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Abstract 
Minkowski sums are of theoretical interest and have applications in fields related to industrial 
backgrounds. In this paper we focus on the specific case of summing polytopes as we want to solve 
the tolerance analysis problem described in [1]. Our approach is based on the use of linear pro-
gramming and is solvable in polynomial time. The algorithm we developed can be implemented 
and parallelized in a very easy way. 
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1. Introduction 
Tolerance analysis is the branch of mechanical design dedicated to studying the impact of the manufacturing to-
lerances on the functional constraints of any mechanical system. Minkowski sums of polytopes are useful to 
model the cumulative stack-up of the pieces and thus, to check whether the final assembly respects such con-
straints or not, see [2] [3]. We are aware of the algorithms presented in [4]-[7] but we believe that neither the list 
of all edges nor facets are mandatory to perform the operation. So we only rely on the set of vertices to describe 
both polytope operands. In a first part we deal with a “natural way’’ to solve this problem based on the use of 
the convex hulls. Then we introduce an algorithm able to take advantage of the properties of the sums of poly-
topes to speed-up the process. We finally conclude with optimization hints and a geometric interpretation. 

2. Basic Properties 
2.1. Minkowski Sums 
Given two sets A  and B , let C  be the Minkowski sum of A  and B   

= = { , , / = }nC A B c a A b B c a b+ ∈ ∃ ∈ ∃ ∈ +  

2.2. Polytopes 
A polytope is defined as the convex hull of a finite set of points, called the  -representation, or as the bounded 
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intersection of a finite set of half-spaces, called the  -representation. The Minkowski-Weyl theorem states that 
both definitions are equivalent. 

3. Sum of -Polytopes 
In this paper we deal with  -polytopes i.e. defined as the convex hull of a finite number of points. We note 

A , B  and C  the list of vertices of the polytopes A , B  and =C A B+ . We call C  the list of Min-
kowski vertices. We note = ( )Ak Card   and = ( )Bl Card  . 

3.1. Uniqueness of the Minkowski Vertices Decomposition 
Let A  and B  be two n -polytopes and A , B  their respective lists of vertices. Let =C A B+  and 

=c a b+  where Aa∈  and Bb∈ . 
the decomposition of  as a sum of elements of  and  is uniqueCc c A B∈ ⇔         (1) 

We recall that in [4], we see that the vertex c  of C , as a face, can be written as the Minkowski sum of a 
face from A  and a face from B . For obvious reasons of dimension, c  is necessarily the sum of a vertex of 
A  and a vertex of B . Moreover, in the same article, Fukuda shows that its decomposition is unique. 

Reciprocally let Aa∈  and Bb∈  be vertices from polytopes A  and B  such that =c a b+  is unique. 
Let 1c C∈  and 2c C∈  such as 1 2 1 1 2 2 1 2 1 2= 1 2( ) = 1 2( ) = 1 2( ) 1 2( ) =c c c a b a b a a b b a b+ + + + + + + +  
with 1 2= 1 2( )a a a+  and 1 2= 1 2( )b b b+  because the decomposition of c  in elements from A  and B  is 
unique. Given that a  and b  are two vertices, we have 1 2=a a  and 1 2=b b  which implies 1 2=c c . As a 
consequence c  is a vertex of C . 

3.2. Summing Two Lists of Vertices 
Let A  and B  be two n -polytopes and A , B  their lists of vertices, let =C A B+ . 

= ({ , , })A BC Conv a b a b+ ∈ ∈                               (2) 

We know that C A B⊂ +    because a Minkowski vertex has to be the sum of vertices from A  and B  so 
= ( ) ({ , , })C A BC Conv Conv a b a b⊂ + ∈ ∈   . 
The reciprocal is obvious as ({ , , }) ({ , , }) =A BConv a b a b Conv a b a A b B C+ ∈ ∈ ⊂ + ∈ ∈   as =C A B+  

is a convex set. 
At this step an algorithm removing all points which are not vertices of C  from A B+   could be applied to 

compute C . The basic idea is the following: if we can build a hyperplane separating ( )u va b+  from the other 
points of A B+   then we have a Minkowski vertex, otherwise ( )u va b+  is not an extreme point of the poly-
tope C . The process trying to split the cloud of points is illustrated in Figure 1. 

To perform such a task, a popular technique given in [8] solves the following linear programming system. In 
the case of summing polytopes, testing whether the point ( )u va b+  is a Minkowski vertex or not, means find-
ing ( , ) n

uvγ γ ∈ ×   from a system of k l×  inequalities: 

*

< , > 0 ; ( , ) {1,.., } {1,.., } ; ( , ) ( , )
< , > 1

= max(< , > )

i j uv

u v uv

u v uv

a b i j k l i j u v
a b

f a b

γ γ
γ γ

γ γ

+ − ≤ ∀ ∈ × ≠
 + − ≤
 + −
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Figure 1. Computing the vertices of the sum of two V-poly- 
topes through a convex hull algorithm. 

 
The corresponding method is detailed in Algorithm 2. Now we would like to find a way to reduce the size of 

the main matrix Γ  as it is function of the product k l× . 
 

 

3.3. Constructing the New Algorithm 
In this section we want to use the basic property 1 characterizing a Minkowski vertex. Then the algorithm com-
putes, as done before, all sums of pairs ( , )u v A Ba b ∈ ×   and checks whether there exists a pair  
( , ) ( , )u va b a b′ ′ ≠  with a A′∈ , b B′∈  such as ( ) = ( )u va b a b′ ′+ + . If it is the case then ( )u v Ca b+ ∉ , oth-
erwise ( )u v Ca b+ ∈ . 

=1= k
i iia aα′ ∑  with , 0ii α∀ ≥  and =1 = 1k

ii α∑  

=1= l
j jjb bβ′ ∑  with , 0jj β∀ ≥  and 

=1 = 1l
jj β∑ . 

We get the following system: 
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That is to say with matrices and under the hypothesis of positivity for both vectors α  and β : 

11,1 2,1 ,1 1,1 2,1 ,1 ,1 ,1

1,2 2,2 ,2 1,2 2,2 ,2 ,2 ,2

11, 2, , 1, 2, , , ,

=

1 1 1 0 0 0 1
0 0 0 1 1 1 1

k l u v

k l u v

k

n n k n n n l n u n v n

l

a a a b b b a b
a a a b b b a b

a a a b b b a b

α

α
β

β

+    
    +    
    
    

+    
   
          

 

 

        

 

 

 




 

We are not in the case of the linear feasibility problem as there is at least one obvious solution: 

, 1 1= ( , , , , , ) = (0, ,0, = 1,0, ,0,0, ,0, = 1,0, ,0)u v k l u vp α α β β α β       

The question is to know whether it is unique or not. This first solution is a vertex ,u vp  of a polyhedron in 
k l+  that verifies ( 2)n +  equality constraints with positive coefficients. The algorithm tries to build another 

solution making use of linear programming techniques. We can note that the polyhedron is in fact a polytope 
because it is bounded. The reason is that, by hypothesis, the set in k  of convex combinations of the vertices 

ia  is bounded as it defines the polytope A . Same thing for B  in l . So in k l+  the set of points verifying 
both constraints simultaneously is bounded too. 

So we can write it in a more general form: 

2= 1 , , , , ,
1

u v
n k l k l n n

u v

a b
P P a b

α
α β

β
+ +

+ +

+ 
    ∈ × ∈ ∈ ∈ ∈      

 

       

where only the second member is function of u  and v . 
It gives the linear programming system: 

*

= 1
1

0

= max(2 )

u v

u v

a b
P

f

α
β

α
β

α β

 + 
   
        

  ≥  

 − −

                                    (3) 

Thanks to this system we have now the basic property the algorithm relies on: 
*, , ( ) = 0u A v B u v Ca b a b f∈ ∈ + ∈ ⇔                                (4) 

* = 0f ⇔  there exists only one pair ( , ) = (1,1)u vα β  to reach the maximum *f  as =1 = 1k
ii α∑  and 

=1 = 1l
jj β∑  ⇔  the decomposition of = ( )u vc a b+  is unique Cc⇔ ∈  

It is also interesting to note that when the maximum *f  has been reached: *= 1 = 1 = 0u v fα β⇔ ⇔  
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3.4. Optimizing the New Algorithm and Geometric Interpretation 
The current state of the art runs k l×  linear programming algorithms and thus is solvable in polynomial time. 
We presented the data such that the matrix P  is invariant and the parametrization is stored in both the second 
member and the objective function, so one can take advantage of this structure to save computation time. A 
straight idea could be using the classical sensitivity analysis techniques to test whether ( )u va b+  is a Min-
kowski vertex or not from the previous steps, instead of restarting the computations from scratch at each itera-
tion. 

Let’s switch now to the geometric interpretation, given Aa∈ , let’s consider the cone generated by all the 
edges attached to a  and pointing towards its neighbour vertices. After translating its apex to the origin O , we 
call this cone ( )OC a  and we call ( )OC b  the cone created by the same technique with the vertex b  in the 
polytope B . 

The method tries to build a pair, if it exists, ( , )a b′ ′  with a A′∈ , b B′∈  such that ( ) = ( )a b a b′ ′+ + . Let’s 
introduce the variable = =a a b bδ ′ ′− − , and the straight line = { : = , }nx x t tδ∆ ∈ ∈  . 

So the question about ( )a b+  being or not a Minkowski vertex can be presented this way:  

, , ( ) = { : = , } ( ) ( )n
A B C O Oa b a b x x t t C a C bδ∈ ∈ + ∉ ⇔ ∃∆ ∈ ∈ ⊂ ∪                (5) 

The existence of a straight line inside the reunion of the cones is equivalent to the existence of a pair ( , )a b′ ′  
such that ( ) = ( )a b a b′ ′+ +  which is equivalent to the fact that ( )a b′ ′+  is not a Minkowski vertex. This is il-
lustrated in Figure 2. The property becomes obvious when we understand that if ( , )a b′ ′  exists in A B×  then 
( )a a′ −  and ( )b b′ −  are symmetric with respect to the origin. Once a straight line has been found inside the 
reunion of two cones, we can test this inclusion with the same straight line for another pair of cones, here is the 
geometric interpretation of an improved version of the algorithm making use of what has been computed in the 
previous steps. 

We can resume the property writing it as an intersection introducing the cone ( )OC b−  being the symmetric 
of ( )OC b  with respect to the origin. 

, , ( ) ( ) ( ) = { }A B C O Oa b a b C a C b O∈ ∈ + ∈ ⇔ ∩−                          (6) 

4. Conclusion 
In this paper, our algorithm goes beyond the scope of simply finding the vertices of a cloud of points. That’s 
why we have characterized the Minkowski vertices. However, among all the properties, some of them are not 
easily exploitable in an algorithm. In all the cases we have worked directly in the polytopes A  and B , i.e. in 
the primal spaces and only with the polytopes  -descriptions. Other approaches use dual objects such as nor-
mal fans and dual cones. References can be found in [6] [7] [9] but they need more than the  -description for 
the polytopes they handle. This can be problematic as obtaining the double description can turn out to be im-
possible in high dimensions, see [4] where Fukuda uses both vertices and edges. Reference [6] works in 3  in 
a dual space where it intersects dual cones attached to the vertices, and it can be considered as the dual version  
 

 
Figure 2. )( 42 ba +  is not a vertex of C = A + B as 

2 4( ) ( )O OC a C b∆ ⊂ ∪ . 
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of property 6 where the intersection is computed with primal cones. It actually implements Weibel’s approach 
described in [9]. Such a method has been recently extended to any dimension for  -polytopes in [7]. 
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