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Abstract

The present article is mainly devoted for solving bordered k-tridiagonal linear systems of equa-
tions. Two efficient and reliable symbolic algorithms for solving such systems are constructed. The
computational cost of the algorithms is obtained. Some illustrative examples are given.
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1. Introduction

In many scientific and engineering applications, different special linear systems of equations arise. For such
systems the coefficient matrix has special structure. Sparse matrices which contain a majority of zeros occur are
often encountered. It is usually more efficient to solve these systems using tailor-made algorithms, much faster
and with less storage than a full matrix. This can be achieved by taking advantage of the special structure of the
coefficient matrix. Important examples are tridiagonal matrices. Tridiagonal systems of linear equations take the

form:
T,Xx=g0, @
where
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X=X X001 %, ]T and g= [gl,gz,'--,gn]T . The superscript T corresponds to the transpose operation. This type
of matrices frequently appears in many applications, for example in parallel computing, telecommunication sys-
tem analysis, solving differential equations using finite differences, heat conduction and fluid flow problems. A
general nxn tridiagonal matrix of the form (2) can be stored in 3n—2 memory locations, rather than n’
memory locations for a full matrix, by using three vectors a=[a,a,,---,a,,], b=[b,b,--,b ], and
d= [dl,dz,m,dn] . This is always a good habit in computation in order to save memory space. To study tridia-
gonal matrices it is convenient to introduce a vector e defined by [1] [2]:

e=[e,e, 8] 3
where

d,, fori=1
4

&= di——ai*lb‘*l, fori=2,3,---,n.
€1

For some important results concerning tridiagonal matrix the reader may refer to [2]-[18]. The motivation of
the current paper is to derive algorithms for solving bordered k-tridiagonal linear systems of the form:

Alx =1, 5)
with
_dl 0 0 a 0 0 P, ]
0 dz 0 0 a, P,
. 0 :
0 - A a Paa
Agk)z . . . . . . . (6)
b .o L a,
0 b, 0
0 - 0 b_, d,, 0
_q1 q, - Ok bn—k 0o - - 0 dn )

where 1<k <n, x:[xl,xz,---,xn]T and f=[f,f,,, fn]T.

The linear systems (5) for k =1, frequently occur in engineering computation and analysis, e.g. in computa-
tion of electric power system and in solution of partial differential equations, as referred in [19]-[28].

Throughout this paper, LXJ denotes the greatest integer less than or equal to x. Also, the word “simplify”
means simplify the algebraic expression under consideration to its simplest rational form.

The organization of the paper is as follows: The main results are given in Section 2 and Section 3. Some illu-
strative examples are given in Section 4. A conclusion is given in Section 5.

2. Solving the System (5) via k-Tridiagonal Solvers

In this section, we are going to formulate a new symbolic algorithm, based on the Sherman-Morrison-Woodbury
formula [29], for solving bordered k-tridiagonal linear system of the form (5). By doing this, the solution of the
system (5) reduces to solving three k-tridiagonal linear systems by using k-tridiagonal solvers such as these pre-
sented in [12] [30].

Let us first note that the coefficient matrix, Aﬂk) of the system (5) can be written as:

AY =T® yvT, O]

where Tn("), U and V are given by:
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d O 0 a O 0 |
0 d, 0 0 a :
0 0
o ... a
T(k) — n—k 8
n 0 0 @)
0 b, 0
- 0 d, O
K 0 b, O 0 d, |
[ p O]
p, O
Prka O
U= Ok ! 0 =[u u,] 9
0
L O l_
and
0 g ]
0 q
2 sl S VA (10)
0 O
0 O
_1 O =
By applying the Sherman-Morrison-Woodbury formula to Aﬂ") in (7), we get:
- — — — - 71 —
(A) ' =(T+uvT) 1 =(T) 1—(Tn(k)) U (I V(1) lu) vT(T) g (11)
and
det( A") = det (Tn(k))-det(l +VT (Tn“))flu j (12)

provided that the matrix T.*) in (8) is invertible.
By making use of (7)-(12), we see that the solution of the bordered k-tridiagonal system (5) reduces to solving

three k-tridiagonal linear systems by using k-tridiagonal solvers. Consequently, we may formulate the following
symbolic algorithm for solving the linear system (5).

Algorithm 2.1. An algorithm for solving bordered k-tridiagonal linear systems.

To solve bordered k-tridiagonal linear systems of the form (5), we may proceed as follows:

INPUT: The entries of the matrix T.*) in (8) and the vectors V, U and f.

OUTPUT: The solution vector X =[x,,%,,,x,] .

Step 1: Use the k-DETGTRI algorithm [12] to check the non-singularity of the matrix Tn(k) in (8).

Step 2: If detngn(k) =0, then Exiterror (“Failure”) end if.

Step 3: Solve the three linear systems of k-tridiagonal type:

TOy=f, T¥Wz =u, and Tz, =u,,

864
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by using, for example, the k-Thomas solver in [12] then construct z = [z1 zz] .
Step 4: Compute the 2x2 matrix, H using H :(I +VT2).
If det(H)=0 then Exiterror (“Failure”) end if.
Step 5: Compute x =y—zH*V'y to get the solution vector x.
The computational cost of the algorithm is O(n). The Algorithm 2.1, will be referred to as DB-KTRI1 algo-
rithm. Parallel computations of the three linear systems in Step 3 are available for heterogeneous environments.
It should be noted that the algorithm presented in [28] is a special case of the DB-KTRI1 algorithm when
k=1.

3. Solving the System (5) Using the LU Factorization and Partition

In this section, we are going to consider the construction of a new algorithm for solving linear systems of equa-
tions of bordered k-tridiagonal type (5) by using partition. For this purpose it is convenient to introduce a vector
c=[c,,C,,-+-,C, ], whose first (n—1) components, c,c,,--,C,_, aregiven by:

d;, fori=12,---,k
d-b.,y., fori=k+1,k+2,---,n-1
where vy, = i. The last component, ¢, of the vector ¢ will be computed later on.
G
Consider the Doolittle LU factorization [31] of the coefficient matrix Aﬂ") in (6).
'dl 0 .- 0 a 0 - 0 P, ]
0 d, 0 .- 0 a . : P,
: 0 :
0 8y k-1 | Proker | fn(fl) p
bl t. . . a’n—k qT dn
0 b,
0 - 0 b, . - toody 0
_ql qQ - Oxa bn—k 0 0 dn ]
1 0 --.- 0 (14)
1 . -
0 c, O 0 a O 0 v,
0 0 c, O 0 a : A
0 0 A
A a
Cl n.—k—l
= . b, ,
CZ
' b : . Coy | Vg
0 ... Q0 -n=kt ollo --- 0 c,
Cn—k—l - -
_hl h, h - e h, 1_

where p= [ pll pz [ pn_k_]_! an—k 101 Ty O]T ’ qT = [qlnqz [ ,qn,k,l, bn—k ,0, sy 0] , P.ge R(n_l)X1 and -I’:n(i(]? is the
(n—1) th leading principal submatrix of Al
Equation (14) can be rewritten in the form:
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where

o LT o ok

0

0

0
c, 0 0 a O
0 c, O 0 aq
o -
LUl =
0
0 Cn—2
| 0
1

v :[vl,vz,...,vn_l]T and h' =[hl,h2,"':hn71]. v.he RO
From (15), we see that the following four matrix equations must be satisfied.

and

Two cases will be considered:

. n .
CASE(l): k SM'

In this case, solving (18) and (19) for h and v respectively, yields:

G4 if 1,2,k
G
1 .
—(g—-h_a) ifi=k+L,k+2,---,n—k-1,
C.
h={"
=(b-h,a,) ifi=n—k
G
ELET if i=n—k+1,n—k+2,--,n-1
Ci
D, if =12,k
p,—b‘—*kvlfk if i=k+Lk+2,---,n—k-1,
Ci—k
[l PR RV S
Ci—k
b, L
_C_Vi_k if i=n-k+Ln-k+2,---,n-1.
i-k

866

(15)

(16)

(17)
(18)

(19)

(20)

1)

(22)
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- n .
CASE(II): k>LEJ.

In this case, solving (18) and (19) for h and v respectively, gives:

Ul if i=12--n-k-1
Ci
b if i=n-k
hi: Ci (23)
0 ifi=n—-k+Ln-k+2,---k,
Bk ifi=keLk42n-1,
Ci
p; ifi=42,---,n-k-1,
8, if i=n-k
v, =40 ifi=n-k+Ln-k+2,---,k (24)
—bi—*kak if i=k+Lk+2,---,n-1.
Ci—k
In both cases, we have from (20),
n-1
C, = dn _Zhrvr' (25)
r=1

At this stage, the determinant of the coefficient matrix in (6) can be computed using the following computa-
tional symbolic algorithm.

Algorithm 3.1. An algorithm for computing the determinant of bordered k-tridiagonal matrices.

To compute the determinant of a bordered k-tridiagonal matrix in (6), we may proceed as follows:

INPUT: Order of the matrix n, the value of k and the components, a, d;, b, p;, ¢;.

OUTPUT: The determinant of the matrix Aﬂk) in (6).

Step 1: Compute ¢;, i=12,---,n-1 using (13).
If ¢,=0 forany i<n,set ¢, =t (tisjustasymbolic name) and continue to compute
Ci,1:Ciipr "+ Cyys IN its simplest rational forms, in terms of t using (13).

Step 2: Compute ¢, using (25).

Step 3: Simplify P(t):ﬁcr to obtain det(Aﬂk)): P(0).
r=1

The Algorithm 3.1, will be referred to as DB-KDETGTRI algorithm.

Remarks:

1) The DETGTRI algorithm in [1] is a special case of DB-kDETGTRI algorithm when p, =g, =0,
i=12,---,n-k-1, and k=1.

2) The k-DETGTRI algorithm in [12] is a special case of DB-KDETGTRI algorithm when p, =q, =0
i=12,---,n-k-1, and 1<k <n.

3) The PERTRI algorithm in [8] is a special case of DB-KDETGTRI algorithm when p, =t, g,=s and
p,=q =0, i=23--,n-k-1,and k=1.

4) The DETSGCM algorithm in [32] is a special case of DB-KDETGTRI algorithm when d, :—ﬁ,

a;
i=12--.n-1 dn:_ﬂn__al, ai:i, i=12--n-k, b,=2, i=23.n—k b =%
a, o o a,
qiz—M, i=12--,n-k-1 and p,=0, i=12,---,n—k-1,and k=1.(See also [33]).

a,

Now the linear system in (5), can be rewritten in partitioned form as:
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(k) (k)
L”;l |0 U”Tfl | v ﬁ — i ’ (26)
h |1 0" |c, || X:| |F

where X, :[xl,xz,---,xnfl]T, X, =[x]=%. R :[fl,fz,--yfnfl]T and F,=[f,]=f,.
To solve the linear system (26) it is equivalent to solve the two standard linear systems:

®) 1o Z, F,
w2 @
(k) X, Z,
{UonTl TV HX_Z}{Z_J (28)

where Z, :[zl,zz,-u,znfl]T and Z, :[zn]: z,. The linear systems (27) and (28) can be solved directly by
using forward and backward substitution respectively.

In conclusion, we may now formulate a second symbolic algorithm for solving the bordered k-tridiagonal
linear system (5) as follows:

Algorithm 3.2. A symbolic algorithm for solving bordered k-tridiagonal linear systems using partition.

To solve a general bordered k-tridiagonal linear system of the form (5), we may proceed as follows:

INPUT: Order of the matrix n, the value of k and the components, a;, d;, b, p;, g, and f,.

OUTPUT: The determinant of the matrix Aﬂ") in (6) and the solution vector X =[x,,X,,--,X, ]T .

Step 1: If k< EJ then

and

For i=12,---,k do
Set ¢, =d,,If ¢c,=0 then ¢, =t Endif
yi=—, z,=1,, hi:& and v, =p;.
G i
End do
For i=k+1Lk+2,---,n—k-1 do
Compute and simplify:
c=d—a_,y_.If ¢c=0.then ¢, =t Endif
b

Y =

|~ o

h==(a -h_.a).
Vi =P —Vick Yk

End do.

For i=n-k,n—-k+1,---,n-1 do
Compute and simplify:
c,=d—a_,y._.If ¢=0 then ¢, =t Endif

End do.

1
hn—k = _(bn—k - hn—2k a'n—2k )
Cn—k

Viok = 8ok — Voo Yook

For i=n-k+1Ln-k+2,---,n-1 do
Compute and simplify:

(9}

hi = _hi—k ai—k/ci .
Vi = Vi Yik-
End do.
Else

868
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For i=12,---,k do
Set ¢, =d,,If ¢,=0 then ¢, =t Endif
z, = f,.

End do

For i=k+1Lk+2,---,n-1 do
Compute and simplify:

bi—k
yi_k - Ci—k ’
c,=d —a_Yy., If ¢=0 then ¢, =t Endif
End do.

For i=12,---,n—-k-1 do
Compute and simplify:

h=%
C

Vi = ;.

End do.

hn—k = yn—k'

Vn—k = an—k'

For i=n-k+1,n-k+2,---,k do
Compute and simplify:

h =0.
v, =0.
End do.

For i=k+1k+2,---,n-1 do
Compute and simplify:

hi = _hi—k ai—k/ci :
Vi = Vi Yik-
End do.
End if

Step 2: Compute and simplify:
n-1
c,=d,-> hv,.
r=1

Step 3: Use the DB-KDETGTRI algorithm to check the non-singularity of the coefficient matrix of the
system (5).
Step 4: If the determinant of the coefficient matrix in (51) equals zero, then Exiterror (“No solutions”) End if.
Step 5: Compute the solution vector X =[x, X,,---,X,] using
For i=k+1k+2,---,n-1 do
Compute and simplify:
=% -z, Y.

End do.
n-1
z,=f,->hz,
r=1
o
"oc

Step 6: For i=n-1,n-2,---,n—-k do
Compute and simplify:
x =(z,-vix,)/c
End do.
For i=n-k-1n-k-2,---,1 do
Compute and simplify:

869
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i MNi+k

X =(z —ax
End do.

—ViX,)/c;

Step 7: Substitute t=0 in all expressions of the solution vector x;,i=1,2,---,n.

Concerning the computational cost of Algorithm 3.2, we have: For kSEJ, the computational cost is
11n-6k —10 multiplications/divisions and 8n—7k —6 additions/subtractions. The computational cost for the
case k>EJ, is 12n-8k —11 multiplications/divisions and 6n-3k —6 additions/subtractions. The Algo-

rithm 2.3, will be referred to as DB-KTRI2 algorithm.

Remarks:

e The DB-KTRI2 algorithm is a natural generalization of the algorithms in [30] and [34].
e The last component, a, , of the vector a is also the (n-k)th component of the vector p.
e The last component, b, , of the vector b is also the (n-k)th component of the vector g.

A MAPLE procedure, based on the algorithm DB-KDETGTRI and DB-KTRIZ2, is available upon request

from the authors.

4. Illustrative Examples

Example 4.1. Solve the bordered k-tridiagonal linear system

Solution: We have: n=10, k=3, a?[l,—1,4,7,3,2,4], d=[11,-215-112-12],
b=[13-125.7-3], p=[482-113], q=[3,21-114] and f =[6,8,4,81237,7,6,9] .

1

O O O O o+ OO

w

0 0 1 0 O
10 0 -1 0
0 2 0 0 4
0 0 1 0 O
3 0 0 5 0
0 -1 0 0 1
0 0 2 0 O
0 0 0 5 0
0 0 0 0 7
2 1 -1 1 4

By applying the DB-kTRI1 algorithm, we get

c :{1,1,—2,t,8,—3,(

t-14) 111 14(t—2)}

'8' 3" (t-14)

0

O Ok OO N OO

|
w

0 0 4
00 8
00 2
0 0 -1
3 0 1
0 2 3
00 4
2.0 0
0 -1 0
00 2]

© M~ 0O O

o N N w

9

T

10
. det(Tn(k)):(Hcij =(308*t-616)_, =616 Thus T,*) is nonsingular, (Steps 1, 2).
t=0

i=1

T
L4 = él_37|i!__131_45191311161§1@ )
2 11 2 117 11 14
2=[7,2,]=
1 0 0 -1 0 0 O
11
14 2
H=1+V'z= , (Step 4).
* 1319 (Step 4)
== 5
11

115

T

14 15

11 14

o 1
2

, (Step 3).
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e The solution vectoris x=y—-zH'V'y= [1,1,1,1,1,1,1,1,1,1]T , (Step 5).
Example 4.2. Solve the bordered k-tridiagonal linear system

10 0 0 1 0 0 0 O 37x]|[5]
050 0 030 00 X,

00 2 0 00 -20 0 7]x

000 -3 00 0 11 0 -2 x| |31
100 0 1 00 0 1 4fx| |7
020 0 07 0 00 9| x| |23
003 0 006 00 O0fx]||9
000 4 000 20 0fx]|-6
000 0 500 01 0fx]||6
17 -3 2 26 0 0 0 11]x,| [19]

Solution: We have: n=10, k=4, a=[13-21119], d=[152,-317,6,-2111] b=[123456],

p=[317,-2,4]", q=[17,-3,2-2] and f=[5,7,7,317, 239 -6,6,19]".
By applying the DB-kTRI2 algorithm, we have

i C={1,5,2,—3,t,2—;,9,§,t—5 1 6139t—29042}.

3"t '551 t-5

. det( ) (ch = (~221004*t +1045512)  =1045512. Hence A) is nonsingular, (Steps 3, 4).
t=0

e The solution vector is x=[1,0,1,0,1,2,1, 3,1,1]T , (Steps 5-7).
Example 4.3. Solve the bordered k-tridiagonal linear system

10 0 0 001 0 0 3| x [10]
04 0 0 0O0O0 2 0 1]|x 9
001 0 00O0 0 -1 7|x 20
00 0 -3000 0 0 -2|x —6
00 0 0100 0 0 0fx 3 1
000 0070 0 0 O0fx||7]
10 0 0 006 0 0 0}x 1
02 0 4 000 -2 0 0]fx 0
00 3 00000 1 0fx]|1
11 7 -3 4 000 0 0 11| x| [41]
Solution; We have: n=10, k=6, a=[1,2,-1,-2],

11141—3176—2111] b=[1234],
p= [317] , 9=[1,7,-3] and f_[10920 61710141
By applying the DB-kTRI1 algorithm, we get

. [141 -3,1,7,5, 34235}

. det( ) Hc =42000. Thus T |snonsingular, (Steps 1, 2).

50321 16 .. 93 59 991
.y: E s

5'2°4" 2577 5’2" 425
;
2=[7, 2,]= ) , (Step 3).
0 00— 00 O O 0 —
25 25



M. El-Mikkawy, F. Atlan

1 3
H=1+VTz=| 25| (step 4).
2
60

The solution vector is x =y-zH'V'y=[110,0,11,0,11, 3]T , (Step 5).

By applying the DB-kTRI2 algorithm, we have

c= {1, 4,1,-31, 7,5,—3,4,@}.
60

10
det(Aﬂk)) = ]_[ci =44436. Hence Ask) is nonsingular, (Steps 3, 4).
i=1

The solution vector is x =[11,0,0,1,1,0,1,1, S]T , (Steps 5-7).

5. Conclusion

In this paper we have derived two symbolic algorithms (DB-kTRI1 and DB-kTRI2) for solving bordered k-
tridiagonal linear systems. The cost of each algorithm is O(n). Our algorithm does not require any simplifying
assumptions. To the best of our knowledge, this is the first study to show how to solve bordered k-tridiagonal
linear systems. Finally, three examples are given for the sake of illustration.
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