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Abstract

This paper considers the asymptotic dynamics of steady states to the Lotka-Volterra competition
diffusion systems with random perturbations by two-parameter white noise on the whole real line.
By the fundamental solution of heat equation, we get the asymptotic fluctuating behaviors near
the stable states respectively. That is, near the steady state (u,v)=(0,1), the mean value Eu(x,t)

is shifted above the equilibrium u=0 and Ev ( X, t) is shifted below the equilibrium v =1.How-
ever, near the steady state (u,v)=(1,0), the mean value Eu(x,t) is shifted below the equili-
brium u=1 and Ev(x,t)=0.
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1. Introduction

Nonlinear reaction diffusion systems arise in several fields and have been studied by many authors (see [1] and
the references therein). The theory of reaction diffusion waves began in the 1930s with the works by Fisher [2]
[3], Kolmogorov, Petrovsky and Piskunov [4] on propagation of dominant gene and by Zeldovich et al. [5] in
population dynamics, mathematical theory of combustion and chemical kinetics [6]. For example, H. C. Tuck-
well [7] considered the general nonlinear reaction diffusion equation driven by two-parameter white noise

U = Uy +9g(u)+eW,, D)
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where {W (x,t),x e(—oo,+oo),t > 0} was a standard two-parameter Wiener process, i.e., a Gaussian process
with E(W(x,t)):o, E(W(x,t)W(y,s)):min{x, yimin{s,t}, & was a small real constant, and g was a

function at least twice differentiable at equilibrium.

At present time, it is a well developed area of research which includes qualitative properties of traveling
wavefronts for many complex systems. Traveling waves are natural phenomena ubiquitously for reaction diff-
usion systems in many scientific areas, such as in biophysics, population genetics, mathematical ecology,
chemistry, chemical physics and so on [8]-[14]. It is pretty well understood for a diffusing Lotka-Volterra (LV)
system that there exist traveling wavefronts which propagate from an equilibrium to another one [15].

Consider the LV competition-diffusion system

u =u, +(1-u-av)u,
Vp =V, +r(1-bu—-v)yv,

@

where u(x,t)>0,v(x,t)>0,(x,t)e RxR",and a,b,r are positive constants. We look for a monotone travel-
ing wave solution of (2) (u(x,t),v(xt))=(U(&),V(&)), &=x+ct, with wave speed c under the boundary
value conditions

(U (=)V () = (v )i (U (0).V () = (..., @

where (u_,v_) and (u,,v,) are equilibria of (2):

+9 Y

l1-a 1-b j 4

(0.0), (1,0). (0.3), (1_ab’1—ab

l1-a 1-b
1-ab'1-ab
ordinary differential equations in the first quadrant, we have the following cases for the system (see [3]).

1) Monostable case:

(1,0) isstable; (0,1) isunstable, 0<a<1<b;

(1,0) isunstable; (0,1) isstable, 0<b<l<a.

2) Coexistence case:

( 1-a ﬂ} is stable, a,b<1.

1-ab 1-ab

3) Bistable case:

(1,0) and (0,1) arestable, a,b>1.

Traveling wavefronts of the system (2) have been studied very extensively. We refer readers to the references
for traveling wave solutions connecting two equilibria.

1) Conley and Gardner [16] [17]:

l1-a 1-b l-a 1-b ),
(u_,v_):[—,—jor(u+,v+):(—,—j,
l-ab 1-ab l-ab 1-ab

2) Tang and Fife [18]:

For a<lb<l or a>1b>1, ( j is a positive equilibrium. By the phase plane technique of

(u_.v.)=(0,0), (u+,V+)=(1l___;'%]

3) Kanel and Zhou [19]:

l-a 1-b )
N e AR
4) Fei and Carr [15]:

(uv )= (0.0),(u,v,) = (10)

For instance, we give some results on the traveling wave solutions of system (2).
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Theorem 1. [15] 1) If 0<a<1<b,1-a<r(b-1)<1, for the boundary value problem (2)-(3) with

(u_,v.)=(0,1),(u,,v,)=(1,0), (5)
there exist positive increasing traveling wavefronts (U (x+ct),V (x+ct)) with speed ¢ satisfying
c>2,r(b-1).

2) There do not exist traveling wavefront (U (x+ct),V (x+ct)) with speed c satisfying

1/2
r 2 2 B
c<|—|(a" - +rfBIn=
[Za( p ) p a}
where
1-r(b-1
1 p g, 0
P P a
Theorem 2. [17] Let ¢, and 6, be the velocities of the waves from (0,1) to (0,0) and from (0,0) to
(1,0), respectively. Then if 6, <@, , there is also a wave from (0,1) to (1,0).
In fact, under the conditions

2 4
=33, b=—+—, 1,2), 6
r=3a 3a+3 ae(1,2) (6)

X. X. Bao and Z. C. Wang [20] gave explicit traveling wavefronts of the system (2) which connected the
equilibria (0,1) and (1,0):

1 1

(u(xt),v(xt))=(U(&).V (&)= —, = | U]
l+e_\/; (1+e\/§J

2-a

where & =x+ct,c T

We know that in a linear system the noise does not affect the mean value at equilibrium; however, in a
nonlinear system, the mean is displaced from an equilibrium. How can one describe this displaced mean value?
H. C. Tuckwell [7] [21] gave a good idea. Using Green’s functions, he described the nonlinear effects in white
noise driven spatial diffusions. Following this idea, E. Z. Wu and Y. B. Tang [22] obtained the asymptotic
fluctuating behaviors of the traveling wavefront to the Nagumo equation near two stable steady states.

In this paper, we are interested in calculating the statistical properties of the steady states of the LV competi-
tion-diffusion system (2) under the influence of random perturbations by two-parameter white noise ¢W,, on
the whole real line R

{ut:uxx+(1—u—av)u+gth, xeR,t>0, ®
V, =V, +T(1=bu—v)y,
where W (x,t) is a two-parameter Wiener process such that, formally,
W (x,t)= J';foxw(y,s)dyds, 9)
where w(x,t) stands for a generalized Gaussian random field with zero mean and correlation function
E[w(x,t)w(y,s)]=5(x-y)5(t-s). (10)

The initial condition to (8) is (u(x,0),v(x,0))=(u,,V,) with probability one, and (u,,v,) is one of the
equilibria (0,1) and (1,0), and the boundary conditions of the traveling wavefront are (U (—0).V (—oo)) =(0,1),

(U (+o0).V (+oo)) =(1,0), r,ab are positive constants.
We present asymptotic representations of steady states of the LV competition diffusion system that it is

498



X.R.Huy, Y. B. Tang

randomly perturbed by two-parameter white noise W, on the whole real line. For a traveling wavefront
connecting two stable equilibria (u=0,v=1) and (u=1,v=0) of LV competition diffusion system, we first
derive asymptotic representations of solutions near the steady states as t — +o. Then by the fundamental
solution of heat equation on the whole real line, we get the asymptotic fluctuating behaviors of steady states near
the stable states respectively. That is, near the steady state (u,v)=(0,1), the mean value Eu(x,t) is shifted
above the equilibrium u=0 and Ev(x,t) is shifted below the equilibrium v =1. However, near the steady
state (u,v)=(1,0), the mean value Eu(x,t) is shifted below the equilibrium u=1 and Ev(x,t)=0 is not
affected by the noise perturbation.

2. Random Perturbations on a Stationary State

For & =0, under the conditions (6), the system (2) has a monotone traveling wave solution connecting the two
stable states (0,1) and (1,0).Let (u,,V,) beanequilibriumof (2),i.e., (us,v,)=(0,1) or (uy,v,)=(1,0).
We write the solution of the system (2) as

and rewrite the system (8) in the following form
u u u-u 1
= +A(u,,v, 1N (u-u,,v—v,)+ W, 12
(Vl (V]xx ( 0 O)(V—Voj ( 0 0) S(OJ xt (12)

1-2u, —av, —au,
—brv, r—bru, —2rv, )’

where

(13)

A(uo,vg)z(
(u=u,)* +a(u—uy)(v-y,)

N (U=Uy, V=V, )= , |- (14)

( ) [br(u—uo)(v—vo)”(v—vo)} H

We put (11) into (12). Equating coefficients of powers of &, we get the first two terms of a sequence of
linear stochastic partial differential equations (SPDES)

o] S | R Gt
]: @ (15)
Bt R e R

[:z E;( 83] - [8) (16)

As we know, the fundamental solution of the deterministic linear system

U (X,t) = Uy (X, t)+ Au(x,t) (17)
is
G (x1)=eG(x ), G(x1t)= meir (18)
T

where G(xt) is the Green’s function of the heat equation u, =u,, . It is easy to check that
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o0 o0 1
G(x—-y,t)dy=1 | G*(x-y,t)dy= : 19
[Le(x=y.t)dy =1, [6 (x=y.t)dy =—— (19)
From the sequence of linear SPDEs we have the solutions of initial value problems (15) and (16), respectively
( +0o0 A(t S 1 )
[vl(x 0 ” G(x-y,t-s)e 0 w(dy,ds); (20)
u, (x,t) a0 GAL9)
[VZ(X t)j jj G(x—y,t—s)e™"'N(u,v,)dyds. (21)
According to the zero-mean property of I1td integral we have
£ U (x,t) _(0 : 22)
vi(xt)) (0

- E[uf +auy, |
( j j [G(.)e dyds. (23)
v, (.t - E[bruy, + v} |

These give the expectation of stochastic process u(x,t) to order &® near the equilibrium (uo,vo)
!t ,t
E u(xt) —[% ]y e2E  (%,1) +0(32). (24)
vixt)) v, v, (x,t)
3. Asymptotic Random Perturbations on the Left Stable State

The equilibrium (0,1) is the left stable state of the traveling wavefront of (2), i.e., (U (-w),V (-))=(0,1).
Now we consider the equilibrium (u,,v,)=(0,1). Under the condition (6), the linearized matrix of (2) at (0,1)
is

A(0,1)= (1_ba 0 J (25)

—br —r

it has two negative eigenvalues 4, =1-a<0,4, =—r <0, and there is an invertible matrix
10
P= ,
-2 1

a 3 1-a O
P A(O,l)P—( 0 _r], (26)

N g o) el 0
t _ -1 _
e = P[ 0 et ] P = _2|:e(1—a)t _ efrt:| e ' (27)

Therefore, the solution of (15) is

(B0 6ty e

—j_[ (x—y,t—s)M,w(dy,ds),

(-a)(t-s)
Ml_eA(Ul)( )[1J= ¢ :
0 _Zl:e(l—a)(t—s) _e—r(t—s):|

such that

thus

(28)



X.R.Hu, Y. B. Tang

(vj J H (x—y,t—s) eAlt- )N(ul(y,s),vl(y,s))dyds o)
=[G (x=y.t=s)M, (y,5)dyds,

e (07 +auy, )

M, =
—Z[e(l’a)("s) —e ') J (07 +auy, ) +e " (bruy, +rv; )
In order to compute the expectations Eu, (x,t) and Ev, (x,t), we first calculate the following quantities

Eu? (x,t)=E (H G(x—y,t—s)e ) (dyds))

= [[76* (x—y,t-s)e’ " dyds
_ J-t 1 Q2-2)1-9) g (30)
0.8 (t - S)
t 1 2(1-a)s
= e ds.
'[0 \/8ms

Ev (Xt ( 2J'J G X—y,t— 5)|:( )(‘*5)_efr("s)}w(dy,dS))z

= 4j0f:62 (x-y,t-s) [e(l'a)(“s) ") ]2 dyds

1 —-a)(t-s —r(t-s 2
:4_[;—r(t_s) [e(l Ns) _grlt )} ds
1 —a)s s P
:4](: — [e(l S _e ] ds.

(1)

2 2
. a a
Since E(u/ +auy, )= E(u1 +Evlj s Ev/, and

e i3] =E([J o0 vt s-a)et 1 v ae ()
—“' G2(x—-y,t- s)[(l a)e ) 1+ ge” ”] dyds
(32)

) I(&/ssn(t_s) @

- J'; 1 [(1—a)e‘l"")s + ae’rs}2 ds,
s

2

~a)e" ) L ae } ds

[ee)

so we have

E(u +auy, )= I; ! {[(1— a)e ™ +ae T —a’ [e(l‘a)s e T }ds
8n (33)

=[;

[y
w

[(1— 2a)e”"° 4 2ae 1P ] ds.

[ee)

TS

2 2
since E(buy, +V; ) = E(%UHVJ —%Euf,and
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5 (34)
ft . KE—Zje(l'a)( ) 4267 s} ds
0 8n(t S) 2
2
t 1 b -
= ——2 |glt2s +2e"°} ds,
IO \8ns KZ J
S0 we have
E (bu,v +v2):jt ! b g)ewar gem 2 22 Lds
11 1 0 (87'58 2 (35)
_Jt(a—l)ez(l’ B _(a-1+r)e™ "0 yre?e s
o 8nsr/4 '
Therefore, we get
Eu, (x,t) ” G(x—y,t-s)e" M IE(uf +auy, )(y,s)dyds
:_J'Oel VIE (0 +auyy ) (y,s)ds (36)
_ t (1- t-s) [S 1 _ 2(1-a)r (1-a-r)
=—[e [, \/@[(l 2a)e +2ael }drds
Ev, (x,t) = th.[mG X—Y, t—s)e(l"i‘)(“s)E(ul2 +auy, )(y,s)dyds
—ZII (x-y,t—s)e"™ )E(u2+auv)(y,s)dyds
—H G(x-y,t—s)e " (bruy, + v )(y,s)dyds
=2J'Oel VIE (uf +auy, ) (y,s)ds
—Zﬁe’r("s (uf +au,v, )(y.s)ds
—j;e"("s)E(brulvlJrr 2)(y.s)ds,
that is,
_ t (1-a)(t-s) S 1 (1-a-r)
=2[ | \/EF[ (1-2a)e”™ " + 2ae! }drds
—r(t=s) S 1 a-r)
_2j;e (t )J‘o\/g[ (1-2a)e 2 4 2ae™ Jdrds (37)

_1)62(1—a)r _(a 1+ r)e(l—a—r)r n re—er

8nr

dzds.

g

As complexity of the formula of expectation E[u,(x,t)] and E[v,(x.t)], itis very difficult to determine
the signs of E[u,(x,t)] and E[v,(xt)] respectively, we just consider the asymptotic behavior of

E[uz(x,t)] and E[vz(x,t)] as t— +o.
By the formula
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jom%e”‘sds = \/E (a>0), (38)
S [04

and I’Hopital’s rule, we have

lim Eu, =~ lim Iel‘ (=) j ! [(1—2a)e2(1‘a)’+2ae1 e }drds

ts-n o f8nr

ﬁe‘“‘a)s j; ! [(1—2a)e2(1‘a)’ +2aet 1" }drds

——lim cliis

t—>-+o0 e—(l—a)l

.[M\/g_[l 2a)e" )’+2ae(1'a")’]dr
T

_ m{(l— 2a)\/2(a”_1) * Za\/r - a}

1 {Za—l _2a }
(a-1)v8[V2a-2 4a-1
8a®-12a% +8a-1

) V8(a-1)v2a-2+4a-1[(2a-1)V4a-1+2av2a-2 ]

Denote f(a)=8a°-12a’+8a-1,a<(1,2), since

(39)

f'(a)=24a’ -24a+8
1 2
- 24(a——] +2>0,
2

and f(1)=3>0,then f(a)>0, ae(1,2), therefore
lim Eu, > 0. (40)

t—>+0

Similarly, we have

lim Ev, (x,t)=2 lim e A2 pgetarr ]drds

(1-a)(t-s) (-
Jim Jim j M[ (1-2a)e

=2 im | e (- sj

t—+0

[ 1- 2a)e2(l'a)’ +2ae2" }drds

\N8rnt

J- J' ez(l a)r _(a 1+ r)e(l—a—r)r +re 2

-4 lim

t—>+0

T o drds

t —(1-a)s S 1 2(1-a)r (1-a-r)r
e 1-2a)e +2ae' dzds
~2lim S I

t—+o0 e—(l—a)t

J“erSJ'OS\/817[(1—2a)e2(1’£")7+2ael ald }dfds
TT

t—+0 e

[(a ~1)e* " —(a-1+r)e" ) e J drds

rt

s el’S
.[;Io M

t—>+0 e

rt

calculating the limits we have
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(1-2a)e”™® )T+2ae(1'a")f]dr—gj+w ! [(1 2a)e™?r
r

N B, (%) = 2= et an_r[ N

+2aet " }dz’—i o 1 [(a—l)ez(l‘a)’—(a—l+r)e(1‘a‘r) +re’2”}dr

r'o J8nr
2 b T 2 i
=(a_1)\/§|:(l_2a)\/2(a—l)+2a\/r+a—1}_r 8n{(1—2a) —Z(a—l)

+2a\/I}—rjﬁ{(a—l)\/%—(a—lﬂ)\/gﬂ\/;},

as r=3a in(6), wehave

(41)

V2a  2a-1| 1| J2a @ 2a-1
Jlim Ev, (x,t) = - 1{\/@—2@}——&{@ 2\/7} [x/f—\/Sa 2+\/7]

_1{@&_%—1} 1]+2(3a- V, 1 m
“a-1J4a-1 2/a-1 Jaal | 24a-1

il 1 2(ay o J2a__2a-1 1 2a(a-1)
3| 2/a-1 Vda-1 a-1/\Vda-1 2Ja-1 3a Jda-1

1] 1 V2 N2 aa-1 \/—} {I\Ma 2a—1}
3a| 2Ja-1 244a- 1 2 -1 3 2Ja-1

1| Va1 1-v2Ja-1 _ 2(4a-1)-12a | 2/24a-1Ja-1-3(2a-1)
3| 2/a-1V4a-1  2[V2V4a-1+2V3a] 6(a-1)Va-1

_ 2a+1 B 2a+1
6aJa—1J4a—1[J4a—1+J2a—2] 3a[J8a—2+\/12a]
(2a+1)°

+

6(a-1)va-1[2V24a-1/a-1+3(2a-1)|

that is,
lim Ev, (x,t) = 2a+1 _ 2a+l 2a+1
e 3a[VBa-2+V12a| 6va-1|(a-1)[24a-12a-2+6a-3]
B 1
a4a-1[V4a-1+2a-2 ]
_ 2a+1 ~ 2a(2a+1) 42)
3a| VBa-2++/12a | 6(a—1)«/a—1[2\/4a—1\/2a—2+6a—3]
2a+1 1
6va—1|(a- 1) 2//4a-1 \/2a 2 +6a— 3] a4a-1[V4a-1+2a-2 |
_ N _N, -2t
=N =N, =N,
where
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2a+1

Ba[\/Ba—Z +J12_a] 70

2a(2a+1)
N, = >0,
6(a-1)va-1]2/4a-1y2a-2 +6a-3|

N, =

1 1
(a-1)[2V/4a-1J2a-2 +6a-3] ) av/4a-1]V4a-1++2a-2 |

) a\/4a—1[\/2a— 2 +J4a—l] —(a—l)[zx/4a—l\/2a— 2+ 6a—3]

43
a(a-1)v4a-1[ 2/4a-1v2a-2+6a-3 | V4a-1++2a-2] )
_ (2-a)v2a-2v4a-1+5-2(a-2)°
a(a—l)\/4a—1[2\/4a—1«/2a—2 +6a—3][\/4a—1+\/2a—2]7
since 5—2(a—2)2>0 for ae(1,2),hence N;>0,then N, >0(i=12,3) and (42)imply that
Jim Ev, (x,t) <0. (44)
Therefore, we get the random perturbation of the traveling wave solution of (8) near the equilibrium point
(0,1):
u(x,t)) (0 u(xt))  (u(xt)
[v(x,t)j_(1j+g[vl(x,t)j+g [vz(x,t) ’ (45)
Eu(x,t)) (0) ,(Eu,(xt)
[Ev(x,t)j_(l}rg [Evz(x,t)} (46)
- (Eu(xt)) 2 v [ Euy(x,t)
et ()= G "
since

lim Eu, (x,t)>0, lim Ev, (x1)<0,
these imply that the effect of zero-mean white noise on the system near the lower equilibrium u=0 is to
increase the expected value of u(x,t) for all x, that is, the mean value Eu(x,t) is shifted above the equili-
brium u=0. Similarly, near the upper equilibrium v =1 the white noise is to decrease the expected value of
v(x,t) forall x, that is, the mean value Ev(x,t) is shifted below the equilibrium v=1.

4. Asymptotic Random Perturbations on the Right Stable State

We now consider another equilibrium (1,0) that is the right stead state of traveling wavefront of (2), i.e.
(U (40),V (+oo)) =(1,0). Now we consider the equilibrium (u,,v,)=(1,0). According to the condition (6),
the linearized matrix of (2) at (1,0) is

Ago)=[ + 2 (48)
0= ¢ r(l-b))’
it has two negative eigenvalues 4, =—1<0,4, =r(1-b) <0, and there is an invertible matrix
1 1
P= o Lral
a

such that
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thus

Therefore, the solution of (15) is
Ul(X,t) . t p+oo A(l,O)(t—s) 1
(vl(x,t)]_uwG(X_y’t_S)e 0 w(dy,ds)
t p+o ei(tis)
:J‘OLOG(x—y,t—s) 0 w(dy,ds),

) e

Eu? (x,t)= (” G(x—y,t—s)e " w(dy, ds))

_J'J'MG x—y,t—s)e”ldyds

JO A 1871 s J.t

S0 we have

e 2%ds.

1
0 /8ns

The solution of (16) is
u +auv
{UZ(X t)J _H‘MG X—y.t—s 1 1 ) dyds
v (x.t) bru1v1+rvl y,s)
—Jf 6 0evs (
—(t-s)

+00 l_j2
=_” G(x-y,t-s )( ; ]dyds
0
hence we have v, (x,t)=0, Ev,(xt)=0 and
Eu, (x,t) J'.[ G(x—y,t—s)e "l (y,s)dyds

— —S t_(t-s) S 1 —27
:_J.Oe (t EUf(y,S)dS :—J-Oe (t )J-Oﬁe 2 dzds.

]dyds

Let t — +oo, we have

'[tes r 1 edrds

0 o/
lim Eu, (x,t) = lim e () J' e drds = - lim 87[17
t—>+o0 t—+o0 \/@ {0 e
1 = 1
8nr 8n V2 4

+o0

0

Then, we get the random perturbation of the traveling wavefront of (8) near the equilibrium point (1,0):

(49)

(50)

(51)

(52)

(83)

(54)

(55)

(56)
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From (56),
lim Euz(x,t)z—%< 0

implies that the effect of zero-mean white noise on the system near the lower equilibrium u =1 is to decrease
the expected value of u(x,t) for all x, that is, the mean value Eu(x,t) is shifted below the equilibrium
u=1. On the other hand, v,(x,t)=0 and v,(x,t)=0 imply that the random perturbations do not alter the
mean value Ev(x,t) near the lower equilibrium v=0 forallx, infact Ev(xt)=0.

Remark 1. In the future paper, we will consider simulation of solutions on bounded domains and compare
with the present analytical results. Also, we want to consider the system that the white noise is included in the
2nd component of (8), but according to the complicated calculations in Sections 3 and 4, we must look for a new
idea to deal with this coupled problem.
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