 2

8 8 4 12 3

2 12

mE mE mα α ω
α

± − − × ×
=

×

�

�
 

( ) ( )1 1
38 12

2
mE m E ωα ω α≥ ⇒ ≥

�
�  

which is the same value obtained from the variational method. 
Exp. 2 
Estimating the ground state energy of the Hydrogen atom using Delta method. 
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Choosing the trial function in the form of ( ), , e
r

r αψ θ ϕ
−

= , where α  is a scale factor, energy is obtained as: 

( )

2 2

2
e

H m r
E

ψ ψ
ψ ψ

α
ψ ψ ψ ψ

− +

= =

�

 

2
π 2π2 3

0 0 0
e d sin d d π

r

r rαψ ψ θ θ ϕ α
−+∞

= =∫ ∫ ∫  

22
2 2 2

0
4π e d π

re e r r e
r

αψ ψ α
−+∞

− = − = −∫  

22 2 2
2 2

2 0

4π πe d
2 2 2

r

r r
m m m

αψ ψ α
α

−+∞
− ∇ = =∫

� � �  

Now, using Delta method we have: 

( ) ( ) ( )22 2 2 2 22 2 0 8 2m E m e mE meα α α α+ − = → ≥ −� �  

( )
4

22
meE α ≥ −
�

 

that is the same estimated value for the ground state energy of the Hydrogen atom obtained from the variational 
method. 

We should note that if we find ( )E α  for Hydrogen atom through variational method with the same trial 

function ( ), , e
r

r αψ θ ϕ
−

= : 

( ) ( )

( ) ( )
2

2

2 2 2 2

2 3

2 4
2

2 2

d 0 0
d2

1 0 , 0
2

me

H e E eE E
m m

mee E E
m

α

α

ψ ψ
α α

ψ ψ α α αα α

α α
αα

=∞

=

= → = − → = → − + =

 
→ − + = → = − = 

 
�

� �

�
�������������

 

we find that one of the solutions for α  is infinite which is an unphysical solution, since it leads to a zero value 
for the ground or excited state energy. While, in Delta method, only the physical solution is attained.  

Exp. 3 
Estimation of the ground state energy of a one-dimensional harmonic oscillator by making use of Delta me-

thod with the following two trial functions:  

(a) ( )0 , e xx A αψ α −=   

(b) ( )0 2, Ax
x

ψ α
α

=
+

 

where α  is a positive real number and A is the normalization constant. 
(a) We have: 

( )

2 2
2 2

0 02

0 0

d 1
2 2d

m x
m x

E
ψ ω ψ

α
ψ ψ

− +

=

�

 

The final solution is: 
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( )2 4 2 2 22 4m m Eα ω α α+ =�  

( )2 2 4 2 2 22 4 0x m E mα α α α ω= → − + =�  

( )2 2 2 22 4 0x mxE mα ω− + =�  

( ) 2
2

E α ω≥ �  

or 

( ) 0.707E α ω≥ � , 

which is the ground state energy of a one-dimensional harmonic oscillator with the above defined trial function 
and is the same result obtained from the variational method. 

(b) We have: 

( )

( )

2 2 2 2 2
0 0 2

0 0

2 2 2 2

1 2
4 2 4

2 4

H mE m
m m

m m E

ψ ψ ω αα ω α
ψ ψ α α

ω α α α

+
= = + =

⇒ + =

� �

�

 

therefore 

( )
2

E ωα ≥
�  

Again, it is quite in accordance with the resulted solution of variational method. 
Exp. 4 
Applying Delta method, we calculate the ground state energy for a particle of mass m which is bouncing ver-

tically and elastically on a reflecting hard floor where ( )
0
0

mgz z
v z

z
>

= +∞ ≤
 and g is the gravitational constant. 

Choosing the trial function ( )0 , e zz x Az αψ −= , where α  is a parameter and A is the normalization constant, 
we can show 

3
2A zα=  and therefore: 

( ) 3
0 , 2 e zz z αψ α α −=  

( )
2 2

3
0 0 20

d4 e e d
2 d

z zE H z mgz z z
m z

α αα ψ ψ α
+∞ − − 

= = − + 
 

∫
�  

( )2 3 23 2 0m g m Eα α α+ − =� . 

In the above third order equation of α  in terms of ( )E α , using Equations (2) to (8) we have: 

( )

( ) ( ) ( ) ( )
( )

2 2 2

23 2 2

3 2 2 2 2

23 2

2 2

3 21 0 2
3

27 32 0 2 01 1 3 327
27 27

2 3
3 2

mE mEp

m gc m g m gq
a a

mE m gD

 − 
 = − = − 
  


    = − + = =       

  − = +   

   

� � �

� � �

� �

 

The third order equation has some defined solutions due to 0D ≤  or 0D >  or 0D = . The physical solu-
tion is obtained for 0D ≤  as: 

23 2

2 2
2 3 0
3 2
mE m g  − + ≤  

   � �
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( )
4 22
3 33

2 4
3

2 3
23

m gmE  ≥  
 �

�
 

( )
1

13 2 2 33 9
2 4

E mg  ≥   
  

�  

which is consistent with the solution obtained from variational method, i.e. 
1 1
3 32 23 9 1

2 2 2
E mg    ≥     

    
� . 

Exp. 5 
Estimation of the ground state energy and the corresponding wave function of a system consisting of two 

identical particles of spin 1
2

 that are confined to an isotropic three-dimensional harmonic oscillator potential of 

frequency ω  , using delta method, when the two particles do not interact. 
Choosing the trial function in the form of ( ) ( )1 2

1 2 1, , , e r r
cr r s s A αψ ψ− +=

� � � � , we have: 
2 2

2 2 2 2 2 2
1 2 1 2

1 1
2 2 2 2

H m r m r
m m

ω ω= − ∇ − ∇ + +
� �  

1 2

2 2
2 22 22 2

1 1 2 2 3 3 60 0

π4π 4π1 4π e d 4π e d
4 4

r r A
A r r r r Aα αψ ψ

α α α
+∞ +∞− −   = = = =      ∫ ∫  

23 6
2

2π π
A α α 

= = 
 

 

2 1 1
2

2 2 2 2 2
2 1 1 1

2 2 2

2

12 e d e e d
2 2

12 4

r r r
v v

H A v m r v
m

m E
m

α α αψ ψ ω

ω α
α

− − − 
= − ∇ + 

 
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Applying Delta method, we get: 
2 4 2 2 24 12 0,Em mα α ω− + =�  

which with 
2 2 2 2 2 24 12 0x x Emx mα ω= → − + =�  

we will encounter the following condition: 

8 3E ω≥ � , 
that is the same energy of the ground state obtained from the variational method. 

5. Conclusion 
In this paper, we used an alternative method of finding the ground and excited energies state of stationary states. 
Basically, it is the same as the variational method, where a time-independent Hamiltonian Ĥ  with no exact 
solution is exploited, however, in this new method, we used a trial function and calculated the value of energy 

nE  in terms of a defined parameter α . Therefore, the estimation of the upper bound values and the excited 
state energies, is based on applying the Delta conditions 0∆ ≥  and 0D ≤ , which are included respectively, in 
appropriate second and third order equations. Presenting some examples, we showed that the corresponding re-
sults which have been obtained within this new method are in consistence with those derived from the traditional 
variational method. It is remarkable that all the problems to be solved through variational method, could be 
solved through Delta method and lead to exactly the same result with the difference that Delta method is simpler 
and the calculation procedures are less than that of the variational method. 
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