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Abstract 
We consider a vertical circular cylinder on which the vertical variation of water diffraction waves 
is to be represented by a series of Laguerre functions 2( ) ( )z

n nz e L z−=  using Laguerre Polyno-
mials ( )nL z . The variation is assumed to be of the form 1 / (1 )nz+  with the integer n depending 
on the radius of cylinder. Generally, the integer n increases for a cylinder of larger diameter. The 
usual approximation by Laguerre functions is extended by introducing a scale parameter. The 
convergence of Laguerre series is then dependent on the value of the scale parameter s. The ana-
lytical and numerical computations of series coefficients are performed to study the number of se-
ries terms to keep the same accuracy. Indeed, the choice of integer n depends on the scale para-
meter. Furthermore, diffraction waves generated by a semi-sphere inside the cylinder are eva-
luated on the cylinder surface. It is shown that the approximation by Laguerre series for diffrac-
tion waves on the cylinder is effective. This work provides important information for the choice of 
the radius of control surface in the domain decomposition method for solving hydrodynamic 
problems of body-wave interaction. 
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1. Introduction 
The Rankine source panel method needs a large number of panels due to panelizing the free surface as well as a 
damping zone avoiding the reflected wave from the sides of a numerical fluid domain. So a control surface can 
be introduced to divide the fluid domain into two subdomains by a control surface. This surface separates the 
problem into two problems: 1) the interior one in which the ship is of any form, the Green function is Rankine 
source Green function; 2) the exterior one in which the shape of the control surface is known and velocity po-
tential is assumed to be known. It brings two important benefits: area to be discretized becomes smaller; no need 
to introduce the damping zone [1]. 

A circular cylinder is adopted as control surface. The vertical variation of water diffraction wave is assumed 
to be the form 1/ (1 )nz+  which is represented by a series of Laguerre functions ( )n z . Laguerre functions 

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2015.31010
http://dx.doi.org/10.4236/jamp.2015.31010
http://www.scirp.org
mailto:1213730780@qq.com


M. D. Lv et al. 
 

 
76 

( )n z  which are defined by Laguerre polynomials ( )nL z  are a system of orthogonal functions on the interval 
[0, ∞] [2]. It plays an important role in approximation and interpolation. 

The purpose of this paper is to validate the accuracy and convergence of Laguerre series and approximate the 
vertical velocity potential φ on an infinite cylinder generated by a body. Section 2 introduces basis of Laguerre 
functions. Section 3 provides an analytical method to approximate the function 1/(1 + z)n and the velocity poten-
tial φ by Laguerre functions. Section 4 uses some examples to investigate the convergence and accuracy of the 
method, and compares the result of Compass-Walcs-Basic.  

2. The Basis of Laguerre Function  
2.1. Laguerre Polynomials 
The Laguerre polynomials are defined by the three-term recurrence relation 

0 ( ) 1L z =                                              (1) 

1( ) 1L z z= −                                              (2) 

1 2
2 1 1( ) ( ) ( )n n n

n z nL z L z L z
n n− −
− − −

= −                                  (3) 

( )nL z  is called nth degree Laguerre polynomial [3]. 
The Laguerre polynomials have some useful relations 

(0) 1nL =                                              (4) 

(0)ndL
n

dz
= −                                            (5) 

1( ) ( )
( )n n

n
dL z dL z

L z
dz dz

+− =                                   (6) 

By virtu3 of Equation (6), we can obtain Equation (7) 
1

0

[ ( )]
( )

n
n

k
k

d L z
L z
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−

=

= −∑                                       (7) 

We define ( 1) ( )m
nL z+  as Equation (8) 
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By virtue of Equation (9), we can obtain Equation (10) 
( ) 1
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[ ( )]
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m n
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k
k

d L z
L z
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−

=
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And the orthogonal relation 

0

( ) ( ) z
n m nmL z L z e dz δ

∞
− =∫                                      (11) 

where nmδ  is Kronecker symbol. 
Furthermore it can be easily shown that 

1

0

( ) ( 1) 0kz n n
ne L z dz k k k

∞
− += − ≠∫                                  (12) 

k is a real number. 
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2.2. Laguerre Functions and Scale Parameter s 
We define nth degree Laguerre function ( )n z  as: 

2( ) ( )z
n nz e L z−=

                                   (13) 

The Laguerre functions satisfy the orthogonal relation [3]: 

0

( ) ( )n m nmz z δ
∞

=∫                                      (14) 

where nmδ  is Kronecker symbol. 
It is important to note that the Laguerre functions are well behaved. Indeed, the following properties are 

shown [3]: 

( ) 1 for 0n z z≤ ≤ ≤ ∞
                                 (15) 

and 
1 2 1 4 2 3 4( ) ( ) cos(2 4) ( )z

n z nz nz o e nπ π− − − −= − +
                          (16) 

For n = 0, 1, 2 
We can approximate a function by a series of Laguerre functions with scale parameter s: 

0
( ) ( )n nf z c sz

∞

= ∑                                     (17) 

The Laguerre functions with scale parameter s also satisfy the orthogonal relation: 

( ) ( )
0

1
m nmn sz sz dz

s
δ

∞

=∫                                    (18) 

The coefficient cn are defined 

0

( ) ( )n nc f z s z dz
∞

= ∫                                         (19) 

3. Numerical Approximation and Interpolation by Laguerre Functions  
As the velocity potential ϕ is assumed to ( ) 1 (1 )nf z z= + , we expand ( ) 1 (1 )nf z z= +  by Laguerre functions 
to validate the convergence and accuracy. In addition, we provide an interpolation method to approximate the 
velocity potential ϕ. 

For function ( ) 1 (1 )f z z= +  [4] 

( ) ( )
0

1
1 n

n
nf c sz

z
z

∞

=

= =
+ ∑                                       (20) 
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s s
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where we use the Equation (12) and Equation (24) 
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The coefficient cn can be calculated by Equation (23) in Gauss-Laguerre integration, see in Equation (25)  

10

( ) ( )
N

x
k k

k
e f x dx A f x

∞
−

=

≈ ∑∫                                 (25) 

where xk is the kth distinct zero of nth Laguerre polynomial. 
For function f(z) = 1/(1 + z)2 
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By virtue of Equation (7) 
1

2 2 2
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Then the integration in Equation (30) can be calculated in Equation (21), ( ) 1 (1 )nf z z= +  can be expanded 
in the similar method. The 3( ) 1 (1 )f z z= +  is expanded by Laguerre functions as below 

1 1 1
2 2 2

0 1 00

2 1 1 11 ( ( ) ( ) ( ))
2 2 4

n n k
z z z

n n k l
k k l

s nc s e L z e L z e L z dz
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∑ ∑∑∫            (31) 

We suppose that the vertical velocity potential φ(z) is continuous for z ≥ 0, where given function φ(z) is only 
known numerically at every point. The Laguerre-Gauss interpolation is applied to approximate the φ(z). 

0
( ) ( )n nz c zφ

∞

= ∑                                       (32) 
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4. Numerical Results 
In this section, we present some numerical results. The algorithm is implemented by using Intel Visual Fortran 
Composer XE 2011 and all calculations are carried out in a computer of CPU 3.30 GHz.  

We first use Equation (23) to approximate function 1 (1 )z+ , shown as Table 1. For description of the global 
errors, we introduce the notations. Approximation results by Laguerre functions use symbol ( )af z .  

{ }
( ) ( )

max ( )
a

r
f z f z

E
f z

−
=                                    (35) 

Then we use Equation (30) to approximate function 21 (1 )z+ , shown as Table 2.  
At last, we use Equation (31) to approximate function 31 (1 )z+  shown as Table 3.  
A semi-sphere is adopted as a body inside the cylinder to generate diffraction waves. The radius of semi- 

sphere is 2 m as well as cylinder is 2.5 m. The incident wave is in frequency of 0.6 rad/s, in height of 2 m. We 
prefer to approximate vertical variation with Equation (34) at θ is 0 rad/s, shown in Figure 1.  
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We compare the approximate results with results calculated by Compass-Walcs-Basic (CWB, a wave load 
software is developed by CCS), shown as Table 4. 

5. Conclusion 
In this note we presented a numerical method for interpolating vertical variation of water diffraction waves 
based on Laguerre functions. The convergence and accuracy is validated by approximating the functions  
 
Table 1. Computed value and the relative errors at different values of z. 

z 
 s = 0.5, N = 40 s = 0.5, N = 40 s = 1.0, N = 40 s = 1.0, N = 40 s = 2.0, N = 40 S = 2.0, N = 40 

( )f z  ( )af z  rE  ( )af z  rE  ( )af z  rE  

0 1.000E+00 9.999E−01 1.324E−04 1.003E+00 3.424E−03 1.011E+00 1.134E−02 

1 5.000E−01 5.000E−01 4.161E−05 5.006E−01 6.478E−04 5.000E−01 1.167E−05 

2 3.333E−01 3.333E−01 9.655E−06 3.333E−01 3.443E−06 3.350E−01 1.669E−03 

3 2.500E−01 2.500E−01 1.329E−06 2.495E−01 4.639E−04 2.509E−01 8.635E−04 

4 2.000E−01 2.000E−01 3.200E−05 2.005E−01 5.056E−04 1.987E−01 1.302E−03 

30 3.22581E−02 3.22278E−02 3.02368E−05 3.21187E−02 1.39397E−04 3.14553E−02 8.02812E−04 

40 2.43902E−02 2.43811E−02 9.10673E−06 2.44373E−02 4.70158E−05 2.29822E−02 1.40801E−03 

50 1.96078E−02 1.95427E−02 6.51170E−05 1.91617E−02 4.46125E−04 2.10475E−02 1.43969E−03 

60 1.63934E−02 1.61789E−02 2.14562E−04 1.59564E−02 4.37008E−04 1.80588E−02 1.66537E−03 

 
Table 2. Computed value and the relative errors at different values of z. 

z 
 s = 0.5, N = 40 s = 0.5, N = 40 s = 1.0, N = 40 s = 1.0, N = 40 s = 2.0, N = 40 S = 2.0, N = 40 

( )f z  ( )af z  rE  ( )af z  rE  ( )af z  rE  

0 1.00000E+00 9.97588E−01 2.41169E−03 9.99960E−01 4.02065E−05 1.00017E+00 1.72137E−04 

1 2.50000E−01 2.50385E−01 3.84964E−04 2.49997E−01 3.34900E−06 2.50000E−01 1.25300E−07 

2 1.11111E−01 1.10862E−01 2.48952E−04 1.11104E−01 7.42851E−06 1.11137E−01 2.53938E−05 

3 6.25000E−02 6.27067E−02 2.06697E−04 6.24997E−02 3.32780E−07 6.25131E−02 1.31245E−05 

4 4.00000E−02 3.98377E−02 1.62343E−04 4.00030E−02 2.97746E−06 3.99802E−02 1.98408E−05 

30 2.26757E−03 1.01064E−03 1.25694E−03 1.03770E−03 1.22987E−03 1.02875E−03 1.23883E−03 

40 5.94884E−04 5.63398E−04 3.14860E−05 5.99840E−04 4.95552E−06 5.76595E−04 1.82893E−05 

50 3.84468E−04 3.64009E−04 2.04587E−05 3.87952E−04 3.48407E−06 4.16387E−04 3.19192E−05 

60 2.68745E−04 2.61505E−04 7.24000E−06 2.80978E−04 1.22328E−05 3.13363E−04 4.46180E−05 

 
Table 3. Computed value and the relative errors at different values of z. 

z 
 s = 0.5, N = 40 s = 0.5, N = 40 s = 1.0, N = 40 s = 1.0, N = 40 s = 2.0, N = 40 S = 2.0, N = 40 

( )f z  ( )af z  rE  ( )af z  rE  ( )af z  rE  

0 1.00000E+00 9.92900E−01 7.10008E−03 9.99653E−01 3.46592E−04 9.99998E−01 2.05300E−06 

1 1.25000E−01 1.26088E−01 1.08848E−03 1.24953E−01 4.66923E−05 1.25000E−01 3.33900E−07 

2 3.70370E−02 3.63692E−02 6.67851E−04 3.70089E−02 2.81209E−05 3.70370E−02 1.40070E−08 

3 1.56250E−02 1.61809E−02 5.55894E−04 1.56479E−02 2.28585E−05 1.56249E−02 1.12660E−07 

4 8.00000E−03 7.55455E−03 4.45448E−04 7.98476E−03 1.52402E−05 7.99978E−03 2.17222E−07 

30 3.35672E−05 −4.74463E−05 8.10135E−05 2.90084E−05 4.55883E−06 3.33679E−05 1.99241E−07 

40 1.45094E−05 −7.74084E−05 9.19178E−05 1.83909E−05 3.88152E−06 1.41008E−05 4.08583E−07 

50 7.53858E−06 −7.10022E−05 7.85408E−05 7.11794E−06 4.20641E−07 7.37819E−06 1.60386E−07 

60 4.40566E−06 −5.84196E−05 6.28252E−05 1.67154E−06 2.73412E−06 4.30944E−06 9.62135E−08 
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Table 4. Computed value and the relative errors at different values of z. 

z 
Velocity potential (real part) Velocity potential (imaginary part) 

( )CWB zφ  ( )LAG zφ  rE  ( )CWB zφ  ( )LAG zφ  rE  

0 −6.88127E−02 −6.95262E−02 1.02611E−02 −2.24248E−04 −2.21099E−04 1.40408E−02 

1 −6.61136E−02 −6.60080E−02 1.51998E−03 −1.83157E−04 −1.83624E−04 2.08272E−03 

2 −6.35524E−02 −6.34498E−02 1.47629E−03 −1.48078E−04 −1.48531E−04 2.01776E−03 

3 −6.11155E−02 −6.12360E−02 1.73354E−03 −1.18161E−04 −1.17630E−04 2.37039E−03 

4 −5.87918E−02 −5.86911E−02 1.44937E−03 −9.26525E−05 −9.30975E−05 1.98463E−03 

5 −5.65723E−02 −5.66178E−02 6.54045E−04 −7.08996E−05 −7.07011E−05 8.85062E−04 

10 −4.68030E−02 −4.67179E−02 1.22372E−03 −1.67622E−06 −2.05020E−06 1.66772E−03 

20 −3.22544E−02 −3.21762E−02 1.12523E−03 4.18505E−05 4.15041E−05 1.54439E−03 

30 −2.23033E−02 −2.23401E−02 5.28384E−04 4.47875E−05 4.49518E−05 7.32494E−04 

40 −1.54425E−02 −1.53552E−02 1.25602E−03 3.80591E−05 3.76742E−05 1.71664E−03 

50 −1.06995E−02 −1.06060E−02 1.34520E−03 2.99432E−05 2.95298E−05 1.84357E−03 

60 −7.41677E−03 −7.33185E−03 1.22143E−03 2.27477E−05 2.23748E−05 1.66273E−03 

 

 
Figure 1. A semi-sphere in a cylinder. 

 
1 (1 ) ( 0,1, 2 )nz n+ = 

. It is applicable to approximate the vertical variation around a circle cylinder by La-
guerre functions. 

References 
[1] Ten, I. and Chen, X.B. (2011) Zero Speed Rankine-Kelvin Hybrid Method. Bureau Veritas Research Department, 6. 
[2] Guo, B.-Y. and Wang, Z.-Q. (2007) Numerical Integration Based on Laguerre-Gauss interpolation. Comput. Methods 

Appl. Mech. Engrg, 196, 3726-3741. http://dx.doi.org/10.1016/j.cma.2006.10.035  
[3] Abramowitz, M. and Stegun, I.A. (1967) Handbook of Mathematical Functions. Dover Publications. 
[4] Keilson, J., Nunn, W. and Sumita, U. (1980) The Laguerre Transform. Center for Naval Analysys, 26-28. 

http://dx.doi.org/10.1016/j.cma.2006.10.035

	Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder
	Abstract
	Keywords
	1. Introduction
	2. The Basis of Laguerre Function 
	2.1. Laguerre Polynomials
	2.2. Laguerre Functions and Scale Parameter s

	3. Numerical Approximation and Interpolation by Laguerre Functions 
	4. Numerical Results
	5. Conclusion
	References

