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Abstract

A new lattice hierarchy related to Ragnisco-Tu equation is proposed and its gauge equivalence to
Ragnisco-Tu equation is proven. As an application of gauge transformation, we construct Darboux
transformation (DT) of this new equation through DT of Ragnisco-Tu equation. An explicit exact
solution is presented as an example.
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1. Introduction

Nonlinear integrable equations usually have some marvellous properties such as Hamilton structure and infi-
nitely many conservation laws. There are close connections between many of these equations. For instance, the
cerebrated KdV equation, modified KdV equation, and nonlinear Schrédinger equation are reduction of AKNS
system. Boussinesq equation and derivative nonlinear Schrédinger equation are linked to the constraint of KP
equation (c.f. [1]). Jaulent-Miodek equation, Kaup-Newell equation, Levi equation and Heisenberg equation
were found to be equivalent to AKNS equation [1]-[6]. The relation between two equations plays an important
role, which makes one tackle with relatively unfamiliar equations through relatively familiar equations. Howev-
er, in a general survey, there is comparatively less research on relatedness of lattice soliton equations than that of
continuous soliton equations. One of the reasons behind this actuality is the lack of related example. In this pa-
per we put forward a pair of nonlinear integrable lattice equations and investigate some relations such as gauge
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equivalence relation and Darboux transformation between them. Utilizing the relation which has been found, we
will obtain an exact solution of equation.
Ragnisco-Tu equation [7] [8]

Qnt = EQn - Rnan’ Rm = _Eian + erQn' (11)

is an integrable lattice soliton equation. Ref. [8] discussed its Hamilton structure, and proved that its continuous
limit may result in AKNS system. Ref. [9] obtained its inverse scattering transformation and exact solution. Ref.
[10]-[12] researched more general problems, and studied Hamilton structure and Darboux transformation and
geometric algerba solutions. Ragnisco-Tu equation has spectral problem [7]

A+RQ, Q,
R 1)

n

Ep,=Mg,, M :{ (1.2)
where @, =(¢1,, ¢, )T , E means a shift of space variable n, subscript t denotes partial derivative with respect to
time t, A is spectral parameter and Q,,R, are potential functions. The derivation of equation hierarchy will
be given in Section 2. This spectral problem can be generalized to

A+(A+1)qr, (4 +1)qnj

r 1 (1.3)

n

El//n :M'l//n’ VY :(l//ln’l//Zn)T! M':[

This method for constructing new lattice equation was first used in modified Toda equation [13] [14]. Surpri-
singly, equations obtained via these two spectral equations are equivalent, but this feature does not appear on
Toda equation. On this basis, we further discuss Darboux transformation of them. With the help of gauge trans-
formation and Darboux transformation of Ragnisco-Tu equation, we get a Darboux transformation of new equa-
tion, which is complex and difficult to construct directly.

This paper is organized as follows: in Section 2 and Section 3, we deduce the general hierarchies of Ragnis-
co-Tu and related generalized lattice hierarchy respectively. In Section 4, we derive a gauge transformation and
transfer operator of two hierarchies. Section 5 will contribute to the Darboux transformation of two equations.
Finally, in Section 6, a conclusion is presented.

2. The Derivation of Ragnisco-Tu Hierarchy

The derivation of Ragnisco-Tu hierarchy can be referred to [8] [9], but for completeness we still give a concise
version.
Consider time evolution corresponding to (1.2)

@0 =No,, N =[é‘ Ej (2.1)
discrete zero curvature equation results in following equalities directly
ﬂT+(RnQn)t =(A+RQ,)(E-1)A +R.EB,-QC,, (2.2)
Q.. =Q,(EA -D,)+EB, —(1+R,Q,)B,, (2.3)
R, =(4+R,Q,)EC,-C, +R,(ED, - A)), (2.4)
0=Q,EC, -R,B, +(E-1)D,. (2.5)
From these equations we draw out relations between related quantities
D=(E-1)"(R,B, -Q,EC,)+d,, (2.6)
A +D, =n1"4 +a,, (2.7)

0 n-1
where (E—l)’l defined as (E —1)'1 f, :%(—Z+ > ) f,, and d,,a, are constants independent of variable

k=n  k=—o

n. Let
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EC Ec, )
Nl n ﬂkij,
[ Bn j JZ—(:)( bnj J

the relations (2.2)-(2.5) can be written as

(Qn\J — Zk: L1 Ecn] /Ikij T (aO _2d0) n _ k_lL ECn,j+1 /,lk,j I (n +1)inil/1[ (28)
Ri) = by —(8-2d,)R, ) &7 by ju -nR, A%,
where operators L;,i=1,2 are defined as
_ QnAQn _QnARn +E- RnQn
L= R,.Q,-E'-R,AQ, R,AR, ’
0 1 _
LZ:(—l oj’ A=(E+)(E-D)". (2.9)
Giving boundary condition
l k+1
=1 0
B, 2
(? D J B 1 (2.10)
n N /1Qy=Ry=0 0 ——ﬂkﬂ
2

and taking 4, =0,a,—2d, = A% we may deduce the iso-spectral hierarchy as follows:
Qn i\ k+1 Qn
{R j =(L1|_21) [_R ) (2.11)
n/t n

The case of k = 0 just gives Ragnisco-Tu Equation (1.1).
If the boundary condition is given as

n(A+1)A" 0
[/% an _ 2 k (2.12)
Cn Dn Qn=Ry=0 0 _n(ﬂ-i—l)ﬂ,
2
and 4 = (A Jrl)/”t"*l,a0 —2d, =0 we get non-iso-spectral Ragnisco-Tu hierarchy
Q, ) K (n +1)Qn
[Rn l =(LL'+1)(LL) gy (2.13)
where | is an identity operator. In more general case, Ragnisco-Tu hierarchy is expressed by
Lemma 2.1. If @(4),p(A) arethe polynomials of 2 with degree k,k+1 respectively,
A =(A+1)Aw(2), and the boundary condition is as follows
n(A+1) 1
A B 5 w(ﬂ)+Ep(/1) 0
C D = a1 , (2.14)
n n n
Qn=Ry=0 0 ( * )a)(ﬂ,)—lp(ﬂ)
2 2
then general Ragnisco-Tu hierarchy adopts the from
Qn (n +1) Qn Qn -1
=(L+1 L +p(L ,L=LL . 2.15
o] =m0 e % - 219

3. A New Lattice Hierarchy Related to the Ragnisco-Tu Hierarchy

With regard to generalized spectral problem (1.3), introduce the time evolution
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vo =Ny, N’:[é‘; (E”LDlé)B”'J. 3.1)
Then from discrete zero curvature equation, we have
(A+1)(a.r), =[A+(2+1)q,r, [(E-1) A +(A+1)(r,EB; —q,C} )~ (1+0,1,) 4, (3.2a)
(A+1)q,, =(A+1)q, (EA, -D;)+(2+1)[ EB, - AB; —(A1+1)q,1,B; |- 0,4, (3.2b)
r,=r(ED, - A)-C+[A+(A+1)q,r, |EC;, (3.2¢)
0=(A+1)(q,EC; -r1,B;)+(E-1)D;. (3.2d)

It is ease to know that there only have three independent equations, for instance, (3.2b), (3.2c), (3.2d). Now,
from them we work out

A +D! =ni"4 +a), (3.3)
and
_ EC!
D; =-(A+1)(E-1) 1(qn,—rn)( B,”ng, (3.4)
where ag,d, are independent of n. Introducing two operators L/, L,
' anqn _anrn _qn r-n +E
L =[ o ] (3.5)
- AQ, +q,r, —E r,Ar,
, —-0,Aq, g,Ar, +1+q,r,
L, =[ ] (3.6)
rnAqn _1_ann _rnArn

we get matrix form

d, Y Eer , ECr: a, L - , a, a (n+l)qn
[rnl _Ll( Br: j_ﬁ’LZ( Br: j_(oj/1+1+(ao ZdO)(—rnj_'_/I AT[ -nr ] (3'7)

EC! k (Ec/ i )
n_ ,n, ﬂk—]l
( B, ) é{ by, J

the general lattice hierarchy (called generalized Ragnisco-Tu hierarchy) is deduced in
Lemma3.1.Let &(4) and 5(A) be the polynomials of 4 with degree kand (k+1) respectively, take
A =A(A+1)@(A),a;—2dg = p(A4), then under boundary condition

n(A+1) 1

Set

’ ’ 0 A‘ - D ﬂa 0
[Ah (/1+1)an |72 @(2)+5p(2) -
C! D; ’ '
L I 0 Y G)-La(a)
2 2
the generalized Ragnisco-Tu hierarchy is
qn r~ ’ nqn ~ [ n+1 n ~ ’ qn ’ ’ [
(r j :Lw(L){—nr j+w(L)[( —nr)q ]+p(L)[_ ] L :Ll(Lzl). (3.9)
nJt n n n

Especially when @&(4)=0 and p(4)= ¥ it is the iso-spectral hierarchy

[q“j - L**l[ n j (3.10)
r, ¢ -,
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The first one (k =0) is

4 _ G,
4, l+ann 1+ann
[ ]: L (3.11)
r” t -1 r-n + ann

1+q,r, 1+q,r,
If we take @(2)=A4",p(4)=0, then we get the non-iso-spectral hierarchy as follows

BEZEIEEY

n n

The first one (k =0) is

(n+1)E % +(n+1)q§rn
[qnj_ Legpr,  1+qpr (3.13)
r r nr, | '
" (n-pgt—t

1+ann 1+ann

Proof. Expanding (3.7) we have

qn] k ' ECr’Li k—j K ' ECI’IJH k—j =2 ~ nqn k—j
e N N BN VL B Sl B RV ke B SN Ak
(rn A ; b i; ? b 1 j; -,
k n+1 I .
+3a, (n+1)a, /1H+z,5j+l[q“];tk-l.
j=0 —nr, =1 y

Equating the coefficients of power of 1 leads to

O ) ofECu), - ((n+D)a,) . (a,
[rn,t j - Ll[ br:k J—i—a)k ( _nrn +pk+l rn ’
’ ECT’VH ' ECI{' ~ ng, ~ (n+1)qn ~ a, .
Lz( bf:vjjrl Jle( br;,jjj—i_wﬂl(_nrn]_’—wj( —nr, +'Dj+1 - ’Jzo’l’”"k_l'
L’ Ecr'h() ~ nqn ~ qn
= + .
? br:o “ —nr, & -

Through mathematical induction we get the recursion relation
Ec’ . 1 i EC i 1S _ q
’n,J =((L 1, n,0 4 L 1, L’ 1 = ( n J
[ bn,j j (( 2) Ll) ( b,:,o J 5:0(( 2) Ll) ( 2) p]—s _rn
j-1

o e w7 e e () w0

s=0
From it the conclusion of Lemma 3.1 is got.
4. A Gauge Transformation and Transfer Operator between the Ragnisco-Tu
Hierarchy and Generalized Ragnisco-Tu Hierarchy

In this section we will give the conclusion about gauge transformation and transfer operator between the Rag-

nisco-Tu hierarchy and generalized Ragnisco-Tu hierarchy.
Theorem 4.1. There exists a gauge transformation changing Lax pair of generalized Ragnisco-Tu hierarchy

(1.3), (3.1) into Lax pair of Ragnisco-Tu hierarchy:
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E_llun /unqn ©
o, =Ty,, T ={ 0 Elgt) u, =Hj:n+l(l+ q;r, ) (4.1)
Further, potentials in (1.2) and those in (1.3) have the relations
L (42)

Q, = 470, + 1, E(1,0,), R, =—"—.
7N =

When &(A)=w(1), p(4)=p(4),hierarchy (2.15) and hierarchy (3.9) satisfy

(i“ 1 ~(L+1 )a)(L)[(njnzfanrp(L)[_%n H “3)

n

_o(L)* H‘: j - L’a)(L’)(_n:;anr o L’)((“fnlr)nqnj+ p(L')(f;nﬂ.

n

L'

where Q is transfer operator defined as

-2
Hy 0
Q:( 2.2 2 J
tal iy (E+D)

Proof. As gauge transformation, T should satisfy
(ET)M'=MT. 4.4)
Set
T T
T=" 2| (4.5)
T, T,

the entries of it must meet the following equations
/1(1+ aq.r, ) ET, +q,r,ET, +1,ET, = (/1 +Q,R, )Tl +Q,T;,

ET, + (ﬂ +1) q,ET, = (ﬂ +R,Q, )T2 +Q,T,,
AET, +(/1 +1)ann ET, +r,ET, =R T, +T;,
(/1 +1)anT3 +ET,=RT,+T,.
Notice that T is independent of 4, its entries are determined easily.
Transformation matrix T also changes time evolution (3.1) into (2.1). To justify this assertion, for a newly de-
fined N=(T,+TN')T™ or N=S"(N'S-S,), where S=T, we need to prove that equality N =N is

hold. A simple calculation shows us

q (Nll lej, (46)

where
N~11 = A’l\ + E_l(ln:un)t +Cr:qn/(1+ann)’
w2 ,,2

N~12 = (Dr: - A:)qn;unEil;un +(ﬂ’ +1) Br;Eillur? _qunﬂn
+ Ot My E_llun + 0oy E_llun (1_ E_l)(ln Hy )t ,

N~21 :Cr;/Eilﬂrfv
NZZ = Dr: - Eil(ln Hy )t _Cr:qn/(l-l_ann)'

It is evident that N,,, N, N,, N, are the polynomial of A with degree k+1, k, k, k+1 respec-
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tively, which are the same as that of elements of N. In the meantime, the condition q,=r, =0 is equiva-
lent to Q, =R, =0 and thus if permitting &(4)=w(1), p(1)=p(1) then N| is valid.

Qp=1=0 =N |Qn:Rn:O
On the other hand, we can verify directly that M, =(EN)M —MN . Combining all discussed above we con-

clude that N =N. That is, the gauge transformation (4.1) conveys time evolution of (3.1) into that of (2.1).
Now we deduce transfer operator of two hierarchies. A dull calculation simplifies the expression of N, as

Ny, = 2 (EC})d? + 12 (E+1)B; +1_1’11 120,
n n n n n ﬂ,-‘rl n-in

Ec,, 2 0 Ec,;
(bJJ:[IL; 2 2 j( b!]J' (47)
nj MOy Ay (E +1) nj

where j=0,1---,k-1 foriso-spectraland j=1,2,---,k—-1 for non-iso-spectral.
Because of in the case of iso-spectral and non-iso-spectral, the following recursion formula always holds

Ec, Ec .
( b ] L;Ll[ b ] j=120 k-1,

n,j+1 n,j

Thus we have

(In the case of iso-spectral, j=0,1,---,k-1),

Ec/ . Ec’ .
n g+l L nj H _
[br ]_(LZ) I‘l[br:J \J!J_llzl ,k 1!

n,j+1

(In the case of iso-spectral, j=0,1,---,k—1), we can deduce transformation relation by substituting the above
relations into (4.7)

LLe=9o((L)"L), (4.8)

where Q s the transfer operator of two hierarchies. Comparing the coefficients of 2° in B =N,,,C, =N,,

we have
bnk bnk
According to the derivation expressions of iso-spectral and non-iso-spectral equation we arrive at the relation of

two hierarchies immediately
4(Q -1(q
L' " | =Q(L " 4.9
Z[R j (L) [) @9

n n
When we focus our attention on the iso-spectral case, (4.7) holds for j=0. Thatis
r

R 1+q.r
{ nJ:Q qn n ,
Qn qn
1+q,r,

which can be verified readily. When we concern about the non-iso-spectral case, (4.7) holds for j=1, the veri-

fication is not so easy. To get the equation
Ec Ec’
"=l M (4.10)
bnl bnl

Q(L;V[(””)q"]:L?L{ ?qn}L;l[(”“)Q"]- (4.12)

-nr, . -nR
1288

we first prove

n n
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Denote
leftlinel rightlinel
lLhs= . , rhs= _g ) .
leftline2 rightline2
It is ease to know “ leftlinel = rightlinel”. As for “line2 ” we have

2
leftline2 = nu2q, +unE(unqn)+%+un(Eun)(Enqn
+ n'n

qn A qn rn rn

_ E _ 2 A qn
Fn (l+an l+annj #Gn 1+q,r,
and
2
A A
nh _ L E n'n
1+q,r Fo (y"q”)1+ a,r,

n'n
Oty

1+q.r,

rightline2 = nz’q, + E (#ﬁqn)“L

+ 4, (E:un)(Enqn)_(lufqn —i_lunE(:unQn))A

Their difference is

r r r
/UnE(/unqn)_E(ﬂfqn)+ﬂnE(ﬂnqn) qnn _:ur?E( qn A qnn j+/unE(/unqn)Aqn—n

1+q,r, L+g,r, 140, L+,
_ E _E ) E ann _ E E 1 ﬂ:
Hn (:unqn) (’u”qn)—i_ﬂn (,unqn)1+ . o (Iunqn)( : )1+ann

The Equation (4.11) is proved.
On the other hand, through comparing the coefficients of 4* in B, = N,,,C, = N,, we have

nr

n

R 1 0
Mo g THR LT (4.12)
(n+1)Q, ng, | (ug,

1+q,r,

-1 (n+1)Qn _ r\-L1 nqn 0
LZ( R =0(L)) —or e (4.13)

Ec, Ec.
Using the recursion relations of ( b "‘j and [ b,”j together with (4.11), (4.12) and the formula of transfor-
hi

nj
mation operator (4.8) we finally obtain the recursion relation of non-iso-spectral (4.10).

Finally, we consider relevancy of two hierarchy. The time part of (4.3) has given in (4.9). The following equ-
ation is deduced according to (4.13) and (4.8)

n+1 afn 0
LzlL[( + )QnJ:Q(LZ’)l( qn j_‘r[ ) ].
_an —nr, 4G,
Equation (4.11) together with above expression yields

(L )((njananj - (L ){L’(_n::n}r[(njnlr)qnﬂ.

n n

That is

Through mathematical induction we can prove the part of @ in (4.3). The proof of part of p is similar and it

is much simpler. Thus we finish the theorem.
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5. Darboux Transformation to Generalized Ragnisco-Tu Equation

Darboux transformation is a very useful tool to obtain exact solutions of nonlinear integral equation. It plays role
in every type of equations such as lattice equation, discrete equation and high dimensional integral equation
[15]-[22]. However, the construction of DT of complex system may still encounter difficulty. Here, we will have
the aid of gauge transformation to consider DT of generalized Ragnisco-Tu equation.

5.1. Darboux Transformation to Ragnisco-Tu Equation

Consider transformation

(5.1)

(;T:Hgo,H:[/Hh‘ h, ]

h, A+h,
where h;, j=12,3,4 areindependentof 1.We can see thatitisa DT of Ragnisco-Tu hierarchy:

Lemma 5.1. (see also [12]) Suppose h,,h, -0 as |n| — oo, then aforementioned transformation (5.1) is
DT of Ragnisco-Tu hierarchy expressed by Lemma 2.1 with »(2)=0, p(1)=A"*.1f R, Q, and R,,
Q, are used to denote potentials of spectral problem (1.2) and that of spectral problem transformed through
formula (5.1) respectively, then the relations between them are formulized as follows:

én :Qn_hZ' Iin :Rn+Eh3' (52)

where h;, j=1,2,3,4 are determined by

A
hy=—L, =07 -0", A = 2,60 - 2,69, A, = 4, - 2,
j A n n 1 ]“2 n ﬂ1 n 2 /11 /12 (53)
8o = (A =2) 0707, 8y =216, = 2,6

where 6\ =6, (4;),j=12 and 6,(2) is solution of Riccati equation

R+46,

EQ =———" 9. =C +(D, —A)6, —Bo>. 54
n A+RnQn+Qn9n nt n ( n Aw) n n ( )

Proof. Transformation T as DT must solve the following equation

MH =(EH)M, M =[’1+F_Z:"Q" (i] (5.5)
Comparing coefficients of 4!, j=0,1 in entries of both side yields
R.Q,-R.Q, =(E-1)h, Q,(hR, +h,)=(Q,Eh +Eh)R,, (5.6)
Q,=Q,-h,. Q, (R, +h,) =R, (Q,Eh, +Eh,), (5.7)
R, =R, +Eh;, REh+Eh =R, (Q,Eh,+Eh,), (5.8)
R,h, —Q,Eh, =(E-1)h,. (5.9)

Suppose 4;, j=1,2 are two zeros of det(H ), then components of He are linear dependent, which means
Hp=0.Thus h; can be determined according to formulas (5.3). 3

Transformation (5.1) also change (2.1) to time evolution which matches to M . To justify this assertion, we
first consider

V =(H,+HN)H",V =(V“ V”J,

21 V22

where H™ means adjoint matrix of H. The expressions of Vi, i,j=12 areas follows
Vi =(A+h)hy —hhy +(A+h)(A+h,) A +h, (2+h,)C, —(A+h)h,B, —h,h,D,,

Vi, = (A+h)hy —hyh, —(2+h)h,A —h2C, +(A+h )" B, +(4+h)h,D,,
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V,, =(2+h,)h, —hh, +(2+h, )R A +(2+h,)°C, —h?B, —h, (2 +h,)D,,

V,, =—hhy +(A+h)h, —h,h,A —h, (1+h,)C, +(A+h)hB, +(A+h)(A1+h,)D,.

We will prove that 4, j=1,2 are zeros of Vi i,]=12 and Vi, Vg, and Vi, Vo are polynomials of 1
with degree k + 3 and k + 2 respectively. This assures entries of matrix N =(H,+HN)H™ have the same de-

grees as that of N. Assume asymptotic condition

lk{l.
—_— 0
B
Nz(A‘ ”j—> 2 , when |n| - oo,
G by 0 _ﬁ
2

and hy,h; >0 when |[n|—>o we will find that N=(H,+HN)H™ has the same asymptotic behavior.
Therefore, because of N, N also satisfy the same different equation, we say N =N, i.e., transformation (5.1)
change (2.1) into time evolution matchingto M .

Now we deal with Vy; as an example. First of all, referring to the fact that A,, D, and B,,, C, are polynomials
of 4 with degree k + 1 and k, it is ease to know Vy; is polynomial of A with degree k + 3. Secondly, accord-
ing to the definition of h;,j=1,2,3,4 we work out

Substituting them and (5.4) into Vy; gives rise to
__ 1 ® () _ a2 g2) _ g2
Vulh)= g [ (2= 2) ) (c - 240" B0

Ay 2082 (00 200 - B ) 205 2 )
H(A=2) (2 +h)CV + (4= 2,)(4, +h)a 6B |, j=12
It is not difficult to check that Vll(/lj)= 0, j=12. Noticing that det(H)=(1-4)(A-4,), we may say that

A in
N:{%‘ BJ
Cn Dn

is k + 1 power polynomial of 1. As for asymptotic behavior of Vi, obviously, |4|>1>|4,| make h,,h, —0
k+1

as |n| — oo hold. In the mean time, hy, h, tend to —4,, —A,. These results assure A1 - . When it comes

to Vi,, Va1, Vo, the proof is similar, we do not repeat it. Now we finish the proof that (5.1) is a Darboux trans-
formation of Ragnisco-Tu hierarchy.

As an application we present a exact solution to Ragnisco-Tu Equation (1.1). Starting from seed solution
R =Q =0, we first obtain a solution to Riccati Equations (5.4)

0, =" (5.10)
Then according to Lemma 5.1, a solution to Ragnisco-Tu can be calculated out as follows
s A=, 5 _ (=) (Aud) e
Q, =~ Az—ne—ﬂzl _ﬂi—ne—ilt » Ry=~ ﬂz—ne—ﬂ.zl _ﬂ{nelet ' (5.11)

5.2. Darboux Transformation to Generalized Ragnisco-Tu Equation

From gauge transformation @ =Ty, ¢ =Ty and DT of Ragnisco-Tu equation @ = Hg , we find relation be-

tween w and y:
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v =T 'HTy,
which forms DT of generalized Ragnisco-Tu equation. Matrix THT ™ admits the following form

-1 My - " - lunqn q_n/L_ln h a i
(l"'hl)E lT_,unqnhSE l:un (/1+h1) 11— _(/1+h4) -1 + _1 2 — _hsqnqn:un;un

= H, E™ 4, E-w B,

THT = _
_ o My -
hyE 41 2, (A+h,)E 1ﬂ—+ ha, 4, E " 2,

We can adopt simple notation to write it
_ [pP2+pl pa+py
v=Py, P= ) 0, 50 |
P2 Pas A+ Pz
where

1 Hn Y —— U3GOy Oy
py =B, plf) =hETEL -z g hEy,, py =S -
Hy H, E-m Ep,

©) _ 1 M9 04, h o
p12 - hl Ejl/,_:n _h4 Eﬁllunn + Eil/j /7 _haqnqnlunlun’

n/-n

_ B B L
Py = hE'w 4, ply = E ly_n' Py =h,E 2+ hyg, 4, E ',

n n
As a DT of generalized Ragnisco-Tu equation, P should satisfy
MP =(EP)M’,

where

From this expression, we can draw the following equalities
(1+,7) Y = (L+a,r, ) Epf,
oy + a5 o +3, (% e + piY)) = EplY) + q,r,Epfy + 1, (a,EpfY + ),
a, (e + plY) =1, (0, EptY +EpS)),
o+, (Fp& + oY ) = 0,Epf
pl) +a, (T b + oY )+, (T pld + pld) ) = g, (EplY +EpfY ) + Ep3.,
q, (el + pl) = a,Eply) + Ep{?,
Ty =(1+q,r,)Ep +1,Epy,
npl + pid =1, (a,Eply +EpY) ),

T, + piy =q,Ep}y + Ep};.,

T.pY + p) =q,EplY + EpLY.

(5.12)

. (5.13)

(5.14)

(5.15)

(5.16)

(5.16b)
(5.16¢)
(5.17a)
(5.17b)
(5.17¢)

(5.18a)

(5.18b)

(5.19a)

(5.19b)

The acquisition of solution of them must be combined with relation exhibited in Darboux matrix (5.13). Here we

do not consider general formula of solution but present a special solution relatedto g, =r, =0.
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Notice that det(H)=(4-4)(4-4,) and the definitions of h;, j=1,2,3,4 (5.3), we can find some simple
relations easily

hEh, = 444, B EN, = ~44,ENy, plY' P - pif plY) = 42,
When seed solution g, =r, =0 is substituted into (5.16a)-(5.19b) we find following relations
ply) = p +1 py = pf.
These equalities produce

E'Z, =h, —1—Eh—;3q‘nfn (5.20)

and
., - EE_“; (521)
Thus we get
Elg = (4+1)(4 +1),
h, -1
and form (5.17¢), we obtain
Eh, -1

g =t
(4 +1)(%4 +1)A
Substituting it into (5.21), T, is figured out

r _ (A+1)(% +1)(hER)A (5.22)

(n,~1)(EN, 1)

6. Conclusion

We propose a lattice equation hierarchy related to Rangnisco-Tu hierarchy (generalized RT equation) and prove
that it is equivalent to Rangnisco-Tu hierarchy itself. The transfer operator of two hierarchies is obtained. As an
application of gauge transformation, we obtain a Darboux transformation of generalized RT equation and ac-
quire an exact solution of this equation.
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