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ABSTRACT 

In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex 
differential equations in rectangular or elliptic domains. We show that based on a linear algebra theorem, the use of dif- 
ferent polynomials such as Hermite, Bessel and Taylor in polynomial collocation methods for solving differential equa- 
tions leads to an equal solution, and the difference in the numerical results arises from the difference in the coefficient 
matrix of final linear systems of equations. Some numerical examples will also be given. 
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1. Introduction 

Complex differential equations and their solutions play 
a major role in science and engineering. A physical 
event can be modeled by complex differential equations. 
Since a few of these equations cannot be solved explic- 
itly, it is often necessary to resort to approximation and 
numerical techniques. In recent years, the studies on 
complex differential equations were developed very rap- 
idly [1-6]. 

Since 1994, matrix polynomial collocation approaches 
such as Taylor and Bessel matrix collocation methods 
have been used by Sezer and colleagues [7-11] to solve 
the complex linear differential equations. 

The present work contains two main parts, in the first 
part, we use Hermite matrix collocation method to find 
the approximate solution of higher-order linear complex 
differential equations of the following form.  
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(1) 

which is a generalized case of the complex differential 
equations given in [5,6], with themixed conditions 
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in the following rectangular domain 
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or elliptic domain 
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In the second part, we will study the effect of using 
different polynomial classes on the matrix polynomial 
methods. 

The outline of this paper is as follows. In Section 2, we 
briefly introduce Hermite polynomial and describe de- 
tails of using these polynomials in matrix polynomial 
collocation method. Section 3 focuses on the comparison 
of matrix collocation methods when different polynomi- 
als are used. We present the results of numerical experi- 
ments in Section 4. Finally, conclusions are drawn in 
Section 5. 

2. Hermite Matrix Polynomial Collocation  
Method 

In this section, we describe the matrix form of Hermite 
polynomials and Hermite collocation Method for com- 
plex differential equations. Our aim is to find an ap- *Corresponding author. 
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proximate solution of (1) defined by a truncated Hermite 
series form 

     0
,N n nn

N
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
  A       (5) 

where        0 1 NH z H z H z H z     such that 
  , 0,1, ,nH z n N   are the Hermite polynomials de- 

fined by 
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N   if n is even and 
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  if n is odd  

and . It is well known [12] that 
the relation between the powers 
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and 
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By using the expression (6) and (7) and taking 
0,1, ,n N   we find the corresponding matrix relation 

as follows     TT
Z z M H z ,  

and 


Nz  and Hermite poly- 

nomials is 

    TZ z H z M ,             (8) 

where   21 NZ z z z z    , for odd N 
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and for even N 
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Then, by taking into account (5), we obtain  

    T1H z Z z M   and we can replace series (6) in  

the matrix form 

      T1
Nf z H z A Z z M A  .      (9) 

Furthermore, the relation between the matrix  Z z  
and its derivative    1Z z  is 

   (1) T Z z Z z B ,            (10) 
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And 
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 0T
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From the matrix Equation (10), we get the following 
relations: 
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By using relations (9) and (11), we have a recurrence 
relation in what follows 
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(12) 

For the collocation points , the matrix relation 
(12) becomes 
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For  one can write the relation (13) in 
the following form 
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or briefly 
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Moreover, substituting the collocation points into Eq-
uation (3), we have 
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By means of the expressions (13) and (14), we acquire 
the fundamental matrix equation 
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and       , , ,q q q NqG g z g z g z 
T

0 1 . With the aid of 
relation (12), we can obtain the corresponding matrix 
form due to the condition (4) as follows 
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where    21 N
j j jZ j    . 

Briefly, the system of the matrix Equation (17) can be 
written in the matrix form 

    or ;r r rU A u r  ,          (18) 

where 

     
 

TT 1
0 0

0 1 0; ,1, ,

m k

rk jk j

r N

J

r r

a Z B M

u u r mu

 
 

  
 1,

 


 

We can write Equation (16) in the form 
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where Gq is defined in (16). The augmented matrix of 
Equation (19) becomes 

   ; ; ;  , 0,1,st sW G w g s t N  , .       (20) 

The augmented matrix of Equation (18) corresponds to 
   0 1;r r r r rN rU u u u ;   , where Ur is defined in 
(18). 

Consequently, to find the unknown Hermite coeffi- 
cients an, 0,1, ,n N   related to approximate solution 
of the problem consisting of Equation (3) and condition 
(4), we replace the matrices (20) by the last m rows of 
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the augmented matrix (19). Hence, we have a new aug-
mented matrix , where *W A G

* *
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If det (W*) ≠ 0 then we can write   1* *A W G




, , ,

. The 
unknown Hermite coefficients matrix A, is determined by 
solving this linear system and 0 1 Na a a

 n

 are sub- 
stituted in Equation (3). Thus, we obtain the Hermite 
polynomial solution   n

N

N nf z   a H z


. 

3. Comparison of Matrix Polynomial  
Collocation Methods 

Theorem3.1. Let 
0i

 be a base for vector space 
S, then every member s  S has a unique representation 
in the form of linear combination of these vectors. 
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Proof. [13]. 
Based on the above theorem, if the bases of approxi- 

mate space in collocation methods are chosen from com- 
plex polynomials up to degree N, using different bases or 
choosing of different complex polynomial classes as the 
base has no effect on the approximate solution, theoretic-  

cally. This means that if  and   
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For this reason when we use different polynomials 
(such as Taylor, Bessel, Hermite, etc.) in polynomial 
Collocation methods one expects the equal results ob- 
tained. 

In the numerical implementation, to determine coef- 
ficients an,  in (5), we should solve a sys- 
tem of equations in the form of WF = G and properties of 
matrix W is directly depended on choosing the base. So 
different bases result different matrix W with different 
properties. Some of these properties such as condition 
number has the direct influence on solution’s accuracy. 
In addition CPU time for solving these systems differs 

for different bases. Hence, different polynomial bases 
can cause solutions with different accuracy. 

Our experiences show that when we use different po-
lynomial classes in matrix polynomial collocation meth-
ods, there is negligible difference among approximated 
solutions. In Section 4, we compare this matter for sev-
eral examples by using Taylor, Bessel and Hermite po- 
lynomials. 

4. Numerical Examples 

Several numerical examples are studied in this section to 
illustrate the accuracy and efficiently properties of Taylor, 
Bessel and Hermite collocation method. In this paper, 
collocation points in the rectangular domain (3) are de- 
fined by pq pz x iyq  , such that 
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and in the elliptic domain (4) are defined by 
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such that , 0,1, ,p q N  ; ,  0 2q  
 0 0,0 0 0z zq

Examples show that the difference among collocation 
methods based on these polynomials is negligible. All of 
them are performed on a computer using programs writ- 
ten in MATLAB 2011a. In this regard, we have reported 
in the Tables the value of absolute error function 

. 

     Ne z f N f z  N  at the selected points of the 
domain. 

4.1. Example 1 

As the first example, [10], we consider the linear second 
order complex differential equation 
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1 2 6
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0 , 0

2
f f  0  and exact solution  

   23 1
cos

2 2
f z z z    on elliptic domain with  

1
1,

2
a b 

 
and    . Absolute errors are listed in 

able 1. T       
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4.2. Example 2 

In this example, [10], we consider the third order linear 
complex differential equation 

   
  6 5 4 3 28e 12e 30e 19e 9e 0,z z z z z

f z f z

f z

 

        

with the condition , ,    20 ef    20 3ef  
  20 14ef    and exact solution  2e ezz f z  in el-  

liptic domain with a=1, 
1

2
b  and    . Absolute  

errors of the obtain solutions are given in Table 2. 

4.3. Example 3 

The last example, [11] is the second order complex dif- 
ferential equation 

    e ez zf z zf z z    , 

with the initial conditions  0 1f  ,  0f  1 . The 
exact solution is   ezf z   on rectangular domain with 
a = −1, b = 1, c = −1, d = 1. Absolute errors are listed in 
Tables 3 and 4. 

5. Conclusion 

In this article, approximate solutions which can be ob- 
tained by different polynomial collocation methods have 
been compared. Our experiments show that using differ- 
ent polynomials cannot significantly affect the numerical 
solutions and the results are similar to each other. 
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