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Abstract 
We establish some results on the existence of multiple nontrivial solutions for a class of p(x)-Lap- 
lacian elliptic equations without assumptions that the domain is bounded. The main tools used in 
the proof are the variable exponent theory of generalized Lebesgue-Sobolev spaces, variational 
methods and a variant of the Mountain Pass Lemma. 
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1. Introduction 
The study of differential and partial differential equations involving variable exponent conditions is a new and 
interesting topic. The interest in studying such problem was stimulated by their applications in elastic mechanics 
and fluid dynamics. These physical problems were facilitated by the development of Lebesgue and Sobolev 
spaces with variable exponent. 

The existence and multiplicity of solutions of ( )p x -Laplacian problems have been studied by several 
authors (see for example [1] [2], and the references therein). 

In [3], A. R. EL Amrouss and F. Kissi proved the existence of multiple solutions of the following problem 

( )( ) ( )2div , , in ,

0, on .

p xu u f x u

u

−− ∇ ∇ = Ω

 = ∂Ω

                            (1) 
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Also Xiaoyan Lin and X. H. Tang in [4] studied the following quasilinear elliptic equation 

( ) ( ) ( )

( )

2 2

1,

div , , in ,

,

p p N

p N

u u v x u u f x u

u W

− −− ∇ ∇ + =

 ∈




                     (2) 

and they proved the multiplicity of solutions for problem (2) by using the cohomological linking method for 
cones and a new direct sum decomposition of ( )1, p NW  . 

In this paper, we consider the following problem 

( ) ( ) ( ) ( )
( ) ( )

2

1,

, , in ,

,

p x N
p x

p x N

u b x u u f x u

u W

−−∆ + =


∈




                        (3) 

where ( )
( )( )2div p x

p x u u u−∆ = ∇ ∇  is the ( )p x -Laplacian operator; ( ) : Np x →   is a Lipschitz continuous 
function with 

( ) ( ) ( )1 inf sup .
N Nx x

p p x p x p p x− +

∈ ∈

< = ≤ ≤ = < ∞




 

( )b x  is a given continuous function which satisfies 
(B0) 

( ]( )10, 0, , for all ,b m b T T− − +> < +∞ ∈  

here m is the Lebesgue measure on N. 
: Nf × →    is a Carathéodory function satisfying the subcritical growth condition 

(F0) 

( ) ( )( )1, 1 , , a.e. ,q x Nf x t c t t x−≤ + ∀ ∈ ∈   

for some 0c > , where ( ) ( )Nq x C∈  , ( )inf
Nx

p q q x+ −

∈
< =



, ( ) ( )1 ,q x p x x∗< < ∀ ∈ , and 

( )
( )
( ) ( )

( )

, ,

, .

Np x
p x N

N p xp x
p x N

∗


< −= 

∞ ≥

 

Define the subspace 
( ) ( ) ( ) ( ) ( )( ){ }1, dN

p x p xp x NE u W u b x u x= ∈ ∇ + < +∞∫  

and the functional : EΦ →  , 

( ) ( )
( ) ( ) ( )( ) ( )1 d , d , ,N N

p x p xu u b x u x F x u x u E
p x

Φ = ∇ + − ∀ ∈∫ ∫
 

 

where ( ) ( )
0

, , d
u

F x u f x t t= ∫ . 
Clearly, in order to determine the weak solutions of problem (3), we need to find the critical points of func-

tional Φ. It is well known that under (B0) and (F0), Φ is well defined and is a C1 functional. Moreover, 

( ) ( ) ( ) ( )( ) ( )2 2, d , d ,N N
p x p xu v u u v b x u uv x f x u v x− −′Φ = ∇ ∇ ∇ + −∫ ∫ 

 

for all ,u v E∈ . 
If ( ),0 0f x =  for a.e. Nx∈ , the constant function 0u =  is a trivial solution of problem (3). In the fol-

lowing, the key point is to prove the existence of nontrivial solutions for problem (3). 
Set 
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{ }

( )
( ) ( ) ( )( )

( )
( )\ 0

1 d
inf 0.1 d

N

N

p x p x

u E p x

u b x u x
p x

u x
p x

λ∗ ∈

∇ +
= >

∫

∫





                      (4) 

This paper is to show the existence of nontrivial solutions of problem (3) under the following conditions. 
(F1) 

( )
( )
( )

2

3lim , , uniformly for a.e. ,p N

t

p
F x t t x

p
λ

−
−

∗→∞ +

 
 − = −∞ ∈  
 


 

where *λ  as given in (4). 
(F2) There exist )1, pµ −∈   and 0γ > , such that 

( ) ( )0 , , , for a.e. , 0 .NF x t tf x t x tµ γ< ≤ ∈ < ≤  

(F3) There exist pθ +>  and 0K >  such that 

( ) ( )0 , , ,t K F x t tf x tθ≥ ⇒ < ≤  

for a.e. ,Nx t∈ ∀ ∈  . 

(F4) ( ) ( )1, pf x t o t
+ −=  as 0t →  and uniformly for Nx∈ , with q p− +> . Here ( )q x  is given in the 

condition (F0). 
We have the following results. 
Theorem 1.1. If ( )b x  satisfies (B0), ( )f x  satisfies (F0), (F1) and (F2), then problem (3) possesses at least 

one nontrivial solution. 
Theorem 1.2. Assume ( )b x  satisfies (B0), ( )f x  satisfies (F0), (F3) and (F4), with ( ),0 0f x =  for a.e. 

Nx∈ , then problem (3) has at least two nontrivial solutions, in which one is non-negative and another is 
non-positive. 

This paper is divided into three sections. In the second section, we state some basic preliminary results and 
give some lemmas which will be used to prove the main results. The proofs of Theorem 1.1 and Theorem 1.2 are 
presented in the third section. 

2. Preliminaries 
In this section, we recall some results on variable exponent Sobolev space ( ) ( )1, p x NW   and basic properties of 
the variable exponent Lebesgue space ( ) ( )p x NL  , we refer to [5]-[8]. 

Let ( ) ( )Np x L∞∈  , 1p− > . Define the variable exponent Lebesgue space: 
( ) ( ) ( ){ }: is a measurable function and d .N

p xp x N NL u u u x= → < +∞∫    

For ( ) ( )p x Nu L∈  , we define the following norm 

( )
( ) ( )

inf 0 d 1 .N

p x

p x

u x
u xµ

µ

  = > ≤ 
  

∫  

Define the variable exponent Sobolev space: 
( ) ( ) ( ) ( ) ( ) ( ){ }1, :  and ,p x p x p xN N N NW u u L u L= → ∈ ∇ ∈      

which is endowed with the norm 

( ) ( ) ( )1, .p x p x p xu u u= + ∇  

It can be proved that the spaces ( ) ( )p x NL   and ( ) ( )1, p x NW   are separable and reflexive Banach spaces. 
See [9] for the details. 

Proposition 2.1. [10] [11] Let 
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( ) ( ) ( ) ( )d , .N
p x p x NJ u u x u L= ∈∫   

Then we have 

1) For 0u ≠ , ( ) 1p x

uu Jµ
µ

 
= ⇔ = 

 
; 

2) ( ) ( ) ( ) ( )1 p p
p x p x p xu u J u u

− +

> ⇒ ≤ ≤ , ( ) ( ) ( ) ( )1 ;p p
p x p x p xu u J u u

+ −

< ⇒ ≤ ≤  

3) ( ) ( ) ( ) ( )1 1, 1 1 1, 1 ;p xu J u> = < ⇔ > = <  

4) ( ) ( )0 0n np xu J u→ ⇔ → , ( ) ( ) .n np xu J u→∞⇔ →∞  

For ( ) ( )Nh x L∞∈   with 1h− > , let ( ) : Nh x∗ →   satisfy 

( ) ( )
1 1 1, a.e. .Nx

h x h x∗+ = ∈  

We have the following generalized Hölder type inequality. 
Proposition 2.2. [9] [12] For any ( ) ( )h x Nu L∈   and ( ) ( )h x Nv L

∗

∈  , we have 

( ) ( )
1 1d .N h x h xuv x u v
h h ∗− ∗−

 ≤ + 
 ∫  

We consider the case that ( )b x  satisfies (B0). Define the norm 
( )

( )
( )

inf 0 d 1 .N

p x p x
u uu b x xµ
µ µ

  ∇  = > + ≤     
∫  

Then ( ),E ⋅  is continuously embedding into ( ) ( )1, p x NW   as a closed subspace. Therefore, ( ),E ⋅  is also 
a separable and reflexive Banach space. 

Similar to the Proposition 2.1, we have 
Proposition 2.3. [13] The functional ( ) ( )1,

1 : p x NJ W →   defined by 

( ) ( ) ( ) ( )( )1 dN
p x p xJ u u b x u x= ∇ +∫  

has the following properties: 

1) 10, 1uu u Jµ
µ

 
≠ = ⇔ = 

 
; 

2) ( ) ( )1 11 , 1 ;p p p pu u J u u u u J u u
− + + −

> ⇒ ≤ ≤ < ⇒ ≤ ≤  
3) ( )10 0.n nu J u→ ⇔ →  
Lemma 2.4. [13] If ( )b x  satisfies (B0), then 
1) we have a compact embedding  ( ) ( )p x NE L  ; 
2) for any measurable function : Nq →   with ( ) ( ) ( )p x q x p x∗≤  , we have a compact embedding  

 ( ) ( )q x NE L  . Here u v  means that ( ) ( )( )inf 0
Nx

v x u x
∈

− >


. 

Now, we consider the eigenvalues of the p(x)-Laplacian problem 

( ) ( ) ( ) ( )

( ) ( )

2 2

1,

, in ,

.

p x p x N
p x

p x N

u b x u u u u

u W

λ− −−∆ + =


∈




                       (5) 

For any u E∈ , define , :G H E →   by 

( ) ( )
( ) ( ) ( )( ) ( ) ( )

( )1 1d , d .N N
p x p x p xG u u b x u x H u u x

p x p x
= ∇ + =∫ ∫

 

 

For all 0t > , set 
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( ) ( ){ }1 : ,tS H t u E H u t−= = ∈ =  

then tS  is a 1C  submanifold of E since t is a regular value of H. Put 
( ){ }

,
: , ,t

t n
I S I I I nγ= ⊂ = − ≥∑  

where ( )Iγ  is the genus of I. 
Define 

( ) ( )
,

, inf sup , 1,2, .
t n

n t I u I
c G u n

∈ ∈∑
= = ⋅⋅⋅  

We denote by ( ) ( )( ){ }, ,,n t n tu λ  the eigenpair sequences of problem (5) such that 

( )( ) ( )( ) ( ), , ,, ,n t n t n tH u t G u c± = ± =  

( )

( )
( )

( ) ( )
( )

( )
( )

, ,

,

,

d
, as .

d

N

N

p x p x

n t n t

n t p x

n t

u b x u x
n

u x
λ

 ∇ + 
 = → ∞ →∞

∫

∫





 

Define 

{ }

( ) ( ) ( )( )
( )\ 0

d
inf ,

d

N

N

p x p x

p xE

u b x u x

u x
µ∗

∇ +
=

∫
∫





 

{ }

( )
( )\ 0

inf ,
E

G u
H u

µ∗ =  

infλ∗ = Λ , where ( ){ }: is an eigenvalue of 5 .λ λΛ = ∈  
Lemma 2.5. For all 0t > , let ( )1,tu  be an eigenfunction associated with ( )1,tλ  of the problem (5). Then, 

( )( ) ( ) ( ){ }1, 1, inf : .tt tG u c G u u S= = ∈  

Proof. Let ( ){ }inf :t tz G u u S= ∈ . From the definition of ( )1,tc , it is easy to see that ( )1,t tz c≤ . 
On the other hand, since the functional :G E →  is coercive and weakly lower semi-continuous and tS  is 

weakly closed subset of E, there exists 0 tu S∈  such that ( )0 tG u z± = . Letting { }0I u= ± , then ( ) 1Iγ =  and 
( )1, ttc z≤ . Thus the lemma follows.  
Lemma 2.6. 

2 2

.p p
p p

µ λ µ
− +

∗ ∗ ∗+ −

   
≤ ≤   

   
 

Proof. From Lemma 2.5, we have 

( )( )
( )( )

( )
( )

1,

1,

inf .
t

t

t

G u G u
u S

H uH u

  = ∈ 
  

 

Since 

( )( )
( )( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

1, 1,
1,

1, 1,

1, 1,

1,

1 d

1 d

d
,

d

N

N

N

N

p x p x

t t
t

p x
t t

p x p x

t t

p x

t

u b x u xG u p x

H u u x
p x

u b x u x
p
p u x

−

+

 ∇ + 
 

=

 ∇ + 
 ≤

∫

∫

∫

∫
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so we have ( )
( )
( )1, inf .tt

G up u S
H up

λ
−

+

  ≤ ∈ 
  

 Then, 

( )
( )

inf , for all 0.t
G up u S t
H up

λ
−

∗+

  ≤ ∈ > 
  

 

Thus we get 
p
p

λ µ
−

∗ ∗+ ≤  and 
p
p

λ µ
+

∗ ∗−≤ . 

Similarly, if ( ),n tu  is the eigenfunction associated with ( ),n tλ , we get ( ),n t
p
p

λ µ
−

∗+≥  and 
p
p

λ µ
−

∗ ∗+≥ . Final-

ly, we obtain .p p
p p

µ λ µ
− +

∗ ∗ ∗+ −≤ ≤  

On the other hand, it is easy to see that .p p
p p

µ µ µ
− +

∗ ∗ ∗+ −≤ ≤  Thus the lemma follows.  

Now, we consider the truncated problem 

( ) ( ) ( ) ( )
( ) ( )

2

1,

, , in ,

,

p x N
p x

p x N

u b x u u f x u

u W

−
±

−∆ + =


∈





                      ( )M ±  

where 

( ) ( ), , if 0,
,

0, otherwise.
f x t t

f x t±

 ± ≥= 


 

We denote by ( ) ( )max ,0u u+ =  and ( ) ( )max ,0u u− = −  the positive and negative parts of u. 
Lemma 2.7. 
1) If u E∈  then ( ) ( ),u u E+ − ∈  and 

( ) ( ), 0, 0, 0,
0, 0, , 0.

u u u
u u

u u u
+ −∇ > ≥ 

∇ = ∇ = ≤ ∇ < 
 

2) The mappings ( )u u ±→  are continuous on E. 
Lemma 2.8. All solutions of ( )M −  (resp. M + ) are non-positive (resp. non-negative) solutions of problem 

(3). 
Proof. Define ( ) : ,u E±Φ →   

( ) ( )
( ) ( ) ( )( ) ( )

( )
( ) ( ) ( )( ) ( )( )

1 d , d

1 d , d ,

N N

N N

p x p x

p x p x

u u b x u x F x u x
p x

u b x u x F x u x
p x

± ±

±

Φ = ∇ + −

= ∇ + −

∫ ∫

∫ ∫

 

 

 

where ( ) ( )
0

, , d .
s

F x s f x t t± ±= ∫  From Lemma 2.7 and (F0), ±Φ  is well defined on E, weakly lower semi-con- 
tinuous and C1-functionals. 

Let u be a solution of ( )M − . Taking ( )v u +=  in 

( ) ( ) ( ) ( ) ( )( )2 2 , d 0,N
p x p xu v u u v b x u uv f x u v x− −

− −′Φ = ∇ ∇ ∇ + − =∫  

we have 
( )( ) ( ) ( )

( ) ( ) ( )
1 d 0.N

p x p x
J u u b x u x+ + + = ∇ + = 

 ∫  

By virtue of Proposition 2.3, we have ( ) 0u + = , so ( ) 0u + =  and ( )u u −= , a.e. Nx∈ , then u is also a criti-
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cal point of the functional Φ with critical value ( ) ( )u u−Φ = Φ . 
Similarly, the nontrivial critical points of the functional +Φ  are non-negative solutions of problem ( )M + .  

3. Proof of Main Results 
3.1. Proof of Theorem 1.1 
To derive the Theorem 1.1, we need the following results. 

Proposition 3.1. Φ is coercive on E. 
Proof. Put 

( ) ( )
( )
( )

2

3, , .pp
L x t F x t t

p
λ

−
−

∗
+

= −  

From (F1) we have, for any 0R > , there is 0RM >  such that 
( ), , , a.e. .N

RL x t R t M x≤ − ∀ ≥ ∈  

By contradiction, let A∈  and { }nu E⊂  such that 

( )and .n nu u A→∞ Φ ≤                                 (6) 

Putting n
n

n

u
v

u
= , one has 1nv = . For a subsequence, we may assume that for some 0v E∈ , we have  

0nv v  weakly in E and 0nv v→  strongly in ( ) ( )p x NL  . 
Consequently, 0 0v ≡/ . Let { }0: 0Nx vΩ = ∈ ≡/ , via the result above we have 0Ω ≡/  and 

, a.e. .nu x→ +∞ ∈Ω  

Set 
( ) , ,

0, \ ,
n

n N

u x x
u

x

 ∈Ω= 
∈ Ω 

 

then, 

, as , a.e. .nu n x→ +∞ →∞ ∈Ω  

From (6), (F1) and Lemma 2.6, we deduce that 

( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2

1 d , d

1 d , d

, d .

N N
p x p x

n n n n

p x p x p x
n n n n

n

A u u b x u x F x u x
p x

pu b x u u x L x u x
p p

L x u x

λ
−

∗+ +Ω Ω

Ω

≥ Φ = ∇ + −

   ≥ ∇ + − −    
≥ − → +∞

∫ ∫

∫ ∫

∫

 

 

This is a contradiction. Therefore, Φ is coercive on E.  
Proposition 3.2. Assume ( )f x  satisfies (F0) and (F2), then zero is local maximum for the functional 
( )suΦ , 0u ≠ , s∈ . 
Proof. From (F2), there is a constant 1 0c >  such that 

( ) 1, , for , 0 , 1 < .NF x t c t x t pµ γ µ −≥ ∈ < ≤ ≤                      (7) 

From (F0) and 1t γ≥ > , there exists 2 0c >  such that 

( ) ( )
2, , ,  .q x NF x t c t x t γ≤ ∈ >                             (8) 

By (7) and (8), we get 

( ) ( )
1 2, , , .q x NF x t c t c t x tµ≥ − ∈ ∈                            (9) 
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For , 0, 0 1,u E u s∈ ≠ < <  we have 

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )

1 2

1 2

d d

d d .

N N

N N

p
p x p x q xq

p
p x p x q xq

L

ssu u b x u x c s u c s u x
p

s u b x u x c s u c s u x
p µ

µµ

µµ

−
−

−
−

−

−

Φ ≤ ∇ + − −

≤ ∇ + − +

∫ ∫

∫ ∫

 

 

 

Since 1 p qµ − −≤ < < , there is a ( )0 0 0s s u= >  such that 

( ) 00, for all 0 1.su s sΦ < < < <                             (10) 
Thus the proposition follows.  

Proof of Theorem 1.1. From Proposition 3.1, we know Φ is coercive on E. Since Φ has a global minimizer 
0u  on E, Φ is weakly lower semi-continuous and ( )0 0Φ = , then, in order to prove 0 0u ≠ , we need to prove 
( )0 0uΦ < . So we have the Theorem 1.1 following from Proposition 3.2.  

3.2. Proof of Theorem 1.2 
To find the properties of the p(x)-Laplacian operators, we need the following inequalities (see [10]). 

Lemma 3.3. For α  and β  in N, then there are the following inequalities 

( )( ) ( ) ( )

( )( )

2
2 2 2 2

2 2

1 , for 1 2;

2 , for 2.

n n
n n n n n

n n nn

n n

n

α α β β α β α β α β

α α β β α β α β

−
− −

− − −

 − − + ≥ − − < <  

− − ≥ − >
 

Proposition 3.4. Assume (F0), and let { }nu  be a sequence such that nu u  in E and ( ) ( )1n nu v o−′Φ =  
for all v E∈  as n →∞ , then, for some subsequences, ( ) ( )nu x u x∇ →∇ , a.e. in N, as n →∞  and 

( ) 0u v−′Φ =  for all v E∈ . 
Proof. Let 0R >  and ( )0

NCη ∞∈   such that 

( ) 20 if 2 , 1 if , 0 1 for all and .Nx R x R x x
R

η η η η= ≥ = ≤ ≤ ≤ ∈ ∇ <  

Let us denote by { }nP  the following sequence 
( ) ( )( )( )2 2 .p x p x

n n n nP u u u u u u− −= ∇ ∇ − ∇ ∇ ∇ −∇  

From Lemma 3.3, we have 0nP ≥  and 

( )
( ) ( )

( ) ( )

2

0

2

d d d

d .

N N
R

N

p x p x
n n n nB

p x
n

P x u x u u u x

u u u u x

η η

η

−

−

≤ ∇ ⋅ − ∇ ∇ ∇ ⋅

− ∇ ∇ ∇ − ⋅

∫ ∫ ∫

∫
 



 

Recalling that nu u  in E, we get 
( ) ( )2 d 0, as ,N

p x
nu u u u x nη−∇ ∇ ∇ − → →∞∫  

and so, 

( )
( ) ( ) ( )
( ) ( ) ( )

2

0

2

d d d 1

d 1 .

N N
R

N

p x p x
n n n n nB

p x
n n n n

P x u x u u u x o

u u u u x o

η η

η

−

−

≤ ∇ − ∇ ∇ ∇ +

= ∇ ∇ ∇ − +

∫ ∫ ∫

∫
 



                (11) 

On the other hand, by (11) and ( ) ( ) ( )1 ,n n nu u u oη−′  Φ − =   we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )

2

0

2

2

2

d 1 d

d , d

1 d

d , d .

N
R

N N

N

N N

p x
n n n n nB

p x
n n n n n

p x
n n n n

p x
n n n n n

P x o u u u u x

b x u u u u x f x u u u x

o u u u u x

b x u u u u x f x u u u x

η

η η

η

η η

−

− −

−

−

≤ − ∇ − ∇ ∇

− − + −

≤ − ∇ − ∇ ∇

− − + −

∫ ∫

∫ ∫

∫
∫ ∫
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Thus, 

( ) ( ) ( )

( ) ( ) ( )

1
10 sup

1 1
1 2sup sup

d 1 d

d d .

R

p x
n n n nB

p x q x
n n n n

P x o c u u u x

c b x u u u x c u u u x

η

η η

−

− −

≤ + ∇ −

+ − + −

∫ ∫

∫ ∫
 

Combining Hölder’s inequality and Sobolev embedding, we deduce that 

( )0
d 0, as .

R
nB

P x → →∞∫                                 (12) 

Let us consider the sets 

( ) ( ){ } ( ) ( ){ }1 20 1 2 and 0 2 .R RB x B p x B x B p x= ∈ < < = ∈ ≥  

From Lemma 3.3, we get 

( )
( ) ( )

2
2

12
1 , if ,n

n p x
n

u u
P p x B

u u
−

−

∇ −∇
≥ − ∈

∇ + ∇
                        (13) 

( )
22 , if .p xp

n nP u u x B
+−≥ ∇ −∇ ∈                             (14) 

Applying again Hölder’s inequality, 
( )

( ) ( ) ( ) ( )
2 2

2
1 11

d ,p x p x
p x

n n nL B L BB
u u x C g h −∇ −∇ ≤∫                        (15) 

where 

( )
( )

( )
( ) ( )( )2

2

,
p x

n
n p x p x

n

u u
g x

u u
−

∇ −∇
=

∇ + ∇

 

and 

( ) ( )
( ) ( )( )2

2 .
p x p x

n nh x u u
−

= ∇ + ∇  

Then, 

( ) ( ) ( )

1 1

2
2 d d .

p x
p xn nB B

h x u u x− = ∇ + ∇ < +∞∫ ∫                         (16) 

From (12) and (13), we have 

( )
1 1

2
d d 0, as .p xn nB B

g x C P x n≤ → →∞∫ ∫                          (17) 

By (15)-(17), we obtain 
( )

1
d 0, as .p x

nB
u u x n∇ −∇ → →∞∫                            (18) 

(12) and (14) imply that 
( )

2
d 0, as .p x

nB
u u x n∇ −∇ → →∞∫                            (19) 

From (18) and (19), nu u∇ →∇  a.e. in ( )0RB . Because R is arbitrary, it follows that for some subsequence 

a.e. in N
nu u∇ →∇  . 

Combined with Lebesgue’s dominated convergence theorem, we get 

( ) ( )
( )
( ) ( )2 2 1in .

Np x
p x p x p x N

n nu u u u L− − −
 
 ∇ ∇ ∇ ∇
 
 

                      (20) 
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By (20) and ( ) ( )1n nu v o−′Φ = , we derive that ( ) 0u v−′Φ =  for all v E∈ .  
Proposition 3.5. Assume (F0), and let d ∈  and { }nu  be a (PS)d sequence in E for ,−Φ  then { }nu  is 

bounded in E. 
Proof. From (F0), we have ( ) ( )

1, , , a.e. .q x NF x t c t t x≤ ∀ ∈ ∈   It is clear that 

( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( )

1 1

1 1

1 1 d , d

1 1d , d

1 1 d , d

1 1 d

1 1 d .

N N

N N

N N

N

N

p x p x
n n n n n n

p x p x
n n n n

p x p x
n n n

q x

n n

q x
n n

u u u u b x u x F x u x
p x

u b x u x f x u u x

u b x u x F x u x
p

J u c u x
p

J u c u x
p

θ

θ θ

θ

θ

θ

−
− −

−

−
+

−
+

+

′Φ − Φ = ∇ + −

− ∇ + +

 
≥ − ∇ + − 
 
 

≥ − − 
 
 

≥ − − 
 

∫ ∫

∫ ∫

∫ ∫

∫

∫

 

 

 





 

Assume that 1nu >  for some n N∈ , then, by Proposition 2.3, Hölder’s inequality and Sobolev embedding, 
we have 

1
1 11 .p q

n n nd u u c u
p θ

− +

+

 
+ + ≥ − − 

 
                         (21) 

Since pθ +>  and 1 p q− +< < , (21) implies that { }nu  is bounded in E.  
Proposition 3.6. Assume ( )b x  satisfies (B0), ( )f x  satisfies (F0) and (F4), and let { }nu  be a (PS)d sequence 

in E, then −Φ  satisfies the (PS) condition. 
Proof. From Proposition 3.4, we have 

( ) ( )( )( )( )2 2lim d lim d 0.N N

p x p x
n n n nn n

u u u u u u x P x− −

→∞ →∞
∇ ∇ − ∇ ∇ ∇ −∇ = =∫ ∫ 

           (22) 

By Lemma 2.4, we get 

( ) ( ) ( ) ( )lim d d .N N
p x p x

nn
b x u x b x u x

→∞
=∫ ∫ 

                        (23) 

On the other hand, Lebesgue’s dominated convergence theorem and the weak convergence of { }nu  to u in E 
show 

( ) ( ) ( ) ( )2lim d d .N N
p x p x

nn
b x u uu x b x u x−

→∞
=∫ ∫ 

                      (24) 

Moreover, since ( )
( )
( ) ( )

1
2

p x
p x

p x n nb x u u
−

−  are bounded in 
( )
( ) ( )1
p x

p x NL −  , then we have 

( )
( )
( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

1 1
2 2 1in .

p xp x p x
p x p x p x Np x p xn nb x u u b x u u L

− −
− − −   

Therefore, by virtue of the definition of weak convergence, we obtain 

( ) ( ) ( ) ( )2lim d d .N N
p x p x

n nn
b x u u u x b x u x−

→∞
=∫ ∫ 

                       (25) 

By (23)-(25), we have 

( ) ( ) ( )( )( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

2 2

2 2

lim d

lim d

0.

N

N

p x p x
n n nn

p x p xp x p x
n n n nn

b x u u u u u u x

b x u b x u b x u u u b x u uu x

− −

→∞

− −

→∞

− −

= + − −

=

∫

∫




          (26) 
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By (22) and (26), we get 
( ) ( )( )( )(

( ) ( ) ( )( )( ) )
2 2

2 2

lim d

d 0.

N

N

p x p x
n n nn

p x p x
n n n

u u u u u u x

b x u u u u u u x

− −

→∞

− −

∇ ∇ − ∇ ∇ ∇ −∇

+ − − =

∫

∫





 

Then combining Lemma 3.3, we obtain 
( ) ( ) ( )( )lim d d 0,N N

p x p x
n nn

u u x b x u u x
→∞

∇ −∇ + − =∫ ∫ 
 

which imply that nu u→  in E.  
Proposition 3.7. There exist 0r >  and 0l >  such that ( )u l−Φ ≥ , for all u E∈  with u r= . 
Proof. The conditions (F0) and (F4) imply that 

( ) ( ) ( ) ( ), , for all , .p q x NF x t t C t x tε ε
+

≤ + ∈ ×   

For u  small enough, combined with Proposition 2.3, we have 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )

1
1 , d

1 d d

1 d d .

N

N N

N N

p q xp

p p q x

u J u F x u x
p

u u x C u x
p

u u x C u x
p

ε ε

ε ε

++

+ +

−
− +

− −
+

+

Φ ≥ −

≥ − −

≥ − −

∫

∫ ∫

∫ ∫



 

 

                   (27) 

By the condition (F0), it follows 

( ) ( ) ( )* ,p p x p q q x p x− + −≤ ≤ < ≤ <  

from Lemma 2.4, which implies the existence of 4 5, 0C C >  such that 

( )4 5and , for all .pL q xu C u u C u u E+ ≤ ≤ ∈                       (28) 

Using (28) and Proposition 2.1, we deduce 
( )( ) ( ) 6d .N

q x q q
q xu x u C u
− −

≤ ≤∫


 

Combining (27), it results in that 

( ) 4 7
1 ,p p qpu u C u C u
p

ε
+ + −+

− +Φ ≥ − −  

here iC  are positives constants. Taking 0ε >  such that 4
1 ,

2
pC

p
ε

+

+≤  we obtain 

( ) 7 7
1 1 .

2 2
p q p q pu u C u u C u

p p

+ − + − +−
− + +

 
Φ ≥ − ≥ − 

 
 

Since p q+ −< , the function 7
1

2
q pt C t

P
− +−

+

 → − 
 

 is strictly positive in a neighborhood of zero. It follows 

that there exist 0r >  and 0l >  such that 
( ) , : .u l u E u r−Φ ≥ ∀ ∈ =  

 
Proposition 3.8. If u E∈  and 1s > , we have ( ) , as ,su s−Φ → −∞ → +∞  for a certain u E∈ . 
Proof. From the condition (F3), we get 
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( ), , , for all .NF x t c t t K xθ≥ ≥ ∈  

For u E∈  and 1s > , we have 

( ) ( ) ( ) ( )( ) ( )( )( )

( )
( ) ( ) ( )( ) ( )

( )1 d , d

1 d d .

N N

N N

p x p x

p x p xp

su s u b x su x F x su x
p x

s u b x u x cs u x
p x

θθ+

−
−

−

Φ = ∇ + −

≤ ∇ + −

∫ ∫

∫ ∫

 

 

 

Since pθ +> , we obtain 

( ) , as .su s−Φ → −∞ → +∞  

 
Proof of Theorem 1.2. According to the Mountain Pass Lemma, the functional −Φ  has a critical point ( )u −  

with ( )( )u l−
−Φ ≥ . But, ( )0 0−Φ = , that is, ( ) 0u − ≠ , a.e. Nx∈ . Therefore, the problem ( )M −  has a non-

trivial solution which, by Lemma 2.8, is a non-positive solution of the problem (3). 
Similarly, for functional +Φ , we still can show that there exists furthermore a non-negative solution. The 

proof of Theorem 1.2 is now complete.  
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