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Abstract 
This paper presents robust optimization models for a multi-product integrated problem of plan-
ning and scheduling (based on the work of Terrazas-Moreno & Grossmann (2011) [1]) under 
products prices uncertainty. With the objective of maximizing the total profit in planning time ho-
rizon, the planning section determines the amount of each product, each product distributed to 
each market, and the inventory level in each manufacturing site during each scheduling time pe-
riod; the scheduling section determines the products sequence, start and end time of each product 
running in each production site during each scheduling time period. The uncertainty sets used in 
robust optimization model are box set, ellipsoidal set, polyhedral set, combined box and ellipsoid-
al set, combined box and polyhedral set, combined box, ellipsoidal and polyhedral set. The genetic 
algorithm is utilized to solve the robust optimization models. Case studies show that the solutions 
obtained from robust optimization models are better than the solutions obtained from the origi-
nal integrated planning and scheduling when the prices are changed. 
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1. Introduction 
The integration technology of product planning and scheduling has received wide attentions in recent years 
[2]-[6]. Traditionally, these types of problems are treated under certain conditions. But as we all know, the en-
vironment changes every second, such as products prices, cost, and demands etc. Each of these changes can lead 
to the solutions not optimal or worse. So we must consider the uncertainty factors in the integration problem of 
planning and scheduling. 

Robust optimization concept was first proposed by Soyster [7]; he used robust optimization to solve linear 
programming problems and found solutions which can be feasible with uncertainty under all possible distribu-
tion. The works of Ben-Tal & Nemirovski [8]-[11] made a clear direction to the robust optimization for future 
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study. Since then, a considerable number of papers have appeared on the subject of robust optimization. Lin et al. 
(2004) [12] proposed a robust optimization approach for the scheduling of batch plants under processing times 
of tasks, market demands of product, prices of products and raw materials uncertainty. And the uncertain para-
meters are bounded. Janak et al. (2007) [13] proposed a new robust optimization approach for scheduling under 
uncertainty with known probability distribution base on the work of Lin et al. (2004) [12]. Verderame et al. 
(2009) [14] proposed a novel framework to address the problem of integration of operational planning and me-
dium-term scheduling for large-scale industrial batch plants under demand and processing time uncertainty. The 
prices uncertainty was taken into account at planning level and processing time uncertainty was taken into ac-
count at scheduling level. They solved the proposed integrated mixed integer linear programming problem by 
means of a rolling horizon framework used in conjunction with a novel feedback loop. Li, Ding, Floudas (2011) 
[15] reviewed the robust optimization works before 2011, and studied six uncertainty sets (box set, ellipsoidal 
set, polyhedral, combined box and ellipsoidal set, combined box and polyhedral set, combined box, ellipsoidal 
and polyhedral set). They derived robust optimization formulations for the uncertainty on the left hand side, 
right hand side, and objective function of the classic model. Li et al. (2012) [16] concerned the planning model 
of large scale multiproduct continuous plants. They developed a MILP planning model based on discrete-time 
representation and presented robust optimization approach for demand and due date uncertainty. 

To the best of our knowledge, until we write this paper, we first study the robust optimization model for the 
multi-product integrated problem of planning and scheduling under products prices uncertainty, and solve them 
with a bi-level genetic algorithm. At first, six uncertain sets are utilized to describe different products prices un-
certainty. Then the robust models are proposed by the aforementioned uncertain sets and solved by genetic algo-
rithm.  

This paper is organized as follows: Section 1 is the history of the problem studied; Section 2 introduces the 
deterministic multi-product integrated model of planning and scheduling developed by Terrazas-Moreno & 
Grossmann [1]; Section 3 discusses the six uncertainty sets used to describe different uncertain prices; in Section 
4, we present robust optimization models with the uncertainty sets in Section 3; Section 5 is the solution method 
based on genetic algorithm; Section 6 is the case studies of different robust optimization models; the last section 
is the conclusions. 

2. Deterministic Multi-Product Integrated Problem of Planning and Scheduling 
The deterministic multi-product integrated problem of planning and scheduling we based on in this paper is the 
work of Terrazas-Moreno & Grossmann (2011) [1]. With the objective of maximizing the total profits in plan-
ning time horizon, the planning section determines the amount of each product, each product distributed to each 
market, and the inventory level in each manufacturing site during each scheduling time period; the scheduling 
section determines the products sequence, start and end time of each product running in each production site 
during each scheduling time period.  

The objective function of the deterministic integrated model of planning and scheduling under certain is as 
follows: 
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where i denote index of products, I denote set of products, m denote index of markets, M denote set of markets, s 
denote index of production site, S denote set of production site, t denote index of time periods, T denote set of 
time periods, sh  denote the amount of product ship to the market, x  denote the amount of product produced 
in site, v  denote inventory, TC  denote transform cost, z  and ( )trt  denote transition between products.  

Constraint formulations please refer the work of Terrazas-Moreno & Grossmann (2011) [1] to see more de-
tails. And there are 51 constraints in their model. 

3. Six Uncertainty Sets Used in Robust Optimization 
Firstly, we give the sets to describe the uncertain prices. 
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The box set 1D : 

1 { | , }usD us USξ ξ= ≤ Ψ ∀ ∈                                   (3-1) 

where Ψ  is the adjustable parameter controlling the size of the uncertainty set, usξ  denotes uncertainty, 
1, 2,...,us n= . 

The ellipsoidal set 2D : 
2

2 { | , }us
us US

D us USξ ξ
∈

= ≤ Ω ∀ ∈∑                            (3-2) 

where Ω  is the adjustable parameter controlling the size of the uncertainty set.  
The polyhedral set 3D : 

3 { | , }us
us US

D us USξ ξ
∈

= ≤ Γ ∀ ∈∑                           (3-3) 

where Γ  is the adjustable parameter controlling the size of the uncertainty set.  
The combined box and ellipsoidal set: 

2
4 { | , , }us us

us US
D us USξ ξ ξ

∈

= ≤ Ω ≤ Ψ ∀ ∈∑                            (3-4) 

In order to ensure that the intersection between box and ellipsoidal set do not reduce to any one of them, the 
parameters should satisfy the following formulation 

USΨ ≤ Ω ≤ Ψ                                          (3-5) 

The combined box and polyhedral set 5D : 
2

5 { | , , }us us
us US

D us USξ ξ ξ
∈

= ≤ Γ ≤ Ψ ∈∑                            (3-6) 

In order to ensure that the intersection box and polyhedral set do not reduce to any one of them, the parame-
ters should satisfy the following formulation. 

USΨ ≤ Γ ≤ Ψ                                        (3-7) 

The combined box, ellipsoidal and polyhedral set 6D : 
2 2

6 { | , , , }us us us
us US us US

D us USξ ξ ξ ξ
∈ ∈

= ≤ Ω ≤ Γ ≤ Ψ ∈∑ ∑                 (3-8) 

In order to ensure that the intersection box, ellipsoidal and polyhedral do not reduce to any one of them, the 
parameters should satisfy the following formulation. 

USΨ ≤ Ω ≤ Ψ                                         (3-9) 

USΩ ≤ Γ ≤ Ω                                         (3-10) 

4. Robust Models for the Integrated Planning and Scheduling under Products 
Prices Uncertainty  

The constraint formulations are the same as the deterministic integrated model of planning and scheduling pro-
posed by Terrazas-Moreno & Grossmann (2011) [1]. The products prices are in the objective function. We re-
write the objective function as (4-1). 

, ,
,max   ( * ( ) ) otheri m i m

t s
m M i I t T s S

profit shβ
∈ ∈ ∈ ∈

= +∑ ∑ ∑∑                       (4-1) 

“other” in (4-1) denotes production cost, shipment cost, inventory cost and transition cost. 
The prices of products are denoted as (4-2). 

, , , ,ˆ *       , ,i m i m i m i m i I m Mβ β β ξ= + ∈ ∈                             (4-2) 
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where ,i mβ  represent the uncertain prices of products i in market m; ,i mβ  represent the nominal value of pric-
es of products i in market m; ,ˆ i mβ  represent constant value; ,i mξ  are random values in uncertainty set. 

We use the Formulations (4-3) and (4-4) to replace the Formulations (4-1) and (4-2). 
max   profit                                        (4-3) 

, ,
, . .   ( * ( ) ) otheri m i m
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Then, the robust optimization models for prices of products with different uncertainty sets are proposed. 
The robust formulation for the box set 
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The robust formulation for ellipsoidal set 
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The robust formulation for polyhedral set 
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where ( )up  is auxiliary variable. 
The robust formulation for combined box and ellipsoidal set 
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where ,( )i muu  , ,( )i muz  are auxiliary variables. 
The robust formulation for combined box and polyhedral set 
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where ( )up , ,( )i muz  are auxiliary variables. 
The robust formulation for combined box, ellipsoidal and polyhedral set 
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where ( )up , ,( )i muz , ,( )i muv  are auxiliary variables. 

5. Solution Method Based on Genetic Algorithm 
In this paper we use a bi-level genetic algorithm to solve the proposed robust optimization models in section 4. 
The flow diagram is described in Figure 1. Where ,

i
t syp  denote whether product i is produced in site s in time 

period t, ,( )i
t stθ  denote the production time variables for upper level problem, ,

,
i l
t sθ  denote the production time 

variables for lower level problem, , ,
, ,( ) , ( )i l i l

t s t ss eτ τ  denote part of the transition time between time periods for 
lower level problem, , ,( ) , ( )i i

t s t ssp epτ τ  denote part of the transition time between time periods for upper level 
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problem, UB represent the upper level objective function values, UL represent the lower level objective objec-
tives function values. The constraint formulations are the same as the deterministic integrated model of planning 
and scheduling proposed by Terrazas-Moreno & Grossmann (2011) [1]. 

6. Case Studies 
We use the robust model proposed in section 4 and consider the products prices are uncertain. The parameters of 
the bi-level genetic algorithm are the population size (POP_SIZE = 30), max generations (GEN = 2000), cross 
rate (P_CROSSOVER = 0.3), mutation rate (P_MUTATION = 0.2), and tolarance (tol = 0.2). The uncertain 
products prices are as follows: 

, , ,*(1 )         , ,i m i m i m i I m Mβ β ξ= + ∈ ∈                              (6-1) 

If the uncertain sets is described by box set, and * 2.0, 0.2β = Ψ = . Then * [1.8,2.2]β ∈ . Other uncertain 
sets are like the same. 

Figure 2 shows the objectives of robust optimization under different uncertain sets. Figures 3-8 give the ob-
jectives of robust optimizaiton under the different uncertain sets compare to the objectives of deterministic inte-
grated planning and scheduling model when the adjustable parameters are changed. In the combined box and el-
lipsoidal set, combined box and polyhedral set, combined box, ellipsoidal and polyhedral set, 

2* ;  2*Ω = Ψ Γ = Ψ . 
We can find that when the adjustable parameters ( , ,Ψ Γ Ω ) which controlling the size of the uncertainty sets 

are small, the difference between the objectives of deterministic integrated planning and scheduling model and 
 

 
Figure 1. Flow chart of the genetic algorithm. 
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Figure 2. Robust optimization of different uncertain sets. 

 

 
Figure 3. Box set. 

 

 
Figure 4. Polyhedral set. 

 
the objectives of the robust optimization models are small. But when the adjustable parameters ( , ,Ψ Γ Ω ) be-
come larger, the objectives of the deterministic integrated planning and scheduling model are much smaller than  
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Figure 5. Ellipsoidal set. 

 

 
Figure 6. Box+ polyhedral set. 

 

 
Figure 7. Box+ ellipsoidal set. 

 
the objectives of the robust model. We can conclude that the proposed robust optimization model are much bet-
ter than the deterministic integrated planning and scheduling model when the products prices are changed. 
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Figure 8. Box+ polyhedral+ ellipsoidal set. 

7. Conclusion  
In this paper, we studied a robust optimization model for a multi-product integrated problem of planning and 
scheduling under products prices uncertainty. Six uncertain sets were utilized to describe different products 
prices uncertainty. Then the robust models were proposed by the aforementioned uncertain sets and solved by a 
bi-level genetic algorithm. The computing results from the case studies show that the proposed robust optimiza-
tion models are much better than the deterministic integrated planning and scheduling model when the products 
prices are changed.  
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