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Abstract 
The surface wave dispersion relations of surface Plasmon at the interface of a left-handed material 
and a non-linear Kerr medium of arbitrary nonlinearity are derived based on a generalized first 
integral approach. The normalized power flow is also investigated for various values of frequency. 
The above study is conducted for both cases: self-focusing ( 0α  ) and de-focusing ( 0α  ) nonli-
near Kerr coefficient. 
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1. Introduction 
Recently there are great interest and investigation of plasmonics. This is due to the increasing of transmission in 
layered thin films composed of metals and their experimental applications. Surface Plasmons are charges oscil-
lations occurring at the interface between metal and dielectric layers. Plasmonics concerns with the surface 
Plasmons and the light interaction with metals.  

The interaction of light and surface Plasmon has increased many applications and investigation studies such 
as developed spectroscopy, high resolution microscopy and sensing, development of light sources and cloaking 
left-handed materials. 

Surface Plasmon excitation concerns with the free electrons oscillation of the interface between metal and di-
electric layers leading to the resultant excitation which depends of the optical properties of the two layers and 
the interface geometry between the two layers. The surface Plasmon excitation is also investigated at simple 
geometry interface where the left-handed material and the dielectric layers have an interface which is infinite 
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planar [1] [2]. 
In our study, a Kerr-nonlinear type dielectric has been investigated where the dielectric function of the dielec-

tric media depends on the electric field intensity. The surface Plasmons dispersion equation at a planar interface 
between a metal layer and a linear optical layer (where the wave number is k and the angular frequency is ω) can 
be expressed as the following: 

d m

d m

k
c

ε εω
ε ε

=
+

                                      (1) 

where c is the speed of light in vacuum and the dε  and mε  are dielectric functions of the dielectric and the 
metal, respectively, which can depend only on the frequency. Nonlinear dielectric-metal interface cases have 
also been investigated showing that the surface Plasmon can be excited by both TM and TE waves [3]-[5]. For 
such cases, the nonlinear surface Plasmon system is leading to the optical bistability, which has been observed 
recently in the transmission spectrum [6] and in the Goos-Handen shift [7]. It was also found that Equation (1) 
can be used with the dielectric function dε  of the intensity-dependent medium (nonlinear medium) where dε  
can be written as: 

2
d Eε ε α= +                                        (2) 

where ε is the linear part and α is a nonlinear dielectric coefficients, which frequency-dependent.  
In recent years, there has been an increasing growing interest in new artificial metamaterials. One of the most 

important reasons is due to the unusual characteristics and behaviors. Some of new interesting application of 
metamaterial is to use the left handed material or metamaterial in construction optical wave guide sensors [8] 
[9].  

Instead of a semi-infinite metallic region, we study here the surface Plasmon dispersion relation of a left- 
handed material (LHM). LHM is a medium with negative permittivity, permeability, and refractive index, which 
was initially discussed by Veselago [10] in the microwave frequency and could restore the evanescent wave- 
field components, being thus termed a perfect lens. Nowadays, the efforts have been made to design LHMs for 
optical frequencies using metallic nanowires [11]. Additionally, it was shown that photonic crystals demonstrate 
negative refraction under some conditions [12], thus resembling the most famous feature of LHMs. Many other 
features of LHM were studied in published papers [13]-[15]. In this work, we also used the correct method (first 
integral approach) to derive the dispersion relation and present numerical analysis on the limitation of the in-
exact treatment by comparing its results with the correct theory.   

2. Theory 
ollowing the theory and approach of a TM-polarized wave which is considered to be propagated at the interface 
of a Kerr-type medium and a LHM, and by ignoring any loss in both media [16]. So we can easily find out the 
dispersive relation as follows; For simplicity, we take an isotropic Kerr medium as described in Equation (2), i.e.  

( )2 2
d x zE Eε ε α= + + . For the case of anisotropic media, it is rather mathematically tedious [13]. In TM waves 

(Figure 1), we have only y component for H Field, and the electric field in both the nonlinear medium ( 0z  ) 
and the LHM ( 0z ) in general can be written as:  

( ) ( ) ( ){ } ( )1 ˆˆ, exp . .,
2 x zE r t iE z x E Z Z i t kx c cω= + − +                     (3) 

where c.c. is complex conjugate constant, and the relative phase of the two components ( )xE z  and ( )zE z  is 

out of phase π 2 . The components of the amplitudes ( )xE z , ( )zE z  and ( )yH z  in the nonlinear Kerr me-
dium were obtained from the Maxwell equations as following the approach in [16] have the form:  

2
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Figure 1. Geometry of the problem.                 

 
The solution of Maxwell Equations (4) in the LHM ( 0z ) which has a dielectric function effε , the x-com-  

ponent electric field amplitude will have the form: ( ) ( )
2

2 2
0 2exp wherex x eff effE z E qz q k

c
ω ε µ= = −  where  

effε  is selected in the form of the commonly used function for plasmon investigation , and effµ  is constructed 
in an analogous form, i.e., 

( ) ( )
2 2

2 2 21 , 1p
eff eff

r

Fω ωε ω µ ω
ω ω ω

= − = −
−

                           (5) 

The losses are neglected. Here pω  is an effective plasma frequency that depends upon the geometry of the 
system, rω  is a resonance frequency and F is a parameter that also depends upon the system structure. For the 
case of LHM, Equation (4) can be transformed to  

eff
z x

k
D E

q
ε

=−                                      (6) 

where Dz is the z component of the electric induction vector D. Equation (6) hold in a linear medium with re-
placed εd by εeff . 

The continuity of xE  and zD  across z = 0 then yields;  

( )2
0 0 0x z

eff

qE E E
k

ε α
ε

= − +                                (7) 

with ( )0 0x xE E z +≡ = , ( )0 0z zE E z +≡ =  and 0E  is the magnitude of the field.  

A standard treatment of the nonlinear region 1 invokes a “first integral” to get at an equation for 1d dxE z  
[17]. Here, the technique is generalized to arbitrary nonlinearity. Differentiating Equation (4) with respect to z 
and multiplying through by 1d dxE z , we get the following equation in region 1, as: 

2 2
1 1 1 11

1 12 2

d d d dd
d d d dd

x x x xz
n x

E E E EEk E
z z z zz c

ω ε= −                          (8) 

An integration with respect to z gives 

( )( )

2 2 2 2
2 2 21
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2 2
1 1 1 1 1 1

d1 1 1
2 d 2 2

d d ,

x
z x

x z x x z z

E
k E E

z c c c

E E E E E E C

ω ω ωε ε α
   = − − −  

   
 × + + + ∫

                      (9) 

where C is an integration constant. The key step is to recognize the identity 

( )( ) ( )22 2 2 2
2

1d d
4x z x x z z xE E E E E E E E+ + = +∫                        (10) 

The Equation (9) can be rewritten as 
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2 2 2 22 2 2 2 2 21
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                 (11) 
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Applying the boundary conditions, 1xE , 1zE , and 1d dxE z  must vanish as z→∞ , then the constant C 
equals zero. Equation (11) is valid for 0z  . 

Applying the boundary conditions at Equation (11) 0z += , then we have new notations as ( )1 00x xE E+ ≡  
and ( )1 00z zE E+ ≡  to give: 

2 2 2
2 2 2 41

0 0 02 2
0

d
d 1

x
z

z

E
k E E E

z c c
ω αωε

=

  = − −  + 
                        (12) 

where 2 2 2
0 0 0x zE E E= +  is the squared magnitude of the electric field at the interface between regions 1 and 2. 

Requiring this result to be consistent with 1d dxE z  in Equation (4) gives: 

2 2
2 2 4
0 0 02

2

2 0.
2

d
d zE E E

k c
ω ε αε ε
 

− + + = 
 

                          (13) 

Furthermore, using Equation (7) together with the relation 2 2 2
0 0 0x zE E E= + , the following expressions can be 

derived as: 
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where dε  is given from Equation (2) with 2 2
0E E= . 

Now let us apply the above results to derive an explicit and exact dispersion relation for the surface Plasmon 
at a LHM-Kerr dielectric interface. Substituting Equation (14) into Equation (13), the result can finally be re-
duced to a quadratic equation in the wave number k which, leading to the following relation: 

( ) 2 2 2 2
0

2

3 2
d eff d eff

d d eff eff

k
c E

ε ε ε ε εω

ε ε ε ε α ε ε

+ −
=

+ − −
                        (15) 

Putting the limits 0α →  or 0 0E → , dε ε→  in the Equation (15) leads to the Equation (1) as expected. 
By taking the derivative d dkω  of the Equation (15) to be zero, one can find the surface Plasmon resonance 
frequency spω . This is equivalent to find the poles of Equation (15) and by writing Equation (15) in the form:  

( )k fω ω= , one obtains ( ) ( ) 1
d dk f fω ω ω ω

−
= +   . However, the poles of ( )f ω  is to be non-negative. 

Furthermore, one can show that the additional poles from ( )f ω  will be given by 0effε =  and ( ) 2eff dε ε ε= + ,  
which are unacceptable since these will make k = 0 in Equation (15). Thus, we obtain the following implicit ex-
pression for spω  to satisfy from the poles of Equation (15): 

( ) 2

2
0 2

d d
eff

dE
ε ε ε

ε
α ε

+
= −

+
                                  (16) 

Then, the surface plasmon frequency can be solved from Equation (16) to give the following relation: 

( )
1

1 22

2
0

. 1 ,
2

d d
sp p

dE
ε ε ε

ω ω
α ε

−
  + = +    +   

                          (17) 

This result is compared and contrasted with the one from the inexact approach [18], namely, 

2
0

1 1
p p

sp
d E

ω ω
ω

ε ε α
= =

+ + +
                             (18) 

Note that even in the weak field limit, Equation (17) implies that: 
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( )2
0

,
1 2

p
sp

E

ω
ω

ε α
=

+ +
                                (19) 

which contains an extra factor of 1/2 compared within Equation(18). 
The power flow in the LHM linear medium is given by: 

2

2
eff ox

LHM

E
P

kcq
ωε

=                                     (20) 

And the power flow in the nonlinear medium is written as: 
2

0
d

2
y

d
d

HkcP z
ω ε

∞
= ∫                                    (21) 

3. Results and Discussions 
It has been noticed that the dispersion curves are obviously changed by the effect of the nonlinearity for both 
self-focusing ( 0α  ) and de-focusing ( 0α  ) nonlinear Kerr coefficient, as seen in Figure 2, related to the li-
near case where α = 0, i.e., in dielectric medium. 

In Figure 3, Surface Plasmon frequency spω  is plotted as a function of the nonlinearity ( 2
0Eα ). For 0α  , 

spω  decreases monotonically with 2
0E  while for 0α   there is a cutoff values of ( 2

0Eα ) above which no  
real solution of spω  exists. As can be noticed from Figure 3, the inset shows how the dispersion relation is 
modified by the field-dependent dielectric constant in a Kerr medium. 

The normalized power 0P P  for different values of frequency is plotted versus the wave vector k in for 
0α   (in Figure 4) and 0α   (in Figure 5). As can be seen in Figure 4 the curves show the behavior of 
0P P  is reciprocal to that of the right-handed material. This behavior is because of the left-handed material 

layer where the power flow is in the opposite direction. While in Figure 5, where 0α   the power flow shows 
two interesting behaviors, i.e., the non-reciprocal behavior and the bistability behavior. The bistability confirms 
that some of the power flow is in the positive direction while the other in the negative direction. 

4. Conclusion 
It is noticed from our above treatment that the dispersion curves are strongly dependent on the intensity of the 
electric field. The most important conclusions are that for 0α   the surface plasmon resonance frequency de- 

 

 
Figure 2. Dispersion curves for different electric field strength: 
Eo = 0 (curve 1) and 2

0E  = 9 × 1010 V2/m2, ( 0α  , curve 2) 
and ( 0α  , curve 3).                                          
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Figure 3. The surface plasmon frequency versus the field in-
tensity for different value of 0α   curve 1, and 0α   
curve 2.                                                     

 

 
Figure 4. The normalized power P/Po for different values of fre-
quency: f = 5.1 GHz (curve 1), f = 5.15 GHz (curve 2), and f = 
5.19 GHz (curve 3) for 0α  .                              

 

 
Figure 5. The normalized power P/Po for different values of fre-
quency: f = 5.11 GHz (curve 1), f = 5.15 GHz (curve 2), and f = 
5.17 GHz (curve 3) for 0α  .                               
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creases monotonically with 2
oEα  whereas for 0α  , there is a cutoff value. It has been shown that the re-

versed power flow is due to the LHM material which is acting as a mirror for 0α  , but for 0α   both re- 
versal and bistability cases have been clearly observed. The two interesting behaviors could lead to new design 
of future application in Optoelectronic-Microwave technology. 

References 
[1] Dionne, J.A., Verhagen, E., Polman, A. and Atwater, H.A. (2008) Are Negative Index Materials Achievable with Sur-

face Plasmon Waveguides? A Case Study of Three Plasmonic Geometries. Optics Express, 16, 19001-19017.  
http://dx.doi.org/10.1364/OE.16.019001 

[2] Tsakmakidis, K.L., Hermann, C., Klaedtke, A., Jamois, C. and Hess O. (2006) Surface Plasmon Polaritons in Genera-
lized Slab Heterostructures with Negative Permittivity and Permeability. Physical Review B, 73, Article ID: 085104.  
http://dx.doi.org/10.1103/PhysRevB.73.085104 

[3] Glass, N.E. and Rogovin, D. (1989) Surface-Polariton and Guided-Wave Excitation in Thin-Film Kerr Media. Physical 
Review B, 40, 1511. http://dx.doi.org/10.1103/PhysRevB.40.1511 

[4] Smolyaminoy, I.L., et al. (2002) Single-Photon Tunneling via Localized Surface Plasmons. Physical Review Letters, 
88, Article ID: 187402. http://dx.doi.org/10.1103/PhysRevLett.88.187402 

[5] Baher, S. and Cottam, M.G. (2004) Theory of Nonlinear s-Polarized Phonon-Polaritons in Multilayered Structures. 
Journal of Science, 15, 171-177. 

[6] Wurtz, G.A., Potrald, R. and Zayats, A.V. (2006) Optical Bistability in Nonlinear Surface-Plasmon Polaritonic Crystals. 
Physical Review Letters, 97, Article ID: 057402. http://dx.doi.org/10.1103/PhysRevLett.97.057402 

[7] Zhou, H., Chen, X., Hou, P. and Li, C.F. (2008) Giant Bistable Lateral Shift Owing to Surface Plasmon Excitation in 
Kretschmann Configuration with a Kerr Nonlinear Dielectric. Optical Letters, 33, 1249-1251.  
http://dx.doi.org/10.1364/OL.33.001249 

[8] Taya, S.A., Shabat, M.M. and Khalil, H.M. (2009) Enhancement of Sensitivity in Optical Waveguide Sensors Using 
Left-Handed Materials. Optik, 120, 504-508. http://dx.doi.org/10.1016/j.ijleo.2007.12.001 

[9] Taya, S.A., Shabat, M.M. and Khalil, H.M. (2008) Analysis of TM Nonlinear Asymmetrical Waveguide Optical Sen-
sors. Sensors and Actuators A: Physical, 147, 137-141. http://dx.doi.org/10.1016/j.sna.2008.05.002 

[10] Veselago, V.G. (1968) The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet 
Physics Uspekhi, 10, 509-514. http://dx.doi.org/10.1070/PU1968v010n04ABEH003699 

[11] Podolskiy, V.A., Sarychev, A.K. and Shalaev, V.M. (2002) Plasmon Modes in Metal Nanowires and Left-Handed Ma-
terials. Journal of Nonlinear Optical Physics & Materials, 11, 65-74. http://dx.doi.org/10.1142/S0218863502000833 

[12] Notomi, M. (2000) Theory of Light Propagation in Strongly Modulated Photonic Crystals: Refractionlike Behavior in 
the Vicinity of the Photonic Band Gap. Physical Review B, 62, 10696-10705. 
http://dx.doi.org/10.1103/PhysRevB.62.10696 

[13] Hamada, M.S., El-Astal, A.H. and Shabat, M.M. (2007) Nonlinear TE Surface Waves in a Photosensitive Semicon-
ductor Film Bounded by a Superconductor Cover. International Journal of Modern Physics B, 21, 1817-1825. 
http://dx.doi.org/10.1142/S0217979207037065 

[14] Hamada, M.S., El-Astal, A.H. and Shabat, M.M. (2007) Characteristic of Surface Waves in Nonlinear Left-Handed- 
Photosensitive-Semiconductor Waveguide Structure. International Journal of Modern Physics B, 21, 5319-5329. 
http://dx.doi.org/10.1142/S0217979207038459 

[15] Hamada, M.S., Ass’ad, A.I., Ashour, H.S. and Shabat, M.M. (2006) Nonlinear Magnetostatic Surface Waves in a Fer-
rite-Left-Handed Waveguide Structure. Journal of Microwaves and Optoelectronics, 5, 45-54. 

[16] Mihalache, D., Nazmitdinov, R.G. and Fedyanin, V.K. (1989) Nonlinear Optical Waves in Layered Structure. Soviet 
Journal of Nuclear Physics, 20, 86-107. 

[17] Economou, E.N. (1969) Surface Plasmons in Thin Films. Physical Review, 182, 539-554. 
http://dx.doi.org/10.1103/PhysRev.182.539 

[18] Waysin, G.M., Simon, H.J. and Deck, R.T. (1981) Optical Bistability with Surface Plasmons. Optics Letters, 6, 30-32. 
http://dx.doi.org/10.1364/OL.6.000030 
 

http://dx.doi.org/10.1364/OE.16.019001
http://dx.doi.org/10.1103/PhysRevB.73.085104
http://dx.doi.org/10.1103/PhysRevB.40.1511
http://dx.doi.org/10.1103/PhysRevLett.88.187402
http://dx.doi.org/10.1103/PhysRevLett.97.057402
http://dx.doi.org/10.1364/OL.33.001249
http://dx.doi.org/10.1016/j.ijleo.2007.12.001
http://dx.doi.org/10.1016/j.sna.2008.05.002
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
http://dx.doi.org/10.1142/S0218863502000833
http://dx.doi.org/10.1103/PhysRevB.62.10696
http://dx.doi.org/10.1142/S0217979207037065
http://dx.doi.org/10.1142/S0217979207038459
http://dx.doi.org/10.1103/PhysRev.182.539
http://dx.doi.org/10.1364/OL.6.000030

	Analytical Approach of the Nonlinear Surface Plasmon at a Left-Handed Material
	Abstract
	Keywords
	1. Introduction
	2. Theory
	3. Results and Discussions
	4. Conclusion
	References

