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ABSTRACT 

In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we 
derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using the Wronskian 
technique, which include rational solutions, soliton solutions, positons and negatons. 
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1. Introduction 

The Wronskian technique is introduced by Freeman and 
Nimmo [1]. After that, many researches are based on the 
Wronskian technique. 

The (2 + 1)-dimensional BLMP equation was first de- 
rived in [2]:  

3 3yt xxxy xx y x yu u u u u u    0



        (1) 

where  and subscripts represent partial 
differentiation with respect to the given variable. This 
equation was used to describe the (2 + 1)-dimensional 
interaction of the Riemann wave propagated along the 
y-axis with a long wave propagated along the x-axis. The 
Painlevé analysis, Lax pairs, Bäcklund transformation, 
symmetry, similarity reductions and new exact solutions 
of the (2 + 1)-dimensional BLMP equation are given in 
[2-4]. In [5], based on the binary Bell polynomials, the 
bilinear form for the BLMP equation is obtained. New 
solutions of (2 + 1)-dimensional BLMP equation from 
Wronskian formalism and the Hirota method are ob- 
tained in [6,7]. 
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which was introduced in [8] has the bilinear form 
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just by substituting   2 ln , , ,
x

u f x y z  t into equation  

(2), where the bilinear differential operator D is defined 
by Hirota [9] as 
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2. Wronskian Formulation 

Solutions determined by  2 ln
x

u   f to the Equation  

(2) are called Wronskian solutions, where 
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Lemma 1 

, , , , , , , , , , , , 0D a b D c d D a c D b d D a d D b c   , (6) 

w  matrix, and  are 
n-dimensional colum ors. 

-dimensiona

 real consta  

bu hen we have 

here D is  2N N 
n vect

, , ,a b c d

Lemma 2 Set to be an n l 

column vector, and  1, ,jr j n   to be a nt 

 1, ,jb j n   
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1 2, , , , , ,
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where 

Lemma 3 The following equalities hold: 
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Proposition. Assuming that  , , ,i i x y z t 
, N

 (where 

) has continuous de-  0, , , , 1, 2,t x y z i     
rivative up to any order and satisfies the following linear 
differential conditions 
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       (9) 

then 1f N   defined by Equation (4) solves the bil-  

inear Equation (2). 
Proof. Using the conditions (9), we get that 
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With the help of Lemma 2 and Lemma 3, we obtain 
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Substituting Equation (11) into Equation (10) and us- 
ing lemma 1, we get 
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1f N Therefore, we have shown that  solves  

lution of Equation (2) is 
Equation (4) under the linear differential conditions (9), 
The corresponding so
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3. Wronskian Solutions 

In what follows, according to [10-12], we would like to 
present a few special Wronskian solutions to the (3 +  
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1) pinelli 
by

-dimensional Boiti-Leon-Manna-Pem equation 
 solving the linear conditions (9). 
It is well known that the corresponding Jordan form of 

a real marix 
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have the following two type of blocks: 
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3.1. Rational Solutions 

Suppose A have the first type of Jordan blocks 
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the eigenvalue In this case, if 1 0  , corresponding 
to the following form: 
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from the condition (9), we get 


 

, , , , , ,0, 4 , ,i xx i t i xxx i y i x i z , , 1.i x i             (18) 

where  are all polynomials in  1i i  , ,x y z
 (3 + 1)

 and 
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is called a rational Wronskian solution. 
From Equation (18), we get 

t , 
en-a general Wr

onal Boiti-Leon-Manna-Pempinelli Equation (2) 
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ing Maple, we get the fol- Solving Equation (20) by us
lowing formulas: 
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and are arbitrary real constants. Similarly, 
e higher order rational Wronskian so- 

lutions. 

3.2. Solitons, Negatons and Positons 

3.2.1. Solitons 
If 

1 2 3 4, , ,C C C C  
we can obtain mor

A  becomes to the following form 

1
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0 N N N
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where the eigenvaluce 0.i   
n

Substituting the form of 
expression (26) into Equatio  (9), the following system 
of differential equations is obtained 
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Similarly, we can obtain 3-soliton, 4-soliton solution 
and n-soliton. 

3.2.2. Negatons and Positons 
If the eigenvalue  1 10, J   becomes to the foll-  

owing form 
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General solution to this system in two cases of 1 0   
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1, 1, 1, 1,4 ,t x x           (35) 

where 
1

1, 1,,xxx y z  

  denotes the tive with respect to 1deriva   and  

k  is an ar  nonnegative integer. There1 bitrary fore, through 
this set of eigenfunctions and Equation (12), a Wronskian 
solution of order 1 1k   to Equation (2) is presented as: 
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which c esponds to the first type of Jordan blocks with 
onzero real eigenvalue. 
In what follows, several exact solutions of lower-order 

are presented to the (3 + 1)-dimensional Boiti-Leon- 
Manna-Pempinelli equation as 
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3.3. Interaction Solutions 

We are now presenting examples of Wronskian interac- 
tion solutions among different kinds of Wronskian so- 
lutions to the (3 + 1)-dimensional Boiti-Leon-Manna- 
Pempinelli equation. 

Let us assume that there are two sets of eigenfunctions 
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is
two solutions determined by the two sets of eigenfunc- 

tions in (37). In fact, we ca  have more general Wron- 
skian interaction solutions among three or more kinds of 
solutions such as rational solutions, positons, solitons, 
negatons, breathers and complexitons. 

In what follows, we would like to show a few special 
Wronskian interaction solutions depending on rational 
solution, positons and solitons. Firstly, we choose three 
different sets of special eigenfunctions: 
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where 1 0  , 2 0   are constants. 

Three Wronskian interaction determinants between 
any two of a rational solution, a single soliton and a 
single positon are obtained as 

 said to be a Wronskian interaction solution between 
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The following is one Wronskian interaction determi- 
nant and solution involving the three eigenfunctions. The 
Wronskian determinant is 
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so that its corresponding Wronskian solution reads as 



  3
rational soliton positon

3

2
2 ln , , ,rsp x

q
u W

p
  


     

     
   

       
       

3 2 1 1 2

1 2 2 1

3 1 2 1 2 1

1 1 1 2 2 2 1 2

sinh cos

sin cosh ,

sinh sin

sinh cos cosh sin

p x y z

q x y z

   

   

     2

       

  

 

    

 

 

with  
3

2
1 1 1 1 14x y z t        , 

where  
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2
2 2 2 2 24 .x y z t              

4. Conclusion 

In this paper, by using the Wronskian technique, we have 
derived the Wronskian determinant solution for the (3 + 
1)-dimensional Boiti-Leon-Manna-Pempinelli equation 
which describes the fluid propagating and can be consid-
ered as a model for an incompressible fluid. Moreover, 
we obtained some rational solutions, soliton solutions, 

the 
resultant systems of linear partial differential equations 
which guarantee that the Wronskian determinant solves 
the equation in the bilinear form. The presented solutions 

remarkable richness of the solution space of the 
ensional Boiti-Leon-Manna-Pempinelli equa- 

tion. 
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