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ABSTRACT

In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we
derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using the Wronskian
technique, which include rational solutions, soliton solutions, positons and negatons.
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1. Introduction

The Wronskian technique is introduced by Freeman and
Nimmo [1]. After that, many researches are based on the
Wronskian technique.

The (2 + 1)-dimensional BLMP equation was first de-
rived in [2]:

Uy + U —3U, U, —3U,U, =0 (1)

XXXY

where u :u(x, y,t) and subscripts represent partial
differentiation with respect to the given variable. This
equation was used to describe the (2 + 1)-dimensional
interaction of the Riemann wave propagated along the
y-axis with a long wave propagated along the x-axis. The
Painlevé analysis, Lax pairs, Bécklund transformation,
symmetry, similarity reductions and new exact solutions
of the (2 + 1)-dimensional BLMP equation are given in
[2-4]. In [5], based on the binary Bell polynomials, the
bilinear form for the BLMP equation is obtained. New
solutions of (2 + 1)-dimensional BLMP equation from
Wronskian formalism and the Hirota method are ob-
tained in [6,7].
The (3 + 1)-dimensional BLMP equation

Uy Uy + Uy + Uy, —3Uy (uXy +sz)

XXXY

2
—3uxx(uy+uz)=0 @

which was introduced in [8] has the bilinear form
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(D,D,+D,D,+D,D}+D,D)f-f=0  (3)

just by substituting u=-2(In f (x,y,z,t)) into equation
(2), where the bilinear differential operator D is defined
by Hirota [9] as
D"Dya(t, x)-b(t,x)
o" 0"

= a(t+s,x b(t—s,x-

s=0,y=0

2. Wronskian Formulation

Solutions determined by u=-2(In f) to the Equation
(2) are called Wronskian solutions, where

—

f :W(¢1'¢2"”'¢N):‘N 1‘

4
) 4
B A IV

4O gB gD

and
SR . :

ﬂ(o):ﬂ,@(J)zﬁﬂ,jz:[,lSISN- ()
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Lemma 1
|D,a,b||D,c,d|-|D,a,c||D,b,d|+|D,a,d||D,b,c| =0, (6)

where D is N><(N—2) matrix, and a,b,c,d are
n-dimensional column vectors.
Lemma 2 Set b, (j=1--,n) to be an n-dimensional

column vector, and T, (j =
but not to be zero. Then we have

N N
Z;ri|b1'bzv“'-bw|:Z;|b1’b2""’rb
i=! j=

where rb; =(r;, b, ;.- nyby )T.
Lemma 3 The following equalities hold:

1, n) to be a real constant

j,...,aN|, @)

fo="f, =", :‘l\l/—\B,N—l,N‘Jr‘I\T—\Z,N +1‘,

XXZ xxy

fre = T

XXXZ XXXy XXXX

BBl o
Proposition. Assuming that ¢ =4 (x,y,z,t) (where

t>0,—0<X,Y,Z<+»,i=12,---,N) has continuous de-

rivative up to any order and satisfies the following linear
differential conditions

¢|,t = _4¢|,xxx7 ¢|,xx = Z/Lﬂsj’ ¢|,y = ¢|,x’ ¢|,z = ¢|,x (9)

then f =‘@ defined by Equation (4) solves the bil-

inear Equation (2).
Proof. Using the conditions (9), we get that

:‘r\T—\4,N —2,N—1,N‘+2‘N/—\3,N—1,N +4+‘@,N+2‘

‘N 5,N-3,N-2, N— 1N‘+3‘N "4 N-2,N - 1N+l‘

+3‘N “3N-1LN +2‘+2‘N “3N,N +1HN “2,N +3‘

—(4‘I\T—\4,N _2.N —1,N‘—4‘I\T—\3,N “1N +4+4‘@,N +2‘),

=f

xt =

Hence, we have

(D,D, +D,D, +D,D} +D,D; ) f - f

=6V

—‘N/—\4,N—2,N—1,N+].‘—2‘I\l/—\3,N,N+l‘

N/—\S,N—S,,N—Z,,N—LN‘

—‘I\I/—\(’>,N—1,N+2‘+‘I\l/—\2,N+3‘) (10)

+24‘@,N—1,N+4‘IT?2,N‘
—6(‘!\1/—\3, N -1 N[+[N=2,N +4)2.
With the help of Lemma 2 and Lemma 3, we obtain
G‘N/—\l‘(‘N/—\S N-3,N-2,N-LN|
NTAN-2 N LN 142 N3N, N+
N=3N-LN+2+ [N 2N +3‘) v

=6(—‘N/—\3,N —1,NHN/-\2,N +4)Z.
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—(4‘I\T—\5,N _3,N-2,N —1,N‘—4‘I\T—\3,N,N +4+4‘@,N +3‘).

Substituting Equation (11) into Equation (10) and us-
ing lemma 1, we get

(D,D, +D,D, +D,D} +D,D}) f - f

:_24(‘/_\,

—‘N/—\s,N—z,N—MI\T—\&NJrl,N‘

+‘I\T—\3,N —2,NHN/—\3,N +1N —4):

Therefore, we have shown that f :‘N/—\q solves

Equation (4) under the linear differential conditions (9),
The corresponding solution of Equation (2) is

‘N ZN‘

=R

(12)

3. Wronskian Solutions

In what follows, according to [10-12], we would like to
present a few special Wronskian solutions to the (3 +
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1)-dimensional Boiti-Leon-Manna-Pempinelli equation
by solving the linear conditions (9).

It is well known that the corresponding Jordan form of
a real marix

J(4) 0
1 J(A
A= (.2) N . (13)
0 1 J(/Im) N
have the following two type of blocks:
1)
A 0
1 A
I()= . , (14)
0 1 1 1k; xk;
2)
A 0
|
s(m)=| ' B ,
L 15
0, AL, (49)

i 2 )

where 4,o; and g are all real constants. The first

type of blocks have the real eigenvalue 4, with alge-

i=1 1

braic multiplicity ki( "k o= N), and the second type

of blocks have the complex eigenvalue A* = &, + 4,+/—1
with algebraic multiplicity |, .

3.1. Rational Solutions

Suppose A have the first type of Jordan blocks

A4 0
a=|t A , (16)
0 LA

In this case, if the eigenvalue 4, =0, corresponding
to the following form:

0 0
1 0

A=[T T , (17)
0 10

ANxN
from the condition (9), we get

¢|,xx =0'¢|,t =_4¢i,xxx'¢|,y =¢|,x'¢|,z =¢i,x1i =1 (18)

where ¢ (i>1) are all polynomials in x,y,z and t,
and a general Wronskian solution to the (3 + 1) dimen-
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sional Boiti-Leon-Manna-Pempinelli Equation (2)
u=-20, W (4., ), (19)

is called a rational Wronskian solution.
From Equation (18), we get

¢l,><x = 0!¢1,t = _4¢|,xxx’¢1,y = ¢1,><’¢1,z = ¢1,><' (20)
Solving Equation (20) by using Maple, we get the fol-
lowing formulas:
¢ =C,(x+y+2)+C,. (21)
Similarly, by solving
¢|+1,xx = 0' ¢i+1,t = _4¢|+1,xxx’
¢|+1,y = ¢|+l,x'¢|+1,z = ¢|+l,x7i 2 1’
then two special rational solution of lower-order are ob-
tained after setting some integral constants to be zero.
1) Zero-order: Taking ¢ =C,(x+y+2)+C,, the

corresponding Wronskian determinant and the associated
rational Wronskian solution of zero-order read

(22)

f=W(¢)=¢=C(x+y+2)+C,, (23)
2C,
u:—zax|nw(¢1):—cl(x+y+z)+cz, (29)

where C,,C, are arbitrary constants.
2) First-order: Taking ¢ =C,(x+y+2z)+C,, we
can have

4, =%(x3 +(3z+3y)x* +3(y+ z)2 X — 24t + 2% +3zy?
+32°y + y3)+%czx2 +%(6C22+603 +6C,y)x

+%C2y2 +%(6C22+6C3y)+c4 +%C222 +C,z.

(25)

Then, the corresponding Wronskian determinant and
rational Wronskian solution of first-order are

f=W(d,¢)=P,
u=-20,InW(¢,4,)
C12(2yz+2xy+2xz+x2 +y? +22)
N P
+2C1C2(x+ y+2)+C;
P

where

P =Cf(xy2 +X2° + X224+ X2y + 22y + 7y + 2xy2 +%x3

+%y3 +%Z3 +4t)+Clc2 (2xy +2yz +2xy

+x2+y2+zz)+C22(x+ y+12)+C,C,-CC,
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and C,,C,,C,,C, are arbitrary real constants. Similarly,
we can obtain more higher order rational Wronskian so-
lutions.

3.2. Solitons, Negatons and Positons

3.2.1. Solitons
If A becomes to the following form
A 0
A=l , (26)
0 /IN NxN

where the eigenvaluce A, = 0. Substituting the form of
expression (26) into Equation (9), the following system
of differential equations is obtained

(4 (2))=4(4(2)).(4 (%)), =-4(4 (%)),
((2)), =(4(4%),.(4(2)), = (4(2)),.

By solving system (27), we get the n-soliton solution
of Equation (2)

(27)

u=-20, INW (¢, ¢, ¢y ), (28)
with ¢ being defined by
3
(/ﬁ;:cosh[\/zlx+\/7,y+ﬂz—4ﬂft], i odd
(29)

3
P :sinh[\/Zx+\/Zy+\/Zz—4ﬂ,,2tJ, i even

where 0< 4, <4, <---< A4, are arbitrary constants.
We present the 1-soliton and 2-soliton solutions

u, =20, In [cosh[\/Zx+\/Zy+\/Zz —4@;]}
. —2\/Ztanh(\/Zx+\/Zy+\/Zz —4A1§tJ
u, =20, Inw [cosh (ﬂx+ﬂy+ﬁz—4ﬁ§tj,
sinh(\/Zx+\/Zy+\/Zz _MLD

where

P:\/Zcoth(\/Zx+\/Zy+\/Zz—4ﬂ§tJ
Qz\/Ztanh(\/Zx+\/Zy+\/Zz—4ﬂftj
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Similarly, we can obtain 3-soliton, 4-soliton solution
and n-soliton.

3.2.2. Negatons and Positons
If the eigenvalue 4 #0,J(4) becomes to the foll-

owing form

A 0
TPAR , (30)
0 1 A4 Ky xky

We start from the eigenfuction ¢ (4,), which is dete-
rmined by

(4(4)) =4 (4(4))(4(4)), =—4(4 (%)),
(4.(4), =(4(4)),.(4(4)), =(4(4)),.

General solution to this system in two cases of 4, >0
and 4 <0 are

¢1(/11)=Clcosh(\/Zx+\/Zy+\/Zz—4ﬂ§tj
+Czsinh(\/2x+\/zy+\/22—4ﬂ§t}ﬂj >0,
#(4)=C; cos(ﬁx+ﬁy+ﬁz+4(—ﬂl)§tj
+C4sin[ﬁx+ﬁy+ﬁz+4(—ﬂl)gtj,ﬂl <0,

(32)
respectively, where C,,C,,C, and C, are arbitrary
real constants. When 4 >0, we get negaton solution
and when A4, <0, we get positon solutions.

To construct Wronskian solutions corresponding to
Jordan blocks of higher-order, we use the basic idea
developed for the KdV equation [10,11].

Differentiating (9) with respect to 4, , we can find that
the vector function

(1)

ch = q)l(ﬂ’l)
1 1 k-1 '
(s dos g pera) .
(33)
satisfies
A4 0

(Dl,xxx = 1 ﬂl q)l’ (34)

0 L
JAMP
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1t - 4(D1 xxx’ = q)l,x ’ q)l,z = q)l,x (35)

where 0, denotes the derivative with respectto 4, and

k, is an arbitrary nonnegative integer. Therefore, through
this set of eigenfunctions and Equation (12), a Wronskian

solution of order k, —1 to Equation (2) is presented as:
u

20, 4(4) 20,8 a) |

(36)

which corresponds to the first type of Jordan blocks with
a nonzero real eigenvalue.

In what follows, several exact solutions of lower-order
are presented to the (3 + 1)-dimensional Boiti-Leon-
Manna-Pempinelli equation as
where

m=Axe Ay +Az-4at.,
0Ty A

Uy negaion = 205 In [cosh [\/Z X+ Ay +JAz- 4A§tD
:—ZMtanh[\/Zx+\/Zy+\/Zz—4A§tJ,

U o = 20, In(cos[ﬁmﬁ TN = z+4(—ﬂi)3tj]
- zﬁtan[ﬁmmwﬁuq_@itj,

u2-negat0n =

20, InW (cosh(r,),8,, cosh(z,))

4\/_ cosh(7,)

—cosh (7, )sinh(7,)

uZ-positon

\/7x \/>y \/>z+12212t

=20, InW (cos(6,),0,, cos(6,))

42, cosh(6;)

3 !

J=4 cos(8,)sin(6,)— Ax— Ay — Az +1222t

3.3. Interaction Solutions

We are now presenting examples of Wronskian interac-
tion solutions among different kinds of Wronskian so-
lutions to the (3 + 1)-dimensional Boiti-Leon-Manna-
Pempinelli equation.

Let us assume that there are two sets of eigenfunctions

$(2).05 (A), . (A)swa () yra (1) v (),
@37)

associated with two different eigenvalues A and u ,
respectively. A Wronskian solution

U=-202INW (4 (2).4, (1), ¢ (A);w (1)
V/z(ﬂ)""vl//l (/1))
(38)

is said to be a Wronskian interaction solution between
two solutions determined by the two sets of eigenfunc-

Open Access

tions in (37). In fact, we can have more general Wron-
skian interaction solutions among three or more kinds of
solutions such as rational solutions, positons, solitons,
negatons, breathers and complexitons.

In what follows, we would like to show a few special
Wronskian interaction solutions depending on rational
solution, positons and solitons. Firstly, we choose three
different sets of special eigenfunctions:

¢rational =X+ y +z,

¢So|iton = cosh (\/ZX—F\/Z)/'F\/ZZ_‘]%E‘:J,
¢positon :COS(EX+Hy+EZ+4(_ﬂ?)th,

where 4, >0, 4, <0 are constants.

Three Wronskian interaction determinants between
any two of a rational solution, a single soliton and a
single positon are obtained as

JAMP
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W (Sraiona Bt )

= 4 (x+y+2)sinh(7,)—cosh(n,),

W (haiors oo

=—J~% (x+y+2)sin(n,)~cos(1,)

W (dotion oson

=—J~4, cosh (1, )sinh (17, ) =4, cos(7, )sinh (1),

where
i :\/Zx+\/2y+\/22—4ﬂft
1 =Ry (A

Further, the corresponding Wronskian interaction
solutions are

urs = _Zax InwW (¢rational ’ ¢so|iton )
22, (x+y+z)cosh(n,)
JZ (x+y+2)sinh () —cosh (7,)
urp = _zax InwW (¢rational ’ ¢positon )
24, (x+y+12)cos(1,)

- =%, (x+y+2)sin(n,)—cos(,)

Uy = _Zax InwW (¢so|iton ) ¢positon )
_ 2( 2, — A )cosh (1, )cos(7,)
—J~4, cosh (n,)sinh(17,) —[4, cos(1, )sinh ()’

where

=X+ Ay + Az -4z,
1= axe [Ty e Rz ARt

The following is one Wronskian interaction determi-
nant and solution involving the three eigenfunctions. The
Wronskian determinant is

W (aiona - Prtion  Fosion)
= (x+y+2)(%n/4 sinh (1, )cos(n,)
+ﬂ1ﬁsin(7yz)cosh(m)),
so that its corresponding Wronskian solution reads as

_2q
ursp = _zax Inw (¢rational’¢soliton’¢positon ) = p ? '

3

where

Open Access

Py =(X+y+ z)(ﬂz\/ZSinh(nl)cos(nz)
+AJ=2, sin () cosh (1)),

O = (X +y+2) =42 (A4~ 4 )sinh (7, )sin(1,)

+ A2 sinh (17, )c0s (77, )+ 2,4/~2, cosh (7, )sin (77, )

with
= x+Jhy+Jhz 422,
1 =X Ty T 4

4. Conclusion

In this paper, by using the Wronskian technique, we have
derived the Wronskian determinant solution for the (3 +
1)-dimensional Boiti-Leon-Manna-Pempinelli equation
which describes the fluid propagating and can be consid-
ered as a model for an incompressible fluid. Moreover,
we obtained some rational solutions, soliton solutions,
positons and negatons of this equation by solving the
resultant systems of linear partial differential equations
which guarantee that the Wronskian determinant solves
the equation in the bilinear form. The presented solutions
show the remarkable richness of the solution space of the
(3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equa-
tion.
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