
9 772327 435001 40





Journal of Applied Mathematics and Physics, 2017, 5, 836-989 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

 

 
 

Table of Contents 
Volume 5   Number 4                                      April 2017 
 
Archimedes’ Principle Revisited 

P. Mohazzabi…………………………………………………………………………………………………………836 

The Exact Solution of the Space-Time Fractional Modified Kdv-Zakharov-Kuznetsov Equation 

Q. Y. Jin, T. C. Xia, J. B. Wang………………………………………………………………………………………844 

Kinematic Relativity of Quantum Mechanics: Free Particle with Different Boundary Conditions 

G. P. Kamuntavičius, G. Kamuntavičius……………………………………………………………………………853 

Gravitation as Geometry or as Field 

W. Petry………………………………………………………………………………………………………………862 

Exact Time Domain Solutions of 1-D Transient Dynamic Piezoelectric  
Problems with Nonlinear Damper Boundary Conditions 

N. M. Khutoryansky, V. Genis………………………………………………………………………………………873 

The Faraday Isolator, Detailed Balance and the Second Law 

G. S. Levy………………………………………………………………………………………………………………889 

Error Analysis and Variable Selection for Differential Private Learning Algorithm 

W. L. Nie, C. Wang…………………………………….…………………….…………….…………………………900 

Energy Conservation and Gravitational Wavelength Effect of the  
Gravitational Propagation Delay Analysis 

P. Kornreich…………………………………………………………………………………………………………912 

Decay Rate for a Viscoelastic Equation with Strong Damping and Acoustic Boundary Conditions 

Z. Y. Ma…………………………………………………………..…………………..………………………………922 

A Note on the Cosmological Constant in ( )f R  Gravity 

P. K. F. Kuhfittig…………………………………………………………..…………………………………………933 

Classical Fundamental Unique Solution for the Incompressible Navier-Stokes Equation in N 

W. S. Khedr…………………………………………………………..……………..…………………………………939 

Biomechanical Study of Vertebral Compression Fracture Using Finite Element Analysis 

H. Takano, I. Yonezawa, M. Todo, M. H. Mazlan, T. Sato, K. Kaneko…………………………………………..…953 

http://www.scirp.org/journal/jamp
http://www.scirp.org


Journal of Applied Mathematics and Physics, 2017, 5, 836-989 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

 

Exact Solution for Thermal Stagnation-Point Flow with  
Surface Curvature and External Vorticity Effects 

R. M. C. So, E. W. S. Kam…………………………………………………………………………………………..…966 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

http://www.scirp.org/journal/jamp
http://www.scirp.org


Journal of Applied Mathematics and Physics (JAMP) 
Journal Information  
 
SUBSCRIPTIONS  
 
The Journal of Applied Mathematics and Physics (Online at Scientific Research Publishing, www.SciRP.org) is published monthly 
by Scientific Research Publishing, Inc., USA.  
 
Subscription rates:  
Print: $39 per issue. 
To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org  
 

SERVICES  
 
Advertisements  
Advertisement Sales Department, E-mail: service@scirp.org   

Reprints (minimum quantity 100 copies)  
Reprints Co-ordinator, Scientific Research Publishing, Inc., USA. 
E-mail: sub@scirp.org  
 

COPYRIGHT 
 
Copyright and reuse rights for the front matter of the journal: 
Copyright © 2017 by Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/  

Copyright for individual papers of the journal: 
Copyright © 2017 by author(s) and Scientific Research Publishing Inc. 

Reuse rights for individual papers: 
Note: At SCIRP authors can choose between CC BY and CC BY-NC. Please consult each paper for its reuse rights. 

Disclaimer of liability 
Statements and opinions expressed in the articles and communications are those of the individual contributors and not the 
statements and opinion of Scientific Research Publishing, Inc. We assume no responsibility or liability for any damage or injury to 
persons or property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim 
any implied warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a 
competent professional person should be sought. 
 

PRODUCTION INFORMATION  
 
For manuscripts that have been accepted for publication, please contact:  
E-mail: jamp@scirp.org  
 
 
 

http://www.scirp.org/
mailto:sub@scirp.org
mailto:service@scirp.org
mailto:sub@scirp.org
http://creativecommons.org/licenses/by/4.0/
mailto:jamp@scirp.org


Journal of Applied Mathematics and Physics, 2017, 5, 836-843 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2017.54073  April 27, 2017 

 
 
 

Archimedes’ Principle Revisited 

Pirooz Mohazzabi 

Department of Mathematics and Physics, University of Wisconsin-Parkside, Kenosha, WI, USA 

 
 
 

Abstract 
Based on Newton’s third law of motion, we present a different but quite gen-
eral analysis of Archimedes’ principle. This analysis explains the reduction in 
apparent weight of a submerged object in all cases, regardless of its position in 
the fluid. We also study the case in which the object rests on the bottom of the 
container where the net hydrostatic force on it is downward, and explain 
where in this case the reduction in the apparent weight comes from. 
 

Keywords 
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1. Introduction 

Although the law of buoyancy was discovered by Archimedes over 2200 years 
ago, even today from time to time new articles appear in the literature inspecting 
its various aspects. More specifically, in the last two decade or so, more than a 
dozen papers have been published in different journals, ranging from pedagogi-
cal points of view [1] [2] to scrutinizing the original statements made by Archi-
medes [3] [4]. 

Archimedes’ principle is one of the most essential laws of physics and fluid 
mechanics. Basically the principle states an object immersed in a fluid is buoyed 
up by a force equal to the weight of the fluid that it displaces. This principle, 
which is perhaps the most fundamental law in hydrostatics, explains many nat-
ural phenomena from both qualitative and quantitative points of view. The prin-
ciple of isostasy, for example, which states that Earth’s crust is in floating equili-
brium with the denser mantle below [5] [6], is simply based on Archimedes’ 
principle. 

One of the applications of Archimedes’ principle is in measurement of density 
of an irregularly shaped object. The simplest method is to use a graduated cy-
linder filled with water to a certain level. The object is then slowly lowered into 
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the cylinder until it becomes completely submerged. The increase in the level of 
water inside the cylinder is simply equal to the volume of the object. This me-
thod, however, requires that the diameter of the cylinder be at least as large as 
the diameter of the object, which reduces the accuracy of the measurement. In 
addition, this method certainly cannot be used to measure the volume of a large 
object such as a boulder. The problem, however, can be resolved by taking ad-
vantage of Archimedes’ principle. A container partially filled with water is 
placed on a scale and the reading of the scale is recorded. The object is then 
hung from a string above the water, and slowly lowered into it until it is com-
pletely submerged, but without touching the bottom of the container (if the ob-
ject is less dense than water, it can be pushed under water). The reading of the 
scale will increase by the mass of the displaced water (assuming that the scale 
measures mass), from which the volume of the object can be determined [7]. Al-
ternatively, the object can be hung above water from a scale. As the object is lo-
wered into water, the reading of the scale decreases by an amount equal to the 
mass of the displaced water. Thus, a boulder hanging from a spring or dial scale 
can be lowered into a large volume of water, such as a pond or a lake, and from 
the change of the reading of the scale, its volume can be determined. 

Even though Archimedes’ principle is over 2200 years old and despite its im-
portance in hydrostatics, there are still some questions about it that have not yet 
been fully answered in the literature. For instance, debates are still going on re-
garding the interpretation of the principle when an object rests on the bottom of 
a fluid-filled container, where it experiences a net downward force by the fluid. 
It is therefore the objective of this article to derive the principle from a different 
point of view and answer some of the questions associated with the principle 
that have not been settled in the literature. 

2. Derivations of Archimedes’ Principle 

A rigorous derivation of Archimedes’ principle involves the concept of virtual 
work. In this method, the buoyant force is set equal to the negative of the gra-
dient of the potential energy during an infinitesimal virtual displacement of the 
submerged object [8] [9]. This approach applies to objects of any shape; however, 
it has the limitation that the object must be completely surrounded by the fluid 
and that it should not be in contact with the container. 

Alternatively, there are two simpler derivations of the principle [8]. One is 
based on the plausible argument that if the principle were not true, the subvo-
lume of a fluid displaced by an object would not be in equilibrium. More specif-
ically, the net fluid force on an arbitrarily shaped object would be the same as 
that on an equal volume of the fluid which was in equilibrium before it was dis-
placed by the object [10] [11] [12] [13]. Therefore, the buoyant force is equal to 
the weight of the fluid displaced. This argument applies to any object of any 
shape regardless of its position in the container. 

The second approach is based on the variation of hydrostatic pressure fP  as 
a function of depth of the fluid, 
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f fP D gy=                               (1) 

where fD  is density of the fluid, y  is the depth, and g  is the acceleration 
due to gravity. In this approach, an object of simple geometry such as a rectan-
gular or cylindrical block is considered and the net fluid force due to the differ-
ence of hydrostatic pressure at the top and the bottom of the block is calculated 
[14]. This approach is simple; however, the proof for arbitrarily shaped objects is 
more involved as stated above [15], and it works only for objects that are com-
pletely surrounded by fluid. For objects resting on the bottom of the container, 
there is no fluid pressure in the contact area and the proof fails. 

We now present a different quite general, yet simple derivation of Archimedes’ 
principle that is valid regardless of the position of the object in the fluid. In this 
approach, the object can be completely surrounded by the fluid, be in contact 
with the walls of the container, rest on the bottom of the container, or even float 
in the fluid with only a fraction of its volume submerged. 

3. A Different Approach to Archimedes’ Principle 

Consider a fluid of density fD  and an object of arbitrary shape of mass m  
and volume V , denser than the fluid. The fluid is in a container of cross-sec- 
tional area A  and has a height H  before the object enters it, as shown in 
Figure 1(a). The object is supported by a string and, at this time, the tension in 
the string is mg . 

Because fluid forces on the side walls of the container cancel, before the object 
enters the fluid, the net force F  exerted by the fluid on the container is only 
due to the hydrostatic pressure at the bottom of the container, which is given by 

.fF D gHA=                             (2) 

Now we lower the object down into the fluid until it is submerged as shown in 
Figure 1(b). This causes the height of the fluid in the container to increase by 

Hδ , where Hδ  is given by 

VH
A

δ =                              (3) 

Therefore, the net fluid force on the bottom of the container increases by Fδ , 
which is given by 

f fF D g HA D gVδ δ= =                        (4) 

which is exactly equal to the weight of the fluid displaced. Therefore, when the 
object enters the fluid, the level of the fluid increases and the container expe-
riences an additional downward fluid force equal to the weight of the fluid dis-
placed by the object. This downward force can easily be detected by placing the 
container on a scale [7]. But then according to Newton’s third law of motion, the 
container (through the fluid) exerts an equal upward force on the submerged 
object. 

Therefore, regardless of its position, a submerged object experiences an  
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(a)                                 (b) 

Figure 1. A fluid and an object of arbitrary shape which is denser than the fluid. (a) Be-
fore the object is lowered into the fluid, the height of the fluid is H ; (b) When the object 
is lowered into the fluid, the height of the fluid increases by Hδ . 
 
upward force from the container-fluid system which is equal to the weight of the 
fluid displaced, fD gV . Consequently, the tension in the string in Figure 1(b) 
and the reading of the scale in Figure 2(b) (to be explained later) would each be 
given by 

fF mg D gV= −                          (5) 

which is exactly the apparent weight of the object. 
Note that the above analysis remains valid regardless of the position of the 

object in the fluid. Thus the object can be completely surrounded by the fluid, 
rest on the bottom of the container with no fluid under it, touch the walls of the 
container, or even float in the fluid with only a fraction of it submerged. In the 
case of a floating object, however, the volume V  in the above equations should 
be taken to be the sub-volume of the object that is submerged. 

A question that normally comes up during discussions of Archimedes’ prin-
ciple is that when an object in the form of a rectangular block rests on the bot-
tom of a container with no fluid under it, where does the upward buoyant force 
come from? In fact, in this case because of the fluid pressure on top of the block, 
the net hydrostatic force on it would be downward, resulting in the apparent 
weight of the block to be greater than its true weight. But this conclusion is in 
complete contradiction with all observations since even in this case the apparent 
weight of the block is less than its true weight by the weight of the fluid dis-
placed. 

To resolve this contradiction, one may argue that in reality when a submerged 
object rests on the bottom of the container, there is almost always some fluid 
between the surfaces that appear to be in contact unless the surfaces are specially 
prepared and treated to prevent fluid seepage. This is because for ordinary flat 
surfaces, the actual area of contact is always much smaller than the apparent 
contact area [16] [17]. In fact the real contact area can be less than the apparent  
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(a)                                 (b) 

Figure 2. (a) An object denser than a fluid rests on the bottom of a container filled with 
the fluid. A weight scale is also located at the bottom of the container. The dashed region 
shows a volume of the fluid equal to the volume of the object; (b) The object has been 
moved to the top of the scale, displacing an equal volume of the fluid from that region. 
 
macroscopic area by a factor of 410  [18]. However, if the surfaces are prepared 
properly to prevent fluid seepage between them, then obviously there is no fluid 
pressure there. Therefore, if a block rests on the bottom of the container with no 
fluid seepage between them, there would be no upward fluid force on the object 
and consequently there would be no buoyant force on it. Nonetheless, as ex-
plained below, experiments show that the even under these circumstances the 
apparent weight of the object is less than its true weight by the weight of the flu-
id displaced. 

To resolve this apparent paradox, Jones and Gordon [19] designed an experi-
ment to eliminate the upward fluid force on the bottom of a submerged object. 
They used an aluminum block resting on another aluminum block with highly 
flat contact surfaces. The surfaces were flat enough to prevent water from seep-
ing between them but did not result in significant intermolecular forces between 
them [20]. They observed that the net fluid force on the object was in fact down- 
ward. Several years later, Bierman and Kincanon [3] re-examined this problem 
by using a submerged block in contact with the bottom of a container which had 
a hole in it, and studied the force needed to lift the block. Their experiment 
showed that this force increased linearly with the depth of the fluid, consistent 
with the laws of hydrostatics. Again, these experiments showed that the net fluid 
force on the object was indeed downward. Bierman and Kincanon concluded 
that in the statement of Archimedes’ principle involving the buoyant force; it 
should be stressed that the submerged object must be surrounded by the fluid 
and not simply submerged. 

What is missing in the interpretation of the experimental results of Jones and 
Gordon and of Bierman and Kincanon is that these experiments do not measure 
the apparent weight of the object. What they measure is the force needed to sep-
arate the object from the bottom of the container. This is similar to a suction cup 
sticking to a tabletop, where the net fluid (atmosphere) force on it is downward. 
The force needed to lift the suction cup straight up is much greater than the 
weight of the suction cup. To measure the weight of the suction cup, it must be 
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placed on a scale, regardless of whether air is driven out from under it or not. 
One year later, Graf [4] argued that the reading of a scale located at the bot-

tom of a container is the same when a submerged block is balanced on a thin pin 
and the pin bottom rests on the scale (where there is buoyant force) and when 
the block rests on the scale without any fluid seepage between them (where there 
is no buoyant force). He then concluded that when an object denser than a fluid 
is submerged in it, the apparent weight of the object is the same regardless of 
whether the submerged object rests on the bottom of the container or not. 
However, Graf did not explain where the upward force in the latter case comes 
from. In what follows, we address this issue and explain where in this case the 
reduction of the apparent weight comes from. 

Consider an object of any shape of mass m  and volume V  resting at the 
bottom of a container filled with a fluid of density fD , as shown in Figure 2(a). 
A scale similar to that described by Graf [4] is also placed at the bottom of the 
container, and its tare function is used to zero its reading. The region enclosed 
by the dashed line contains a volume of the fluid that is equal to the volume of 
the object. 

We now move the object and place it on the scale, as shown in Figure 2(b). 
There may or may not be fluid seepage between the object and the scale, which is 
immaterial. As a result, the weight of the object mg  is added to the scale but, at 
the same time, the weight of the fluid in the dashed region is removed from the 
top of the scale. Therefore, the reading of the scale S  will be 

fS mg D gV= −                        (6) 

where the second term on the right hand side is the weight of the fluid in the 
dashed region. Consequently, the apparent weight of the object is less than its 
true weight by exactly the buoyant force on the object as if it was completely 
surrounded by the fluid. This analysis clearly shows where the reduction in the 
apparent weight in this case comes from; it comes from removal of a volume of 
fluid, equal to the volume of the object, from the region directly above the scale. 

4. Discussion and Summary 

In this article, we have looked at Archimedes’ principle from a different, but 
quite general, perspective in the context of Newton’s third law of motion. When 
an object enters a fluid in a container, the height of the fluid increases, resulting 
in a higher hydrostatic pressure and hence a higher downward force on the bot-
tom of the container. Then according to Newton’s third law, the container-fluid 
system exerts an equal upward force on the object resulting in the reduction of 
its apparent weight, regardless of the position of the object in the fluid. We have 
also shown where the reduction of the apparent weight of a submerged object 
comes from, when the object rests on the bottom of the container with no fluid 
seepage between them. The analysis presented here helps clarify why Archi-
medes’ principle works the way it does, and why a submerged object appears to 
be lighter even when the net fluid force on it is downward. 
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Finally, we point out that Archimedes’ principle does not consider surface 
tension. In fact, presence of surface tension results in violation of the principle 
[21]. Furthermore, Archimedes’ principle breaks down in complex fluids [22]. 
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Abstract 
In this paper, we get many new analytical solutions of the space-time nonli-
near fractional modified KDV-Zakharov Kuznetsov (mKDV-ZK) equation by 
means of a new approach namely method of undetermined coefficients based 
on a fractional complex transform. These solutions have physics meanings in 
natural sciences. This method can be used to other nonlinear fractional diffe-
rential equations. 
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1. Introduction 

Nonlinear fractional differential equations (NFDEs) are universal models of the 
classical differential equations of integer order. In recent years, the fractional 
order derivative and integral is becoming a hot spot of international research; it 
can more accurately describe the nonlinear phenomena in physics. Such as 
chemical kinematics, chemical physics and geochemistry, communication, phy- 
sics, biology, engineering, mathematics, diffusion processes in porous media, in 
vibrations in a nonlinear string, power-law non-locality, and power-law long- 
term memory can use NFDEs as models to express these problem [1] [2] [3] [4] 
[5]. In the last few years, it has become an important issue and matter of interest 
for researchers about the study of analytical and numerical solutions of fraction-
al differential equations (FDEs). There are a lot of effective methods which can 
be used to study soliton, such as the fractional functional sub-equation method 
[6], the fractional modified trial equation method [7], the first integral method 
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[8], the fractional functional variable method [9], the extended tanh-function 
method [10], the (G’/G)-expansion method [11] [12] and so on. 

The present article aims to find out the modified KDV-Zakharov Kuznetsov 
[13] [14] [15] equation’s exact solutions by using named method of undeter- 
mined coefficients. The following is the organization of this paper. Some basic 
definitions and mathematical preliminaries of the fractional calculus are intro- 
duced in the next section. Investigated method of undetermined coefficients ap-
plied to solve fractional differential equations based on a fractional complex 
transform is presented in Section 3. In Section 4, we apply method of undeter- 
mined coefficients to the space-time nonlinear fractional modified KDV-ZK eq-
uation. Finally, we give some conclusions. 

2. Basic Definitions 

Fractional calculus is a generalization of classical calculus. There are a lot of ap-
proaches developed over years to generalize the concept of fractional order deriva-
tive, such as, Riemann-Liouville, Grünwald-Letnikow, Caputo [16], Kolwankar- 
Gangal, Oldham and Spanier, Miller and Ross, Cresson have presented many me-
thods, and Jumnarie put forward a modified Riemann-Liouville derivative [17] 
[18]. 

In the section, the some properties and definitions of the modified Riemann- 
Liouville derivative that will be applied in the sequel of the work were given. 

The following is the modified Riemann-Liouville derivative defined by Juma-
rie [17] [18] 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )( )

1

0

0

1 0 d ,  0,

1 d 0 d ,  0 1,
1 d

,  1,  1.

t

t
t

nn

t f f

D f t t f f
t

f t n n n

α

αα

α

ξ ξ ξ α
α

ξ ξ ξ α
α

α

− −

−

−

 − − <  Γ −


= − − < <   Γ −


≤ ≤ + ≥


∫

∫      (1) 

Remark1. ( ),f R R t f t→ →：  denote a continuous but not necessarily dif-
ferentiable function. 

The probability calculus, fractional Laplace problems, and fractional varia- 
tional calculus successfully applied Jumarie’s modified Riemann-Liouville deriv-
ative. To summarize a few useful formulae by Jumarie’s modified Riemann- 
Liouville derivative in [17] [18], we give some properties as follows 

( )
( )

1
,   0,

1tD t tα γ γ αγ
γ

γ α
−Γ +

= >
Γ + −

                   (2) 

( )( ) ( ) ,     constant,t tD cf t cD f t cα α= =                 (3) 

( ) ( ) ( ) ,t g tD f g t f g t D g tα α′=                        (4) 

( ) ( ) ( ) ,t gD f g t D f g t g αα α ′=                         (5) 
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( ) ( ) ( ) ( ).t t tD af t bg t aD f t bD g tα α α+ = +                    (6) 

Remark 2. J. H. He et al. in [19] modified the chain rule given by Equation (5) 
to the formula 

( ) ( ) ( ) ,t t g tD f g t f g t D g tα ασ ′ ′=                     (7) 

where tσ ′  is called the sigma indexes (see [19]). Therefore, Equation (5) is mo- 
dified to the forms 

( ) ( ) ( ) .t t gD f g t D f g t g αα ασ ′ ′=                      (8) 

3. Method of Undetermined Coefficients 

In the section, we introduce the generally steps of method of undetermined coef-
ficients 

Step 1: We set a nonlinear fractional order partial differential equation as fol-
lows 

( ), , , , , , 0,  0 , 1t x t t t x x xP u D u D u D D u D D u D D uα β α α α β β β α β= < <
     (9) 

where u  is an unknown function about ,x t  two independent variables, 
,t xD u D uα α  modified Riemann-Liouville derivative of u , and P  is a polyno- 

mial of u  and its partial fractional derivatives, in which includes the highest 
order derivatives and the nonlinear terms. 

Step 2: By using the traveling wave transformation 

( ) ( )

( ) ( )

, ,

,
1 1

u x t U
kx ctβ α

ξ

ξ
β α

=

= −
Γ + Γ +

                      (10) 

where k  and c  are non zero arbitrary constants. And by using the chain rule 

d ,
d
d ,
d

t t t

x x x

UD u D

UD u D

α α

α α

σ ξ
ξ

σ ξ
ξ

′=

′=
                        (11) 

where tσ ′  and xσ ′  are called the sigma index. The sigma index usually is de-
termined by gamma function [20]. In general, we can take ,t x lσ σ′ ′= =  where 
l  is a constant. 

Substituting (10) along with (2) and (11) into (9), we can rewrite Equation (9) 
in the following nonlinear ordinary differential equation 

( ), , , , 0,Q U U U U′ ′′ ′′′ =                      (12) 

where the prime denotes the derivative with respect to ξ . For the convenience 
of calculation, we should obtain a new equation by integrating Equation (12) 
term by term one or more times. 

Step 3: By the following form [21], assume that solution of the Equation (14) 
can be represented 

( ) sech ,mU Aξ ξ=                         (13) 
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where A  is nonzero constant, m  is obtained by balancing the highest order 
term and nonlinear term of Equation (9) or Equation (12). 

Step 4: Substituting the constant A  and m  into Equation (14), we can ob-
tain the solution of the fractional order Equation (9). 

4. The (3 + 1) Dimensional Space-Time Fractional mKDV-ZK 
Equation 

In this current sub-section, we apply method of undetermined coefficients to 
solve the (3 + 1) dimensional space-time fractional mKDV-ZK equation of the 
form, 

2d 0,    0,  0 1,t x xxx xyy xzzD u u u eu fu gu tα α+ + + + = > < <     (14) 

where d , e , f  and g  are nonzero constants, α  is a parameter describing 
the order of the fractional space-time-derivative. When 0f = , 0g = , d , 

0e ≠ , Equation (14) is called the fractional modified KDV equation 
2d 0,    0,  0 1,t x xxxD u u u eu tα α+ + = > < <            (15) 

when 1,α =  Equation (14) is called the modified KDV-ZK equation 
2d 0,    0.t x xxx xyy xzzu u u eu fu gu t+ + + + = >            (16) 

The modified KDV-ZK equation is applied in many physical areas. Existence 
of the solutions for this equation has been considered in several papers, see ref-
erences in [22] [23]. Next, we will obtain the non-topological soliton and dark 
soliton solutions to Equation (14) by method of undetermined coefficients [24] 
[25]. 

Therefore, we use the following transformations, 

( ) ( ) ( )
, , , , ,

1
tu x y z t U kx py qz
αλξ ξ
α

= = + + −
Γ +

         (17) 

Where ,k  ,p  ,q  λ  are nonzero constants. 
Substituting Equation (17) with Equation (2) and Equation (11) into Equation 

(14), we have 
2 3 2 2 0,U kdU U k eU kfp U kgq Uλ ′ ′ ′′′ ′′′ ′′′− + + + + =           (18) 

where d“ ”
d
UU
ξ

′ = . By once integrating and setting the constants of integration  

to zero, we obtain 

( )3 2 2 2 0.
3

kdU U k ek fp gq Uλ ′′− + + + + =            (19) 

4.1. The Non-Topological Soliton Solution 

To get the non-topological soliton solution of Equation (19), we can make the 
assumption, 

( ) sech ,mU Aξ ξ=                         (20) 
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where 

( )
,

1
tkx py qz
αλξ
α

= + + −
Γ +

                   (21) 

where ,k  ,p  ,q  λ  are nonzero constants coefficients. The m  is unknown 
at this point and will be determined later. From the Equation (20)-(21), we ob-
tain 

( ) 1d
sech sinh ,

d
mU

Am
ξ

ξ ξ
ξ

+= −                   (22) 

and 

( ) ( ) ( ) ( )
( )

( )

( )

2
1

2

2 2

2
2

2 2

d
1 sech tanh sinh sech coshsech

d
1 sech sechsinh

11 sech 1 sech
sec

sech 1 sech ,

m m

m m

m m

m m

U
Am m Am

Am m Am

Am m Am
h

Am Am m

ξ
ξ ξ ξ ξ ξ ξ

ξ
ξ ξ ξ

ξ ξ
ξ

ξ ξ

+

+

+

+

= − + − + −

= + −

 
= + − − 

 
= − +

 (23) 

and 

( )3 3 3sech .mU Aξ ξ=                         (24) 

Thus, substituting the ansatz (23)-(27) into Equation (21), yields to 

( ) ( )( )

3 3

2 2 2 2 2

sech sech
3

sech 1 sech 0.

m m

m m

kdA A

k ek fp gq Am Am m

λ ξ ξ

ξ ξ+

− +

+ + + − + =
       (25) 

Now, from Equation (25), equating the exponents 2m +  and 3m  leads to 

2 3 ,m m+ =                             (26) 

so that 

1.m =                                  (27) 

From Equation (25), setting the coefficients of 2sechm ξ+  and 3sech mξ  
terms to zero, we obtain 

( ) ( )3 2 2 2 1 0,
3

kd A Ak ek fp gq m m− + + + =                (28) 

by using Equation (27) and after some calculations, we have 

( )2 2 26
.

ek fp gq
A

d

+ +
= ±                     (29) 

We find, from setting the coefficients of sechmξ  terms in Equation (25) to 
zero 

( )2 2 2 2 0,A Am k ek fp gqλ− + + + =                  (30) 

also we get 

( )2 2 2 .k ek fp gqλ = + +                      (31) 
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From Equation (29), it is important to note that 

( )2 2 2 0.d ek fp gq+ + >                 (32) 

Thus finally, the 1-soliton solution of Equation (14) is given by: 

( )
( ) ( )

( )

2 2 2 2 2 2

1

6
, , , sech ,

1

ek fp gq d ek fp gq t
u x y z t kx py qz

d

α

α

 + + + +
 = + + −
 Γ + 

(33) 

( )
( ) ( )

( )

2 2 2 2 2 2

2

6
, , , sech .

1

ek fp gq d ek fp gq t
u x y z t kx py qz

d

α

α

 + + + +
 = − + + −
 Γ + 

(34) 

4.2. The Dark Soliton Solution 

In order to start off with the solution hypothesis, we use the solitary wave ansatz 
of the form 

( ) tanh ,mU Aξ ξ=                           (35) 

and 

( )
,

1
tkx py qz
αλξ
α

= + + −
Γ +

                   (36) 

where ,k  ,p  ,q  λ  are the free parameters. Also the m  is unknown at this 
point and will be determined later. 

From Equations (35)-(36), we obtain 

( ) ( )1 1d
tanh tanh

d
m mU

Am
ξ

ξ ξ
ξ

− += −                  (37) 

and 

( ) ( ) ( ){ }
2

2 2
2

d
1 tanh 2 tanh 1 tanh ,

d
m m mU

Am m m m
ξ

ξ ξ ξ
ξ

− += − − + +      (38) 

and 

( )3 3 3tanh .mU Aξ ξ=                          (39) 

Substituting Equations (35)-(39) into Equation (19), gives 

( ) ( ){
( ) }

3 3

2 2 2 2

2

tanh tanh
3

1 tanh

2 tanh 1 tanh 0.

m m

m

m m

kdA A

Amk ek fp gq m

m m

λ ξ ξ

ξ

ξ ξ

−

+

− +

+ + + −

− + + =

           (40) 

Now, from Equation (40), equating the exponents of 3tanh m ξ  and 
2tanhm ξ+  gives, 

3 2,m m= +                           (41) 

which yields 

1.m =                             (42) 

Setting the coefficients of 3tanh m ξ  and 2tanhm ξ+  terms in Equation (40) 
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to zero, we have 

( )( )3 2 2 21 0,
3

kd A Akm m ek fp gq+ + + + =                (43) 

then, we get 

( )2 2 26
.

ek fp gq
A

d

+ +
= ± −                    (44) 

Again, from Equation (40) setting the coefficients of tanhm ξ  terms to zero, 

( )2 2 2 22 0,A m Ak ek fp gqλ− − + + =                   (45) 

and from Equation (45) we have 

( )2 2 22 .k ek fp gqλ = − + +                      (46) 

Equation (46) prompts the constraint 

( )2 2 2 0.d ek fp gq+ + <                         (47) 

Thus finally, the dark soliton solution for the (3 + 1) dimensional space-time 
fractional mKDV-ZK equation is given by: 

( )
( ) ( )

( )

2 2 2 2 2 2

3

6 2
, , , tanh ,

1

ek fp gq k ek fp gq
u x y z t kx py qz

d α

 + + + +
 = − + + +
 Γ +
 

(48) 

( )
( ) ( )

( )

2 2 2 2 2 2

4

6 2
, , , tanh .

1

ek fp gq k ek fp gq
u x y z t kx py qz

d α

 + + + +
 = − − + + +
 Γ + 

(49) 

5. Conclusion 

In this article, we have got the new solutions for the (3 + 1) dimensional space- 
time fractional mKDV-ZK equation by using the method of undetermined coef-
ficients. Up to now, we could not find that these solutions were reported in other 
papers. In order to solve many systems of nonlinear fractional partial differential 
equations in mathematical and physical sciences, such as, the space-time frac-
tional mBBM equation, the time fractional mKDV equation, the nonlinear frac-
tional Zoomeron equation and so on, we can use the method of undetermined 
coefficients recommended herein would be general to a certain extent. 

Acknowledgements 

This work is in part supported by the Natural Science Foundation of China (Grant 
Nos. 11271008, 61072147). 

References 
[1] Baskonus, H.M. and Bulut, H. (2015) On the Numerical Solutions of Some Frac-

tional Ordinary Differential Equations by Fractional Adams-Bashforth-Moulton 
Method. Open Mathematics, 13, 547-556. https://doi.org/10.1515/math-2015-0052 

[2] Bulut, H., Belgacem, F.B.M. and Baskonus, H.M. (2015) Some New Analytical Solu-
tions for the Nonlinear Time-Fractional KdV-Burgers-Kuramoto Equation. Ad-
vances in Mathematics and Statistical Sciences, 118-129. 

https://doi.org/10.1515/math-2015-0052


Q. Y. Jin, T. C. Xia 
 

851 

[3] Baskonus, H.M., Mekkaoui, T., Hammouch, Z. and Bulut, H. (2015) Active Control 
of a Chaotic Fractional Order Economic System. Entropy, 17, 5771-5783.  
https://doi.org/10.3390/e17085771 

[4] Cao, J. and Xu, C. (2013) A High Order Schema for the Numerical Solution of the 
Fractional Ordinary Differential Equations. Journal of Computational Physics, 238, 
154-168. 

[5] Hammouch, Z. and Mekkaoui, T. (2012) Travelling-Wave Solutions for Some Frac-
tional Partial Differential Equation by Means of Generalized Trigonometry Func-
tions. International Journal of Applied Mathematical Research, 1, 206-212. 

[6] Guo, S., Mei, L., Li, Y. and Sun, Y. (2012) The Improved Fractional Sub-Equation 
Method and Its Applications to the Space-Time Fractional Differential Equations in 
Fluid Mechanics. Physics Letters A, 376, 407-411. 

[7] Gurefe, Y., Sonmezoglu, A. and Misirli, E. (2011) Application of the Trial Equation 
Method for Solving Some Nonlinear Evolution Equations Arising in Mathematical 
Physics. Pramana-Journal of Physics, 77, 1023-1029.  
https://doi.org/10.1007/s12043-011-0201-5 

[8] Taghizadeh, N., Mirzazadeh, M. and Samiei Paghaleh, A. (2012) The First Integral 
Method to Nonlinear Partial Differential Equations. Applications and Applied Ma-
thematics: An International Journal, 7, 117-132. 

[9] Sun, H.G., Zhang, Y., Chen, W. and Reeves, D.M. (2014) Use of a Variable-Index 
Fractional-Derivative Model to Capture Transient Dispersion in Heterogenerous 
Media. Journal of Contaminant Hydrology, 157, 47-58. 

[10] Fan, E.G. (2000) Extended Tanh-Function Method and Its Applications to Nonli-
near Equations. Physics Letters A, 277, 212-218. 

[11] Wang, M., Li, X. and Zhang, J. (2008) The (G’/G)-Expansion Method and Travel-
ling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. 
Physics Letters A, 372, 417-423. 

[12] Zhang, J., Wei, X. and Lu, Y. (2008) A Generalized (G’/G)-Expansion Method and 
Its Applications Evolution Equations in Mathematical Physics. Physics Letters A, 
372, 3653-3658. 

[13] Biswas, A. and Zerrad, E. (2010) Solitary Wave Solution of the Zakharov-Kuznetsov 
Equation in Plasmas with Power Law Onolinearity. Nonlinear Analysis B, 11, 3272- 
3274. 

[14] Biswas, A. and Zerrad, E. (2009) 1-Soliton Solution of the Zakharov-Kuznetsov Eq-
uation with Dual-Power Law Nonlinerity. Communications in Nonlinear Science 
and Numerical Simulation, 14, 3574-3577. 

[15] Ebadi, G., Mojaver, A., Milovic, D., Johnson, S. and Biswas, A. (2012) Solitons and 
Other Solutions to the Quantum Zakharov-Kuznetsov Equation. Astrophysics and 
Space Science, 341, 507-513. 

[16] Oldham, K.B. and Spaniner, J. (1974) The Fractional Calculus. Academic Press, 
New York. 

[17] Jumarie, G. (2012) An Approach to Differential Geometry of Fractional Order via 
Modified Riemann-Liouville Derivative. Acta Mathematica Sinica, English Series, 
28, 1741. https://doi.org/10.1007/s10114-012-0507-3 

[18] Jumarie, G. (2006) Modified Riemann-Liouville Derivative and Fractional Taylor 
Series of Nondifferentiable Functions Further Results. Computers & Mathematics 
with Applications, 51, 1367. 

[19] He, J.H., Elagan, S.K. and Li, Z.B. (2012) Geometrical Explanation of the Fractional 
Complex Transform and Derivative Chain Rule for Fractional Calculus. Physics Le- 

https://doi.org/10.3390/e17085771
https://doi.org/10.1007/s12043-011-0201-5
https://doi.org/10.1007/s10114-012-0507-3


Q. Y. Jin, T. C. Xia 
 

852 

tters A, 376, 257. 

[20] Ibrahim, R.W. (2012) Fractional Complex Transforms for Fractional Differential 
Equations. Advances in Difference Equations, 2012, 192.  
https://doi.org/10.1186/1687-1847-2012-192 

[21] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006) Theory and Application of 
Fractional Differential Equations. Elsevier, New York. 

[22] Matebese, B.T., Adem, A.R., Khalique, C.M. and Biswas, A. (2011) Solutions to 
Zakharov-Kuznetsov Equation with Power Law Nonlinearity in (1+3)-Dimensions. 
Physics of Wave Phenomena, 19, 148-154.  
https://doi.org/10.3103/S1541308X11020117 

[23] Lslam, M.H., Khan, K., Ali Akbar, M. and Salam, M.A. (2014) Exact Traveling 
Wave Solutions of Modified Kdv-Zakharov-Kuznetsov Equation and Viscous Burg-
er Equation. Springer Plus, 3, 105. https://doi.org/10.1186/2193-1801-3-105 

[24] Guner, O., Bekir, A., Moraru, L. and Biswas, A. (2015) Bright and Dark Soliton So-
lutions of the Generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahoney Nonli-
near Evolution Equation, Dark Soliton and Periodic Wave Solutions of Nonlinear 
Evolution Equations. Proceedings of the Romanian Academy, 16, 422-429. 

[25] Bakodah, H.O., Al Qarni, A.A., Banaja, M.A., Zhou, Q., Moshokoa, S.P. and Biswas, 
A. (2017) Bright and Dark Thirring Optical Solitons with Improved Adomian De-
composition Scheme. Optik, 130, 1115-1123. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jamp@scirp.org 

https://doi.org/10.1186/1687-1847-2012-192
https://doi.org/10.3103/S1541308X11020117
https://doi.org/10.1186/2193-1801-3-105
http://papersubmission.scirp.org/
mailto:jamp@scirp.org


Journal of Applied Mathematics and Physics, 2017, 5, 853-861 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2017.54075  April 30, 2017 

 
 
 

Kinematic Relativity of Quantum Mechanics: 
Free Particle with Different Boundary 
Conditions 

Gintautas P. Kamuntavičius 1, G. Kamuntavičius 2 

1Department of Physics, Vytautas Magnus University, Kaunas, Lithuania 
2Christ’s College, University of Cambridge, Cambridge, UK 

 
 
 

Abstract 
An investigation of origins of the quantum mechanical momentum operator 
has shown that it corresponds to the nonrelativistic momentum of classical 
special relativity theory rather than the relativistic one, as has been uncondi-
tionally believed in traditional relativistic quantum mechanics until now. 
Taking this correspondence into account, relativistic momentum and energy 
operators are defined. Schrödinger equations with relativistic kinematics are 
introduced and investigated for a free particle and a particle trapped in the 
deep potential well. 
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Solutions of Wave Equations: Bound States 

 

1. Introduction 

The known attempts to apply the ideas of special relativity theory (SRT) in quan-
tum mechanics, formulated in the third decade of 20-th century and present in 
numerous textbooks, are based on using the quantum mechanical momentum op-
erator p̂ i= − ∇  in the nonrelativistic Schrödinger equation for the free particle 
with the Hamiltonian corresponding to the classical SRT expression for energy: 

2 4
2 4 2 2 2

3 22 8
p pE m c p c mc
m m c

= + = + − +           (1) 

The first term of this expansion 2mc  is constant in an arbitrary reference 
frame, hence it can be considered as part of the potential, defined with an ac-
curacy up to a constant. The second term in the right hand side looks like the 
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nonrelativistic kinetic energy, hence the third one is the first order correction. 
The modified Schrödinger equation with relativistic kinematics becomes 

ˆ .i E
t
∂
Ψ = Ψ

∂


                       (2) 

The accepted treatment of operator present in left hand side i
t
∂
∂


 is that it is  

associated with the total relativistic energy, i.e. 

ˆ .E i
t
∂

=
∂


                           (3) 

However, this Schrödinger equation with relativistic kinematics does not cor-
respond to the requirement that the operator of relativistic equation has to be 
invariant in respect of Lorentz transformations. Two possible solutions of this 
problem are known. The first one gives the Klein-Gordon equation, following 
directly from square of total energy of free particle expression applying defined 
quantum mechanical operators p̂  and Ê : 

( )

22

2 .mc
ct

 ∂   ∆ − Ψ = Ψ    ∂  

                   (4) 

Right hand side of this equation is invariant in any reference system, so the 
problem of Lorentz invariance is satisfied and the eigenfunctions of equation 
transform according to the irreducible representations of the Lorentz group. 

The other method is introduced by Dirac. He postulated the possibility of 
quantum operator Ê  linearization, i.e. presentation in form 

1 2 3 4
ˆ ˆ ˆ ˆ ,x y zE p p pβ β β β= + + +                   (5) 

where jβ  is fourth order matrices. The conditions for these matrices follow 
from square of relativistic energy expression, present in operator form: 

2 2 2 2 4ˆ ˆ .E p c m c= +                         (6) 

Finally, the Dirac equation, satisfying invariance in respect of Lorentz trans-
formations, is 

( )1 2 3 4ˆ ˆ ˆ .x y zi p p p
t

β β β β∂
Ψ = + + + Ψ

∂


                (7) 

In this paper, we show the statements applied for these equations’ construc-
tion are problematic and an alternative way is necessary. We challenge the exist-
ing ideas by defining quantum mechanical momentum and energy operators as 
corresponding to classical, rather than the relativistic momentum and energy 
correspondingly. The new definition of operators is then further inspected solv-
ing the well-known problems for a free particle and particle trapped in the deep 
potential well. 

2. Main Points of Classical SRT and Quantization 

For successful quantization, first the main equations of SRT have to be present 
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in terms of momenta instead of velocities. The Lorentz factor: 

( )( ) ( )( ) 1 21 2 22
01 / 1 ,v c p mcγ

−−
= − = −               (8) 

hence the relativistic momentum p mvγ= , expressed in terms of nonrelativistic 
one 0p mv= , is 

( )( ) 1 22
0 01 .p p p mc

−
= −                     (9) 

This expression, essential for relativistic dynamics, defines relativistic mo-
mentum, approaching infinity at 0p mc→  and undefined for larger values of 

0 ,p  hence satisfying the condition 0 ,p mc<  following from the usual v c< . 
The quantum operator i− ∇  is without any dependence on speed of light, 

its eigenvalues are not restricted, hence it demonstrates the correspondence to 

0p  rather than to the relativistic momentum .p  Moreover, the origin of this 
operator is nonrelativistic, because it appears in quantum mechanics at least in 
three different ways, following directly from classical mechanics. 

The first one, suggested by Dirac [1], applies Poisson brackets of Lagrangian 
dynamics for canonical coordinate and momentum, proportional to the imagi-
nary constant. The postulation that corresponding operators of quantum dy-
namics have to satisfy the analogous condition 

ˆ,i j ijx p i δ  =                              (10) 

gives 

ˆ .j
j

p i
x
∂

= −
∂


                           (11) 

The second way of introducing this operator follows from de Broglie wave [2] 
definition 

( ) ( )
2

1 2, 2π exp .
2p

i px t t px
m

ψ −   
= − −     





                (12) 

The equation, whose solutions are these waves, is the Schrödinger equation 
for free nonrelativistic particle. This can be demonstrated by taking the time de-
rivative 

( ) ( )
2

, ,
2p p
pi x t x t

t m
ψ ψ∂

=
∂
                       (13) 

and two coordinate derivatives 

( ) ( )
2 2 2

2 , , .
2 2p p

px t x t
m mx

ψ ψ∂
− =

∂


                    (14) 

The right hand sides of both equations coincide, hence the de Broglie wave 
and arbitrary superpositions of these waves are solutions of the Schrödinger eq-
uation. Obviously, the conclusion follows that the operator i x− ∂ ∂  corre- 
sponds to the nonrelativistic momentum and i t∂ ∂  is the quantum operator 
of nonrelativistic kinetic energy 2 2p m . 

The third method of momentum operator definition follows from translations 
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in the space generator 

( ) dˆ exp
d

P a a
x

 =  
 

                        (15) 

definition and momentum conservation law [1]. Action of this operator gives 
the translation of argument: 

( ) ( ) ( )ˆ .P a x x aψ ψ= +                      (16) 

Intrinsic Hamiltonian of a quantum system is invariant in respect of transla-
tions. As a result it gives the center of mass of the system momentum conserva-
tion, hence the momentum operator is proportional to the derivative of the cor-
responding variable. Again, this is the classical momentum. 

Therefore, the consideration of origins of the quantum mechanical momen- 
tum operator leads to the conclusion that it cannot be associated with relativistic 
momentum p mvγ= , having characteristic dependence on speed of light and 
present in the classical relativity expression 2 2 2 2 4E c p m c= + . The relativistic 
momentum operator can be expressed in terms of the nonrelativistic one as 

( )( ) 1 22
0 0

2
0

0
0

ˆ ˆ ˆ1

2 ˆ
ˆ ,

2

k

k

p p p mc

k p
p

k mc

−

∞

=

= −

  =   
  

∑
                    (17) 

where 
( )

!
! !

n n
k k n k
 

=  − 
 is the binomial coefficient. 

Now the relativistic momentum operator obtains the necessary dependence 
on .c  Both operators have the same system of eigenfunctions but different cor-
responding sets of eigenvalues, expressible in the same way, as operators. 

The relativistic energy of particle, moving in a laboratory reference frame with 
constant velocity ,v  equals 

1 2
2 2 0

2

2
1 .

T
E mc mc

mc
γ

−
 = = − 
 

                 (18) 

Here again one has the characteristic for SRT energy dependence on velocity. 
At 2

0 2T mv=  approaching 2 2mc  , the energy takes infinite value, hence it is 
defined only for smaller, allowed by SRT, values of nonrelativistic kinetic energy. 
The corresponding quantum mechanical operator is 

2 0
2

0

ˆ2ˆ ,
2

k

k

k T
E mc

k mc

∞

=

  
=      

∑                      (19) 

where 
2

0̂ 2
T

m
= − ∆



                           (20) 

is the nonrelativistic kinetic energy operator. The above consideration and con-
clusions concerning the relativistic momentum are valid for the eigenvalues and 
eigenfunctions of the relativistic energy operator. 

The relativistic kinetic energy operator T̂  can be expressed in terms of the 
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nonrelativistic one as 

2 2 0
2

1

ˆ2ˆ ˆ .
2

k

k

k T
T E mc mc

k mc

∞

=

  
= − =      

∑                 (21) 

In terms of momentum operators, the total relativistic energy operator of a 
free particle is 

2
2 0

0

2 ˆˆ .
2

k

k

k p
E mc

k mc

∞

=

  =   
  

∑                      (22) 

Obviously, this expression contains only even degrees of the momentum op-
erator and hence cannot be linearized in terms of 0p̂ . 

Moreover, in the most popular in traditional applications equation 
2 2 2 2 4ˆ ˆE p c m c= +                          (23) 

relativistic energy and momentum operators are present, not the nonrelativistic 
ones, applied deriving mentioned above Klein-Gordon and Dirac equations. 
Taking proper operators, this equation appears as identity, because 

( ) ( ) ( )2 222 2 2 2
0ˆ ˆ ˆ .mc p c mcγ γ− ≡                     (24) 

Finally, consider the expansion of the relativistic energy operator in terms of 
the relativistic momentum operator: 

( )
2 41 22 2 2 4 2

3 2

ˆ ˆˆ ˆ
2 8
p pE p c m c mc
m m c

= + = + − +             (25) 

If the second term in the right hand side is considered to be the nonrelativistic 
kinetic energy (as believed in mentioned approaches), we arrive at a strange, not 
consistent with SRT conclusion that the correction of this is negative, i.e. the re-
lativistic kinetic energy of the particle is smaller than the nonrelativistic one. 
From the definition of the relativistic kinetic energy operator (21) it follows that 
the expectation value of relativistic kinetic energy, as necessary, is always larger 
than the nonrelativistic. 

3. Relativistic Kinematics 

Therefore, the present arguments have shown that the problem of relativistic 
dynamics application in quantum mechanics needs deeper investigation. The 
SRT considers free particles, therefore this problem works best for the start of 
SRT application in quantum mechanics. 

From the Schrödinger equation for a free particle and present arguments it fol-
lows that two quantum mechanical operators—the first, dependent on time variable 

,i t∂ ∂  and the second, dependent on radius vector 2 2 ,m− ∆  are associated 
with the nonrelativistic kinetic energy of particle under consideration. Let us mark 
them as ( )0̂T t  and ( )0̂T r  correspondingly. Taking this into account opens two 
different possibilities for the same relativistic kinetic energy operator presentation: 

( ) ( )
1 2

02
2

ˆ2ˆ 1 1
T t

T t mc
mc

−  
 = − −     

                   (26) 
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and 

( ) ( )
1 2

02
2

ˆ2ˆ 1 1 .
T

T mc
mc

−  
 = − −     

r
r                   (27) 

Due to equivalence of introduced operators one can define the eigenvalues 
equation as 

( ) ( ) ( ) ( )ˆ ˆ .T t t T tΨ = Ψr, r r,                      (28) 

Let us call this the relativistic Schrödinger equation. The essential part of equ-
ation, independent of speed of light, is the Schrödinger equation for free particle: 

( ) ( ) ( ) ( )0 0 0 0
ˆ ˆ .T t t T tΨ = Ψr, r r,                     (29) 

Taking into account the expansions for these operators like given in Equation 
(21), one can present Equation (28) as 

( ) ( ) ( )0 02
1

2 1 ˆ ˆ 0.
2

k
k k

k

k
T t T t

k mc

∞

=

    − Ψ =      
∑ r r,             (30) 

After some transformation of commuting, due to dependence on different va-
riables, the kinetic energy operators the equation takes the simplified form 

( ) ( ) ( ) ( ) ( )
1

1
0 0 0 02

1 1

2 1 ˆ ˆ ˆ ˆ 0,
2

k k
j k j

k j

k
T t T T t T t

k mc

∞ −
− −

= =

     − Ψ =         
∑ ∑ r r r,   (31) 

leading to the conclusion that the eigenfunctions of the relativistic equation are the 
same as the corresponding eigenfunctions of the nonrelativistic equation, i.e.: 

( ) ( )0 .t tΨ = Ψr, r,                          (32) 

Due to separability of operators of both nonrelativistic and relativistic equa- 
tions, the eigenfunctions are presentable as products of functions, dependent on 
time and spatial variables: 

( ) ( ) ( ).t tΨ = Ψ Ψ r, r                         (33) 

As usual these functions are defined as eigenfunctions of corresponding sta-
tionary equations 

( ) ( ) ( )T̂ Ψ = Ψ r r r                          (34) 

and 

( ) ( ) ( )ˆ .T t t tΨ = Ψ                            (35) 

The eigenfunctions of these operators are identical to the eigenfunctions of 
corresponding stationary nonrelativistic equations, but their eigenvalues are dif-
ferent. If we define the eigenvalue of the nonrelativistic equation as ,E  the ei-
genvalue of the relativistic equation, corresponding to the same eigenfunction, is 

1 2

2 2

21 1.E
mc mc

−
 = − − 
 

                   (36) 

Due to the upper bound for nonrelativistic kinetic energy 2 2,E mc<  this 
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equation implies that the set of eigenvalues of the relativistic stationary equation 
is restricted in comparison to the nonrelativistic set. This fact corresponds very 
well with the spirit of SRT. 

To investigate the discrete spectrum, consider the problem of a free particle, 
trapped in the spherical well with impenetrable walls. The nonrelativistic statio-
nary Schrödinger equation is 

( ) ( ) ( ) ( )0
0̂ ,nl nl nlT r r E rµ µθϕ ψ θϕ ψ θϕ=                    (37) 

where 

( ) ( ) ( )2 22

0 2 2 2

ˆ1ˆ .
2

c L
T r r

rmc r r
θϕ

θϕ
 ∂

= − − 
∂  



                 (38) 

Here and further, for the sake of simplicity, the conversion factor 
( )197.3269788 12  MeVfm,c =  as defined in [3], and rest energy of particle ex-

pressed in electronvolts, are used. For wave functions, written in spherical har-
monics 

( ) ( ) ( ) ,nl nl lr u r Yµ µψ θϕ θϕ=                     (39) 

the boundary condition is: 

( ) 0  if  ,nlu r r R= =                          (40) 

where R  is the radius of the spherical well. The solutions of this equation are 
the spherical Bessel functions. Boundary conditions define the spectrum of the 
nonrelativistic Schrödinger equation. 

The Schrödinger equation with the relativistic kinetic energy operator has the 
same eigenfunctions but different corresponding eigenenergies: 

1 2

2 2

2
1 1.nl nlE

mc mc

−
 = − − 
 

                        (41) 

Obviously, in the nonrelativistic approximation ( )2 2 ,nlE mc  as necessary, 
.nl nlE→  

For angular momentum 0l =  the solutions can be presented in analytical 
form: 

2
2

0 2

1 π , 1, 2,3, ,
22n

cE n n
Rmc

 = = 
 




                (42) 

and 
1 22

20
2 2

π1 1.
2

n c n
mc Rmc

−
  = − −     




                  (43) 

This expression demonstrates that in a spherical well with impenetrable walls, 
the only allowed states are those corresponding to the quantum number 

22 .
π
Rmcn

c
<



                           (44) 

This does not exclude a case where there are no allowed states at all in such a 
well. It happens when 2 π 2.Rmc c<   Taking the given above value of conver-
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sion factor, the right hand side of condition equals approximately 310 MeVfm 
Radius of well multiplied by mass of particle has to be larger than this value for 
at least one bound state to exist. On the other hand, in a corresponding nonrela-
tivistic well there is an infinite number of bound states at any radius of well and 
mass of particle. 

4. Conclusions 

The operator of the introduced Schrödinger equation with relativistic kinematics 
is not invariant in respect of Lorentz transformations and from our considera- 
tion, it follows that construction of such operators, if possible, is immensely dif-
ficult. However, the Lorentz invariant theory is necessary for the description of 
ultrarelativistic processes and problems, like high energy phenomena obtain- 
able in universe or the reactions in colliders. At high relativistic velocities, and 
hence high kinetic energies, the most interesting interactions among particles, 
responsible for surrounding us world structure and development, cannot play a 
remarkable role. 

Therefore, the most actual applications of low energies quantum mechanics 
are obtained by solving the stationary Schrödinger equation, giving qualified de-
scription of bound states and excitation spectra of different quantum systems in 
huge energy intervals. Now, when experimental equipment is able to analyze 
different structures and phenomena with very high precision, the role played by 
relativistic effects stays remarkable and has to be investigated in a proper way. 
The first step in this direction is investigation of the stationary Schrödinger equ-
ation with the relativistic kinetic energy operator instead of the nonrelativistic 
one, present in the original equation. The obtained slight enough modifications 
of corresponding results of the original Schrödinger equation in low energies 
limit demonstrate high quality of nonrelativistic approach. In the larger energies 
region, the introduced innovation produces significant spectrum modifications 
and opens new possibilities for old problems of relativistic quantum mechanics 
solution. 

The consideration of relativistic momentum operator, present in the known 
SRT equation 2 2 4 2 2 ,E m c p c= +  as classical momentum leads to the conclu-
sion that the first order correction of the nonrelativistic kinetic energy has the 
negative sign (Equation (1)), which means the expectation value of relativistic 
kinetic energy is smaller than the nonrelativistic one. This result, until now ex-
isting in applications for relativistic effects evaluation in atomic [3] and nuclear 
theory [4], creates “softer” than necessary kinetic energy and allows strange de-
cisions concerning relativistic corrections of binding energies and excitations 
spectra of these quantum systems. 

Our definition of the relativistic momentum operator classifies Klein-Gordon 
and Dirac equations as not completely relativistic. They are both invariant in 
respect of Lorentz transformations, but apply the definition of the nonrelativistic 
momentum operator instead of the relativistic one. This approach eliminates 
from equations basic for SRT dependence of relativistic energy and relativistic 
momentum on velocity, defined by Lorentz factor. Moreover, the Dirac equation 
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does not contain any input information about the electron, hence predicts the 
spin, equal 2,  for all particles without any exemptions. The equation for free 
particle (7) in the nonrelativistic limit has to be consistent with corresponding 
Schrödinger equation, however, this cannot be established. The operator in front 
of the eigenfunction of right-hand side of this equation, seen as the relativistic 
free particle Hamiltonian, predicts the velocity of particle, equal to the speed of 
light c  [2]. Finally, the Dirac equation is undefined for two- and more-particles 
system. 

Therefore, new ideas of SRT application in quantum mechanics are necessary. 
As will be shown in following publications, our approach is applicable for the 
many-particle system and in the low kinetic energies approximation, reproduces 
the results of the corresponding nonrelativistic Schrödinger equation. 
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Abstract 
General relativity (GR) and gravitation in flat space-time (GFST) are covari-
ant theories to describe gravitation. The metric of GR is given by the form of 
proper-time and the metric of GFST is a flat space-time form different from 
that of proper-time. The source of GR is the matter tensor and the Einstein 
tensor describes the gravitational field. The source of GFST is the total ener-
gymomentum including gravitation. The field is described by a non-linear 
differential operator of order two in divergence form. The results of the two 
theories agree for weak gravitational fields to the order of measurable accu-
racy. It is well-known that homogeneous, isotropic, cosmological models of 
GR start from a point singularity of the universe, the so called big bang. The 
density of matter is infinite. Therefore, our observable big universe implies an 
expansion of space, in particular an inflationary expansion in the beginning. 
Doubts are stated because infinities don’t exist in physics. An explanation to 
the present, controversial discussion of expanding accelerating or non-acce- 
lerating universe as well as non-expanding universe is given. GFST starts in 
the beginning from a homogeneous, isotropic universe with uniformly dis-
tributed energy and no matter. In the course of time matter is created out of 
energy where the total energy is conserved. There is no singularity, i.e. no big 
bang. The space is flat and non-expanding. 
 

Keywords 
Gravitation, Cosmology, Flat Space, No Singularity, No Big Bang,  
Non-Expanding Universe 

 

1. Introduction 

Einstein’s general theory of relativity is at present the most accepted theory of 
gravitation. The theory gives for weak gravitational fields, agreement with the 
corresponding experimental results. But the results for homogeneous, isotropic, 
cosmological models imply difficulties. So, the universe starts from a point sin-
gularity, i.e. the universe starts from a point with infinite density of matter. The 
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observed universe is very big. Hence, the space of the universe must expand very 
quickly which implies the introduction of an inflationary universe in the begin-
ning. There are controversial discussions about the universe, e.g. is the universe 
accelerating or not. GFST uses a pseudo-Euclidean geometry and the proper 
time is defined similar to that of general relativity, i.e. space-time and proper 
time are different from one another. GFST starts from an invariant Lagrangian 
which gives by standard methods, the field equations of gravitation. The source 
is the total energy-momentum tensor including gravitation. The energy-momen- 
tum of gravitation is a tensor. The field is described by non-linear differential 
equations of order two in divergence form. The theory is generally covariant. 
The gravitational equations together with the conservation law of the total ener-
gy-momentum give the equations of motion for matter. The application of the 
theory implies for weak gravitational fields the same results as GR to experi-
mental accuracy, e.g. gravitational red shift, deflection of light, perihelion pre-
cession, radar time delay, post-Newtonian approximation, gravitational radia-
tion of a two-body system and the precession of the spin axis of a gyroscope in 
the orbit of a rotation body. But there are also differences of the results of these 
two theories. GFST gives non-singular, cosmological models. The covariance of 
GFST and the existence of non-singular cosmological models imply the possibil-
ity to interpret the solutions as expanding or as non-expanding space yielding an 
accelerating resp. non-expanding universe. GFST may e.g. be found in the book 
[1] and in the cited references. Additionally, non-singular, cosmological models 
are e.g. given in the articles [2] [3] [4] [5] [6]. 

Subsequently, homogeneous, isotropic, cosmological models will be summa-
rized. Let us use the pseudo-Euclidean geometry. The resulting universe is non- 
singular under the assumption that the sum of the density parameters is greater 
than one, e.g. a little bit greater than one. It starts without matter and without 
radiation and all the energy is gravitational energy. Matter and radiation emerge 
from this energy by virtue of the conservation of the total energy. The space is 
flat and the interpretation of a non-expanding space is natural. But it is also 
possible to state an expansion of space by a suitable transformation as conse-
quence of general covariance of the equations. Matter and radiation are gener-
ated from the beginning of the universe and the universe becomes hot. A certain 
time after the beginning matter and radiation decrease and the universe con-
verges to dark energy as time goes to infinity. Hence, a universe given by GFST 
appears more natural than that received by GR which gives singular solution 
with infinite densities. The geometry of GR is in general non-Euclidean but the 
observed universe implies a flat space. 

GR is well-known in contrast to GFST. Therefore, GFST and resulting cos-
mological models are shortly summarized in the next two sections. All these re-
sults can be found in the article [5]. 

Section 2 contains GFST; Section 3 contains cosmological models; Section 4 
contains GR and Section 5 states GFST. Cosmological models of GR and GFST 
are compared with one another. 
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2. GFST 

The theory of GFST is shortly summarized. The metric is the flat space-time 
given by 

( )2d d i
ijs xη= −                          (1) 

where ( )ijη  is a symmetric tensor. Pseudo-Euclidean geometry has the form 

( ) ( )1,1,1, 1 .ijη = −                        (2) 

Here, ( ) ( )1 2 3, ,ix x x x=  are the Cartesian coordinates and 4x ct= . Let 

( )det .ijη η=                           (3) 

The gravitational field is described by a symmetric tensor ( )ijg . Let ( )ijg  
be defined by 

kj j
ik ig g δ=                              (4) 

and put similarly to (3) 

( )det .ijG g=                            (5) 

The proper time τ  is defined by 

( )2d d di j
ijc g x xτ = − .                      (6) 

The Lagrangian of the gravitational field is given by 

( )
1 2

/ / / /
1
2

mn ik jl ij kl
ij kl m n m n

GL G g g g g g g g
η

 −  = − −  −   
        (7) 

where the bar/denotes the covariant derivative relative to the flat space-time me-
tric (1). 

The Lagrangian of dark energy (given by the cosmological constant Λ ) has 
the form 

( )
1 2

Λ 8Λ GL
η

 −
= −  − 

.                         (8) 

Let 
44πk cκ =                            (9) 

and of matter of a perfect fluid are where κ  is the gravitational constant. Then, 
the mixed energy-momentum tensor of gravitation, of dark energy and of matter 
of a perfect fluid are 

( ) ( )
1 2

/ / / /
1 1 1

8 2 2
i ir km ln kl mn i

kl mn j r j r jj

GT G g g g g g g g L Gδ
κ η

  −  = − +   −     
    (10a) 

( ) ( )1Λ Λ
16

i i
jjT Lδ

κ
=                         (10b) 

( ) ( ) 2.i k i i
jk jjT M p g u u pcρ δ= + +                    (10c) 

Here, , pρ  and iu  denote density, pressure and four-velocity of matter. It 
holds by (6) 
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2 .i j
ijc g u u= −                          (11) 

Define the covariant differential operator 
1 2

/

/

i kl mi
j jm l

k

GD g g g
η

  −
=   −   

                 (12) 

of order two. Then, the field equations for the potentials ( )ijg  have the form 
1 4
2

i i k i
j j k jD D Tδ κ− =                       (13) 

where the total energy-momentum is the sum of the energy-momentum tensors 
of matter, gravitation and cosmological constant, i.e., 

( ) ( ) ( ) .Λi i ii
j j j jT T G T M T= + +                    (14) 

Define the symmetric energy-momentum tensor 

( ) ( ) .ij jik
kT M g T M=                      (15) 

Then, the equations of motion in covariant form are 

( ) ( )//

1
2

.k kl
kl ii kT M g T M=                      (16) 

In addition to the field Equations (13) and the equations of motion (16) the 
conservation law of the total energy-momentum holds, i.e. 

/ 0.k
i kT =                            (17) 

The field equations of gravitation are formally similar to those of GR where 
i
jT  is the energy-momentum without that of gravitation since the energy-mo- 

mentum of gravitation is not a tensor for GR. Furthermore, the differential op-
erator is the Einstein tensor which may give a non-Euclidean geometry. 

The results of this chapter may be found in the book [1] and in many other 
articles of the author, as e.g. in [5]. 

3. Homogeneous, Isotropic, Cosmological Models 

In this chapter GFST is applied to homogeneous, isotropic, cosmological models. 
The pseudo-Euclidean geometry (1) with (2) is used. The matter tensor is given 
by perfect fluid with velocity 

( )0 1, 2,3iu i= =                       (18) 

and pressure p  and density ρ  with 
,m r

m r

p p p
ρ ρ ρ
= +

= +
                   (19) 

where the indices m  and r  denote matter and radiation. The equations of 
state for matter (dust) and radiation are 

1
3

.0,m r rp p ρ= =                        (20) 

The potential are by virtue of (18) and the homogeneity and isotropy 

( ) ( )
( ) ( )

( )

2 1, 2,3

1 4

0 .
ij

a t i j

g h t i j

i j

 = =
− = =
 ≠

=



                  (21) 
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The four-velocity is by Equation (18) and Equation (6) 

( ) ( )1 20,0,0, .iu ch=                        (22) 

Let 0 0t =  be the present time and assume as initial conditions at present 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 00 0 1, 0 ,0 0 0,, m m r ra h a H h h ρ ρ ρ ρ= = = = = = 

     (23) 

where the dot denotes the time derivative, 0H  is the Hubble constant and 0h  
is a further constant, 0mρ  and 0rρ  denote the present densities of matter and 
radiation. It follows from (16) under the assumption that matter and radiation 
do not interact 

( )1 2 1 2
0 03 .,m m r r rh p ahρ ρ ρ ρ= = =                  (24) 

The field Equation (13) implies by the use of (21) the two nonlinear differen-
tial equations 

3
3 1 2 4

2 1 2
d 1 12 ,
d 2 3 2m r

a aa h c
t a c h

κ ρ ρ
κ

 Λ  = + +  
   



           (25a) 

( )
3

3 1 2 4
2 2 1 2

d 1 1 Λ4
d 2 8 2m r

h aa h c L G
t h c c h

κ ρ ρ
κ κ

   
= + + −   

  



       (25b) 

where 

( )
22

3 1 2
2

1 16 6 .
2

a a h hL G a h
a a h hc

    = − + +        

 

 

               (26) 

The expression ( )1
16

L G
κ

 is the density of gravitation. The conservation law  

of the total energy gives 

( ) ( )
3

2 2
1 2

1 Λ
16 2m r

ac L G c
h

ρ ρ λ
κ κ

+ + + =                   (27) 

where λ  is a constant of integration. Equations (25), (26) and (27) give by the 
use of the i initial conditions (23) 

4
0

4 2
0

46 2
2 1

c th a
h a c t t

κ λ ϕ
κ λ ϕ

+
= − +

+ +



                      (28) 

with 

0
0 0

0

13 1 .
6

hH
H

ϕ
 

= + 
 



                       (29) 

Integration of (28) yields 
1

3 4 22
02 1.a h c t tκ λ ϕ= + +                         (30) 

Equation (27) gives for the present time 0 0t =  by the use of the initial con-
ditions (23) 

( )
2

4 2 2
0 0 0 0

1 8 Λ8 4 π .
3 3 8πkm r

cc k Hκ λ ϕ ρ ρ
  

− = + + −  
  

            (31) 
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It follows from (27) by the use of the standard definition of the density para-
meters of matter, radiation and the cosmological constant with the abbreviation 

( )0 m r mK Λ= Ω +Ω +Ω Ω                        (32) 

the differential equation 

( )
2 2

2 3 60
024 2

0

.
2 1

m r m
Ha K a a a

a c t tκ λ ϕ
Λ

   = −Ω +Ω +Ω +Ω     + +



   (33a) 

The initial condition is by (23) 

( )0 1a = .                             (33b) 

The solution of (33) with (30) describes a homogeneous, isotropic, cosmolog-
ical model by GFST. 

Relation (31) can be rewritten in the form 
24

0
02

00

8 2 .1 m
c K

HH
ϕκ λ  

− = Ω 
 

                      (34) 

A necessary and sufficient condition to avoid singular solutions of (33) is 

0 0K >                               (35) 

which yields 
4 2

02 1 0c t tκ λ ϕ+ + >                        (36) 

for all t∈ . Hence, condition (35) implies a non-singular solution for all 
t∈ , i.e. we get a non-singular cosmological model. It exists a 1 0 0t t< =  such 
that 

( )1 0.a t =                               (37) 

Put ( )1 1a a t=  then it follows from (33a) with 1t t=  
2 3 6
1 1 1 0.r m m ma a a KΩ +Ω +Ω = Ω                        (38) 

It holds for all t∈  

( ) 1 0.a t a≥ >                            (39) 

Subsequently assume 

( )1 0 1.a a =                             (40) 

Then we get by virtue of (38) 

0 1.K                               (41) 

It follows from (32) by virtue of (41) 

01 ,r m mKΛΩ + Ω +Ω = +Ω                         (42) 

i.e. the sum of the density parameters is a little bit greater than one. Hence, ( )a t  
starts from a positive value, decreases to a small positive value, and then in-
creases for all t∈ . 

The proper time from the beginning of the universe till time t  is 

( ) ( )1 21 d .
t

t h t tτ
−∞

= ∫                        (43) 
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The differential Equation (33a) is rewritten by the use of (30) in the form 
2

2 0
0 6 4 3

1 .m mrKa H
a h a a a Λ

Ω ΩΩ   = − + + + Ω      

                 (44) 

Hence, the differential equation for the function 𝑎𝑎 by the use of the proper 
time is 

2
2 0
0 6 4 3

1 d .
d

m mrKa H
a a a aτ Λ

Ω ΩΩ   = − + + + Ω      

              (45) 

This differential equation is by virtue of (41) and a not too small function 
( )a t  identical with that of GR for a flat homogeneous, isotropic universe. 

Therefore, away from the beginning of the universe, the result for the universe 
agrees for GFST with that of GR. Under the above stated assumptions and 

0rΩ =  the differential Equation (33) can analytically be solved. It follows that 
( )a t  starts from a small positive value at −∞  and then it decreases for in-

creasing 𝑡𝑡to 1 0a >  at 1t . Finally it increases for 1t t>  to infinity as t  goes 
to infinity. Relation (30) gives positive values ( )h t  for all t . ( )h t  starts from 
infinity at −∞  , decreases to a positive value and then it increases to infinity as 
t  goes to infinity. The longer calculations are omitted and they can be found in 
the article [3]. 

The differential Equations (44) and (45) show that the condition (35) is im-
portant to avoid singularities. GR gives 0 0K =  which yields the singularity of 
the model (big bang). We introduce in addition to the proper time τ  the ab-
solute time t′  by 

( ) ( ) ( )1 2
1 1d d d .t t

a ta t h t
τ′ = =                    (46) 

This gives for the proper time in the universe 

( ) ( ) ( )22 2 2d d dc a t x ctτ  ′= − −                   (47) 

where dx  denotes the Euclidean norm of the vector ( )1 2 3d d ,d ,dx x x x= . 
Relation (47) implies that the absolute value of the light-velocity is equal to 

vacuum light-velocity c  for all times t′ . 
The introduction of the absolute time t′  in the differential Equation (45) 

gives 

( )
2 2

2 3 60
02

d .
d m r m

Ha K a a a
t a Λ

  = −Ω +Ω +Ω +Ω ′ 
           (48) 

Assume that a light ray is emitted at distance r  at time et′  resp. at time 
de et t′ ′+  and it is received by the observer at time t′  resp. at time dt t′ ′+ . Then, 

it follows 

( )

( )d

d

d ,

d d d .
e

e

e

t
et

t t
e et t

r c t c t t

r c t c t t t t

′

′

′ ′+

′ ′+

′ ′ ′= = −

′ ′ ′ ′ ′= = + − −

∫

∫
 

These two equations imply 
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d d .et t′ ′=  

The age of the universe since the minimal value of ( )a t  measured with ab-
solute time t′  till now 

( )

( )( )

0

1 1 1

1

1 21 1 2 3 6
0

0

1 21 2
0

0 0

d 1d 1 d d
d

1 1d Ω .

t
m r mt a a

m r ma

at t a a a K a a a
t H

a a K a
H H

′

Λ′

Λ

 ′ ′∆ = = = −Ω +Ω +Ω +Ω ′ 

≥ − + Ω +Ω +Ω ≈

∫ ∫ ∫

∫
 

Therefore, the age of the universe measured with absolute time is greater than 

01 H  independent of the density parameters, i.e. there is no age problem. 
We will now calculate the red shift of light emitted from a distant object at 

rest and received by the observer at present time. It is useful to introduce the 
absolute time. Assume that an atom at a distant object emits a photon at time et′ . 
It follows from relation (46) 

( )d d .ea t tτ ′ ′=                    (49) 

Therefore, the energy of the emitted photon is 

( )44 0
d~ ~
d

.e
tE g a t E
τ
′

′−  

The energy of the photon moving to the observer in the universe is constant 
by virtue of (47), i.e. by the constant light velocity. Then, the corresponding re-
ceived frequency is 

( ) 0ea tν ν′=                              (50) 

where 0ν  is the frequency emitted at the observer from the same atom. The red 
shift is given by 

( )0 1 1 1.ez a tν ν ′= − = −                      (51) 

Light emitted at distance r  at time et′  and received at 0r =  at time 0t′  
has by the constant velocity of light the relation 

( )0 .er c t t′ ′= −  

This gives by Taylor expansion of ( )ea t′  in relation (51) 

( ) 22
0

0 02 2
0 0

1 1
2 d

.
d

1
a tr rz H H

c cH t
 ′  = + −   ′   

 

Differentiation of equation (48) yields by neglecting small expressions 

( )2
2
02

d 11 .
2d

e
m

e

a t
H

t Λ

′  ≈ − Ω +Ω ′  
 

This gives the red shift formula 
2

0 04
.3

m
r rz H H
c c

 = + Ω  
 

                     (52) 

The detailed calculations of Formula (52) can be found in the book [1]. 
Higher order Taylor expansion gives higher order red shift approximations. 

The red shift is already derived in the article [11] without Doppler Effect but 
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only by gravitation. 

4. General Relativity 

The theory of general relativity as well as the resulting cosmological models is 
well-known. Astronomical observations show that the universe is flat. Therefore, 
only flat space of general theory is stated. The curvature of the universe must be 
zero by the cosmological principle. This means that the sum of the density pa-
rameters is equal to one. The strong gravitational field in the neighbourhood of 
the singularity implies a high curvature which contradicts to a flat universe, i.e. 
with curvature zero. This problem is solved partly by the introduction of an in-
flationary expansion. Hence, either general relativity is not correct or the cos-
mological principle is not valid. 

5. Field theory of Gravitation 

GFST is a field theory which describes gravitation as a field in flat space-time. 
The theory is covariant and it is studied in the book [1], in the cited references 
there in and in the articles [2] [3] and [4]. This theory gives for weak gravita-
tional fields to the lowest order of accuracy (measurable accuracy) the same re-
sults as general relativity. But there are differences to general relativity for strong 
gravitational fields, e.g. for the universe in the beginning. The source of the field 
equations of gravitation is the total energy-momentum including that of gravita-
tional field which is a tensor for this theory. The universe starts without matter 
in the beginning and consists only of (gravitational) energy. In the course of 
time matter and radiation are created where the total energy is conserved. Sin-
gularities don’t exist under the assumption that the sum of the density parame-
ters is greater than one (at least a little bit greater which is subsequently as-
sumed). Hence, there is no big bang. Models with and without cosmological 
constant are studied in the book [1]. By the use of the pseudo-Euclidean geome-
tryas metric the solution yields a non-expanding universe. The red shift of dis-
tant objects in a non-expanding universe was already given in article [11]. It is 
worth to mention that by virtue of the covariance of the theory the non-singular 
results can be interpreted in a non-expanding and in an expanding space. The 
space of the theory is flat independent of the density parameters. The presently 
assumed density parameter of matter is ≈0.3. To avoid singular solutions of the 
cosmological model the density parameter of the cosmological constant must be 
≈0.7 such that the sum of the two values is a little bit greater than one. 

The present discussion of the universe about non-expanding or expanding 
with acceleration can be solved by GFST because non-expanding space seems to 
be the natural interpretation but the interpretation as expanding space is also 
possible. GR demands by virtue of the point -singularity an acceleration of the 
universe. 

Article [10] contains further differences of the two theories. 
A theory of gravitation in flat space-time (GFST) is given. The field is a tensor 

of rank 2 which is described on a flat space-time metric, e.g. the pseudo-Euclid- 
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ean geometry. The field equations have as source the total energy-momentum 
tensor inclusive that of gravitation which is a tensor. The conservation of the to-
tal energy-momentum tensor implies the equations of motion and reverse. The 
theory is generally covariant and the results of GFST and general relativity (GR) 
agree for weak fields to the lowest order of approximation. Homogeneous, iso-
tropic, cosmological models of GFST are studied in the pseudo-Euclidean ge-
ometry. Assuming that the sum of the density parameters is a little bit greater 
than one the resulting cosmological models are non-singular. In the beginning 
of the universe no matter exists, i.e. all the energy is gravitation. In the course of 
time matter and radiation are generated from gravitational energy. The total en-
ergy is conserved. The space is flat and non-expanding. Certain time after the 
beginning the results of the two theories highly agree with one another under the 
assumption that the universe is flat. The general covariance of the theory gives 
the possibility to interpret the results in a non-expanding or in an expanding 
universe.  

6. Conclusions 

GFST is a field theory like Electrodynamics and GR is geometry. For weak fields, 
the two theories give approximately the same results under the assumption that 
the universe is flat. Astrophysical observations show that the universe is flat. 
Cosmological models of GR imply a singularity in the beginning of the universe 
with infinite matter density (big bang). Hence, in the neighbourhood of the sin-
gularity, there is a high curvature, i.e. space is not flat in the neighbourhood of 
the singularity. The cosmological principle implies that space is everywhere flat. 
Hence, we get a contradiction to GR or to the cosmological principle. The uni-
verse starts from a point-singularity. Therefore, space must expand or even in-
flationary expand by virtue of the big observed universe. 

GFST is generally covariant, i.e. the space can be interpreted as non-expand- 
ing or as expanding. The density parameter of matter is at present assumed to be 

0.3. ≈  Therefore, the density parameter of dark energy is 0.7≈  with the as-
sumption that the sum of the density parameter is a little bit greater than one to 
imply non-singular cosmological models. Cosmological models of GR have a flat 
space under the assumption that the sum of the density parameters is equal to 
one. Therefore, GR and GFST give about the same values for the density pa-
rameters. But in the beginning of the universe, the solutions of GR and GFST are 
quite different. There exists a singularity (big bang) by GR and the solution of 
GFST is everywhere defined and regular, i.e. no bang. It is worth to mention that 
singularities are physically not allowed. 
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Abstract 
Novel exact solutions of one-dimensional transient dynamic piezoelectric 
problems for thickness polarized layers and disks, or length polarized rods, 
are obtained. The solutions are derived using a time-domain Green’s function 
method that leads to an exact analytical recursive procedure which is applica-
ble for a wide variety of boundary conditions including nonlinear cases. A 
nonlinear damper boundary condition is considered in more detail. The cor-
responding nonlinear relationship between stresses and velocities at a current 
time moment is used in the recursive procedure. In addition to the exact re-
cursive procedure that is effective for calculations, some new practically im-
portant explicit exact solutions are presented. Several examples of the time 
behavior of the output electric potential difference are given to illustrate the 
effectiveness of the proposed exact approach. 
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Piezoelectric Layer, Transient Dynamic Problems, Time Domain Solutions,  
Green’s Function Method, Nonlinear Boundary Conditions, Nonlinear  
Damper, Output Voltage 

 

1. Introduction 

Piezoelectric materials and devices have been widely used in many technical 
applications. Nowadays, the coupling between electrical and mechanical beha- 
viors is used in different devices based both on the so-called “direct piezoelectric 
effect” or the “converse piezoelectric effect” [1] [2] [3] [4]. 

Some newer relevant applications include (among others) the high voltage 
generation from transient dynamic impact processes in vehicles [5]. 
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Analysis of operating electrical and mechanical parameters of such processes 
can be done by using various analytical and numerical methods. Although ana- 
lytical approaches are limited to rather simple geometries and other restrictions 
(homogeneous or piecewise-homogeneous bodies, linear governing equations, 
etc.), they often provide exact solutions. 

Analytical methods have been successfully used for many transient dynamic 
one-dimensional piezoelectric problems [6]-[14]. Among analytical methods for 
transient dynamic piezoelectric problems, the Laplace transform methods play a 
very significant role. They solve boundary value problems in the frequency- 
domain, possibly for complex frequencies, using transformed boundary condi- 
tions for a piezoelectric body. After obtaining such solutions, the transformation 
back to the time-domain employs special methods for the inversion of Laplace 
transforms. However, using the Laplace transform methods is not instrumental 
even for one-dimensional problems if nonlinear boundary conditions are con- 
sidered. Time-domain numerical methods (e.g., finite element or finite diffe- 
rence methods) that can be used under such conditions usually lack precision 
associated with the use of analytical methods. Therefore, development of time- 
domain analytical or semi-analytical methods combining advantages of analyti- 
cal and numerical methods can be of interest for such problems. 

In this paper, a time-domain Green’s function method is implemented for so- 
lution of one-dimensional transient dynamic piezoelectric problems for thick- 
ness polarized disks or length polarized rods. This method stems from a time- 
domain representation formulas approach for transient dynamic piezoe-lectric 
problems described in [15]. For one-dimensional problems with a variety of boun- 
dary conditions including nonlinear ones, this method produces exact solutions 
which are shown below. Such solutions can be used both for analyses of longitu- 
dinal mode, piezoelectric devices and as benchmark solutions for numerical me- 
thods of piezoelectricity.  

2. Representation Formulas 

Consider a transversely isotropic homogeneous piezoelectric material (piezoe- 
lectric element) with the 3x -axis as the poling direction and the 1 2x x−  plane 
as the isotropic plane. Let this piezoelectric material occupy a disk (or a cylinder) 
Ω  bounded in 3x -direction by planes 3 0x =  and 3x h=  where 0h >  is 
the thickness of the disk (or the length of the cylinder). Consider a uniaxial 
strain state or a stress stress state in 3x  direction when there is only one non- 
zero component of strain 33γ  or stress 33σ  the others being zero. We assume 
that the non-zero stress and strain components, and also the displacement 3u  
and electric displacement 3D  in the 3x -direction, and the electric potential φ , 
depend only on 3x  and t  which is usually the case for a longitudinal mode 
piezoelectric element [16]: 

( ) ( )
( ) ( )

33 33 3 3 3 3

3 3 3 3

, , , ,

, , ,  in

x t D D x t

u u x t x t

σ σ

φ φ

= =

= = Ω
                  (1) 
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Under conditions (1), we can use the following one-dimensional constitutive 
equations (both for the uniaxial strain state and for the uniaxial stress state) that 
relate the mechanical and electrical fields in (1): 

33 3,3 ,3 3 3,3 ,3;Cu e D euσ φ φ= + = −                      (2) 

where coefficients are different for the uniaxial strain and uniaxial stress cases. 
Then the corresponding equations of motions can be written as 

3 3,33 ,33 3

3,3 ,33 3,33

;
in

u Cu e b
D eu q

ρ φ

φ

− − =

− = − = − Ω




                (3) 

where ( )3 3 3 ,b b x t=  and ( )3 ,q q x t=  denote the body force in 3x -direction 
and electric charge. 

To simplify further notations we will denote 3x  and derivatives with respect 
to 3x  by x  and the prime, respectively, and will skip subindex 3 for the elastic 
displacement, electric displacement and body force components presented in (3). 
Then system (3) becomes 

;
in .

u Cu e b
D eu q

ρ φ
φ
′′ ′′− − =

′ ′′ ′′− = − = − Ω




                  (4) 

The Green’s functions for vector { },u φ  can be obtained using concentrated 
impulses instead of b  or q  in (4) when Ω  is substituted by the infinite media. 

Since φ′′  can be expressed through u′′  due to the second equation in (4), 
then the first equation in (4) can be presented as the one-dimensional wave 
equation for displacement u : 

D eu C u b qρ ′′− = −


                     (5) 

where 
2

D eC C= +


 

is the Young’s modulus measured at constant D . 
The wave speed corresponding to Equation (5) is denoted below by 

DCc
ρ

=  

The Green’s function for u  corresponding to load ( ) ( ){ }, 0b x t qδ δ= =  is 
the well-known Green’s function for the one-dimensional wave Equation (5): 

( ) ( )1,
2

U x t H t x c
cρ

= −                        (6) 

where ( )H t  is the Heaviside step function (right-continuous), i.e. ( ) 0H t =  
for 0t <  and ( ) 1H t =  for 0t ≥ . 

The corresponding Green’s function for φ  is calculated using the second 
equation in (4): 

( ) ( ), ,eU x t U x tφ =


                          (7) 

Based on (6) and (7), the representation formula for the displacement vector 
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in 3-D case described in [15] reduces to the following expression for the dis- 
placement component ( ) ( )3 , ,u x t u x t= : 

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

( ) ( )

/

0

1, 0, ,
2

1 0, 0, d
2

1 , , d
2

1 , , d d in ,
2

t x c

t h x c

h t x c

u x t u t x c u h t h x c

e D
c

eh D h
c

eb q
c

ξ

σ τ τ τ
ρ

σ τ τ τ
ρ

ξ τ ξ τ τ ξ
ρ

−

−∞

− −

−∞

− −

−∞

 = − + − − 

 − +  
 + +  
 + − Ω  

∫

∫

∫ ∫







      (8) 

where 33σ  is denoted by σ  and it is taken into account that the outward 
normals to the lower and upper boundaries of the layer 0 x h≤ ≤  have opposite 
directions. 

In many practical applications, the electric volume charges are absent. There- 
fore, we consider henceforth only the case when 0q = . Then the terms related 
to D  in the above expression can be simplified since, based on Equation (4) in 
this case, ( ),D x t  is spatially uniform: 

( ) ( ), .D x t D t=                         (9) 

Due to the property (9) the representation formula (8) can be rewritten as 

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

( )
0

1, 0, ,
2

1 0, d
2

1 , d
2

1 , d d   in .
2

t x c

t h x c

h t x c

u x t u t x c u h t h x c

e D
c

eh D
c

b
c

ξ

σ τ τ τ
ρ

σ τ τ τ
ρ

ξ τ τ ξ
ρ

−

−∞

− −

−∞

− −

−∞

 = − + − − 

 − +  
 + +  

+ Ω

∫

∫

∫ ∫





           (10) 

To obtain a representation formula for ( ),x tφ , let us consider an auxiliary 
function 

( ) ( ) ( ), , ,ex t x t u x tψ φ= −


                    (11) 

that has the following connection to the electric displacement: 
.D ψ ′= −  

According to (3), 0Dψ ′′ ′= − = . Then, using the corresponding Green’s 
function 2x  and Equation (11), we get a representation formula for ( ),x tψ  
involving only boundary value of function ( ),x tψ  and a spatially uniform 
electric displacement: 

( ) ( ) ( ) ( )1 2, 0, ,   in .
2 2

h xx t t h t D tψ ψ ψ −
= + + Ω   

          (12) 

Formulas (12) and (11) lead to the following expression for ( ),x tφ : 

( ) ( ) ( ) ( ) ( )

( ) ( )

1, 0, , 0, ,
2 2

2 , in .
2

ex t t h t u t u h t

e h xu x t D t

φ φ φ= + − +      

−
+ + Ω



 

         (13) 
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After ( ),u x t  is calculated, ( ),x tφ  can be determined using this calculated 
value, ( )D t  and boundary values of ( ),x tφ . 

The representation formula (10) allows us to get representation formulas for 
the velocity ( ) ( ), ,v x t u x t=   and stress ( ),x tσ . Differentiating (10) with 
respect to time provides the following representation formula for the velocity: 

( ) ( ) ( )( )

( ) ( )

( )( ) ( )( )

( )
0

1, 0, ,
2

1 0,
2

1 ,
2

1 , d in .
2

h

v x t v t x c v h t h x c

et x c D t x c
c

eh t h x c D t h x c
c

b t x c
c

σ
ρ

σ
ρ

ξ ξ ξ
ρ

 = − + − − 

 − − + −  
 + − − + − −  

+ − − Ω∫





      (14) 

To get a representation formula for the stress we need to use the first contitu- 
tive equation from (2) (in the new notations introduced after equations (3)) and 
expression (13) which gives the following expression for the stress: 

( ) ( ) ( ) ( )

( ) ( )

1, , ,

, .D

ex t Cu x t e u x t D t

eC u x t D t

σ  ′ ′= + −  

′= −

 



              (15) 

After differentiating (10) with respect to x  and substituting the result into 
(15) we get 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )

( ) ( )
0

, 0, ,
2
1 0, ,
2

 2
2
1 , sgn d in .
2

h

cx t v t x c v h t h x c

t x c h t h x c

e D t x c D t h x c D t

b t x c x

ρσ

σ σ

ξ ξ ξ ξ

 = − + − − 

 + − + − − 

 + − + − − − 

+ − − − Ω∫



      (16) 

A representation formula for ( ),D x t  is not needed under assumption that 
0q =  since the electric displacement is uniform in space in this case and deter- 

mined solely by the electric boundary conditions. 

3. Boundary Equations 

The velocity representation formula (14) generates two boundary equations 
when x  tends to the upper and lower boundaries of the piezoelectric element, 
that is, when x  tends to h  or 0: 

( ) ( ) ( ) ( )

( ) ( ) ( )
0

1, 0, , 0,

1 , d ,
h

v h t v t h t t
c

e D t D t b t c
c c

θ σ σ θ
ρ

θ ξ θ ξ ξ
ρ ρ

= − + − −  

+ − − + − +   ∫

       (17) 
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( ) ( ) ( ) ( )

( ) ( ) ( )
0

10, , , 0,

1 , d
h

v t v h t h t t
c

e D t D t b t c
c c

θ σ θ σ
ρ

θ ξ ξ ξ
ρ ρ

= − + − −  

+ − − + −   ∫

       (18) 

where θ  denotes the time taken by the elastic wave to travel the thickness of 
the piezoelectric layer: 

.h
c

θ =  

Similarly, the stress representation formula (16) generates the following boun- 
dary equations: 

( ) ( ) ( ) ( )

( ) ( ) ( )
0

, 0, , 0,

 , d ,
h

h t t c v h t v t

e D t D t b t c

σ σ θ ρ θ

θ ξ θ ξ ξ

= − + − −  

+ − − − − +   ∫

       (19) 

( ) ( ) ( ) ( )

( ) ( ) ( )
0

0, , , 0,

 , d .
h

t h t c v h t v t

e D t D t b t c

σ σ θ ρ θ

θ ξ ξ ξ

= − + − −  

+ − − + −   ∫

        (20) 

It is easy to verify that Equations (17) and (19), though presented in different 
forms, are equivalent. The same is true for the pair of Equations (18) and (20). 
Therefore, we shall use the equations in these pairs interchangeably. 

We will not work with boundary equations that can be obtained directly from 
the displacement representation formula (10), since it is computationally more 
effective to determine at first unknown boundary values of the velocity ( ),v x t , 
and then calculate unknown boundary values of the displacement ( ),u x t  by 
integrating the boundary velocity over time (using also an initial condition for 
( ),u x t ). 
We also need to consider boundary values of the expression (13) for the 

electric potential. It is important to emphasize that two equations obtained from 
(13) when x  tends to h  or to 0 are equivalent and, therefore, they are pre- 
sented below as one equation: 

( ) ( ) ( ) ( ) ( ), 0, = , 0,e hh t t u h t u t D tφ φ− − −   
       (21) 

The boundary equations presented above will be used in the next section to 
create an exact time domain solution procedure in the case when nonlinear 
damper boundary conditions are sprecified. 

4. Nonlinear Damper Boundary Conditions and Exact 
Solutions 

Suppose that the lower end face of the piezoelectric element is fixed to a non- 
linear damper. Let F  be a damping force acting on the lower end face which is 
defined by the following nonlinear relationship [17]: 

( ) ( )( )0, sgn 0, .F k v t v t
α

α= −                    (22) 

where 0kα >  is the damping constant, 0α >  is the damping exponent, and 
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( )sgn .  is the signum function defined for all real numbers (including 0 where 
its value is also 0). If ( )0, 0v t ≠ , the direction of F  is opposite to ( )0,v t . The 
exponent α  has a value 1 for a linear damper, but may vary in practice in the 
interval ( ]0,2  [17] creating a set of possible boundary conditions at 0x = . We 
assume that the force F  is uniformly distributed over the lower end face. Then 
(22) transforms into the following nonlinear (in general) boundary condition at 
the lower end face: 

( ) ( ) ( )( )0, 0, sgn 0,
k

t v t v t
A

αασ =                (23) 

where A  is the lower end face area. 
Consider additional assumptions that will be used to get exact solutions for 

the damper boundary conditions based on the results of the previous section. 
We suppose that the values of , , , ,u b Dσ φ  are defined for t−∞ < < ∞ . In 
addition, let us assume henceforth that 

( ) ( ), 0, , 0 if 0 , 0u x t x t x h tφ= = < < <               (24) 

which means, based on (2) and (3), that , Dσ  and b  are also zero inside the 
piezoelectric body at negative times. The next additional assumption is that 

( ), 0b x t =                              (25) 

inside the piezoelectric body at any time in the sense of generalized functions. 
This also includes the assumption that the initial conditions for the elastic 
displacement ( ),u x t  are zero, as discussed in [15]. These assumptions will 
simplify using boundary Equations (17)-(20) for particular problems considered 
below. 

Regarding the design of the piezoelectric element, we assume that it is a 
cylinder (or a rod) with two coated electrodes at 0x =  and x h= . The elec- 
trodes are considered to be of negligible thickness (from the mechanical point of 
view) and their deformation is neglected. The output voltage, which is defined as 
the electric potential difference between the lower and upper electrodes 

( ) ( )0, ,t h tφ φ φ∆ = − , is of primary interest below. 
The electric boundary condition at 0x =  corresponds to the grounded 

electrode: 

( )0, 0 if 0t tφ = ≥                       (26) 

At the upper end face, the following mechanical boundary condition is used: 

( ) ( ), if 0h t p t tσ = ≥                     (27) 

where ( )p t  is an applied normal stress load which is assumed to be known and 
negative. 

The electric boundary condition at the upper end face x h=  is formulated as 
follows: 

( ), 0 if 0.D h t t= ≥                      (28) 

So, based on (9), ( ) 0D t = . 
Using the above assumptions the representation formulas (14) and (16) for 
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the velocity and stress take the following simplified forms: 

( ) ( ) ( )( )

( )( ) ( )

1, 0, ,
2

1  0, in ,
2

v x t v t x c v h t h x c

p t h x c t x c
c

σ
ρ

 = − + − − 

 + − − − − Ω 

       (29) 

( ) ( ) ( )( )

( ) ( )( )

, 0, ,
2
1 0, in
2

cx t v t x c v h t h x c

t x c p t h x c

ρσ

σ

 = − + − − 

 + − + − − Ω 

         (30) 

where all the time dependent functions are equal to zero for negative times. 
In the representation formulas (29) and (30), there are three unknown 

boundary functions ( ) ( )0, , 0,v t tσ  and ( ),v h t  first two of which are related 
by Equation (23). Two additional equations needed for determination of these 
three functions will be derived below based on (17) and (18). 

After the the velocity ( ),v x t  is determined for any particular x  over time, 
the corresponding displacement ( ),u x t  can be obtained (due to the zero initial 
conditions) as 

( ) ( )
0

, , d .
t

u x t v x τ τ= ∫                          (31) 

Boundary values of the displacement provide (according to (21) and (26)) the 
electric potential value at x h= : 

( ) ( ) ( ), , 0,eh t u h t u tφ = −  
                  (32) 

4.1. An Exact Recursive Procedure 

The solution of the above problem will be obtained by using an exact recursive 
procedure based on the following equations obtained from (17) and (18) under 
the boundary conditions (23) (26) (27) (28): 

( ) ( ) ( ) ( ) ( )1, 2 0, , 2 2 ,v h t v t v h t p t p t
c

θ θ θ
ρ

= − − − + − −          (33) 

( ) ( ) ( )( ) ( ) ( )10, 0, sgn 0, , .
k

v t v t v t v h t p t
cA c

αα θ θ
ρ ρ

+ = − + −        (34) 

There are two unknowns ( ),v h t  and ( )0,v t  at each time moment t  in 
these equations. The right-hand sides of the equations are known at each time 
point since they contain either ( )p t  or time-dalayed function values at t θ−  
that had to be determined at a previous step of the recursive process. 

In order to simplify deriving next results, we need to introduce some addi- 
tional notations: 

( ) ( ) ( )1, 0, , , .
k

v t r v h t p t
cA c
αγ ξ θ θ

ρ ρ
= = = − + −       (35) 

Then, Equation (34) reads as 

( )sgn .rαξ γ ξ ξ+ =                         (36) 
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Let the left-hand side of Equation (36) be denoted by ( )f ξ . Since 0α > , 
( )f ξ  is a continuous strictly monotonically increasing function on ( ),−∞ ∞  

ranging from −∞  to ∞ . Therefore, for any real r , there exists one and only 
one solution of Equation (36) in ( ),−∞ ∞ . 

Denote by Qα  the operator that tranforms r  into this solution of equation 
(36). Thus, Qα  is the left inverse operator of the nonlinear operator acting on 
ξ  in the left-hand side of Equation (36). If 2α = , 1, 1 2  or 1 3 , the corres- 
ponding expressions of Q rα  are very simple for computations: 

( ) ( )

( ) ( )

( )
( )

2

2
2

1 1 2

1 3
3 2

1 3 1 3
3 2

1 1 1 4 sgn ,
2

1,  4 sgn ,
1 4

1 2108 12 12 81 .
6 108 12 12 81

Q r r r

rQ r Q r r r

Q r r r r
r r

γ
γ

γ γ
γ

γγ γ
γ




 = − + +

 = = − + +

+
     = − + + − +   + +  

(37) 

The calculation of Q rα  for other values of α  can effectively be imple- 
mented using a symbolic computation software like Maple [18]. 

With help of the inverse operator Qα  Equation (34) can be rewritten in the 
following explicit form for calculating ( )0,v t : 

( ) ( ) ( )10, , .v t Q v h t p t
cα θ θ

ρ
 

= − + − 
 

               (38) 

Equation (38) combined with (33) creates the recursive procedure that can be 
used directly for calculations or can lead to building explicit exact solution for 
vector ( ) ( ){ }0, , ,v t v h t  step by step over consecutive time intervals 

( ) ( )1   0,1, 2,j t j jθ θ≤ < + = 
. In doing so, it is helpful to substitute 

( )0,v t θ−  in (33) by its expression obtained from (38) which provides the 
following recursive equation for ( ),v h t : 

( ) ( ) ( )

( ) ( ) ( )

1, 2 , 2 2

1 1 , 2 2 ,

v h t Q v h t p t
c

v h t p t p t
c c

α θ θ
ρ

θ θ
ρ ρ

 
= − + − 

 
 

− − + − + 
 

 

or, using the identity operator I  (that leaves unchanged the element on which 
it operates), 

( ) ( ) ( ) ( ) ( )1 1, 2 , 2 2 .v h t Q I v h t p t p t
c cα θ θ

ρ ρ
 

= − − + − + 
 

    (39) 

4.2. Explicit Exact Solutions 

Now we derive some explicit exact solutions for ( ),v h t  and ( )0,v t  corres- 
ponding to three practically important ranges of the duration 1t  of the stress 
load at x h= . Our goal is to present the boundary velocities directly through 
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the transient stress load at x h=  that generates the dynamic process in the 
piezoelectric body.  

4.2.1. Case 1: t1 2< θ  

So, ( ) 0p t =  if [ )0,2t θ∉ . Using the recursive Equation (39) under this 
condition for consecutive intervals ( ) )2 ,2 1 , 0,1, 2,k k kθ θ+ =  , we finally 
obtain the following explicit expression for ( ),v h t : 

( )

( )

( ) ( )

( )

1     if   0 2 ,

2, 2 2      

 if     2 2 1 ,  1, 2, .

k

p t t
c

v h t Q I p t k
c

k t k k

α

θ
ρ

θ
ρ

θ θ

 ≤ <

  

= − −  
 

 ≤ < + =




            (40) 

Substituting (40) into (38) we get the corresponding explicit expression for 
( )0,v t : 

( ) ( ) ( )

( ) ( )

1

0                       if     0 ,

20, 2 2

  if  2 1 2 1 ,   1, 2, .

k

t

v t Q Q I p t k
c

k t k k

α α

θ

θ
ρ

θ θ

−

 ≤ <


 = − −  
 

 − ≤ < + = 

        (41) 

4.2.2. Case 2: t1 4< θ  

In this case, ( ) 0p t =  if [ )0,4t θ∉ . Acting similarly to section 4 we derive the 
following explicit exact solutions: 

( )

( )

( ) ( )( )

( ) ( ) ( )

1

1     if    0 2 ,

1, 2 2 1

22 2   if  2 2 1 , 1,2, ;

k

p t t
c

v h t Q I p t k
c

Q I p t k k t k k
c

α

α

θ
ρ

θ
ρ

θ θ θ
ρ

−


 ≤ <

 = − − − 


  + − − ≤ < + =   



(42) 

( )

( )

( ) ( )

( ) ( )

( ) ( )

1

0                          if   0 ,

2   if   3 ,

10, 2 2

22 2

  if  2 1 2 1 ,  2,3, .

k

t

Q p t t
c

v t Q Q I p t k
c

Q I p t k
c

k t k k

α

α α

α

θ

θ θ θ
ρ

θ θ
ρ

θ θ
ρ

θ θ

−

 ≤ <

  

− ≤ <  
 

 = − − + 


  + − − −    


− ≤ < + = 

        (43) 

4.2.3. Case 3: t1 < 6θ  

So, ( ) 0p t =  if [ )0,6t θ∉ , and the corresponding exact solutions have the 
following closed form: 



N. M. Khutoryansky, V. Genis 
 

883 

( )

( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( )

( ) ( )

1

1   if   0 2 ,

1 22 2    if  2 4 ,

1 2, 2 2 1 2 2

22 2 1

  if   2 1 2 2 , 1,2, ;

k

p t t
c

p t Q I p t t
c c

v h t Q I p t k Q I p t k
c c

Q I p t k
c

k t k k

α

α α

α

θ
ρ

θ θ θ
ρ ρ

θ θ
ρ ρ

θ
ρ

θ θ

−

 ≤ <

  

+ − − ≤ <  
 

  = − − − + − −  


  + − − +    
 + ≤ < + =




 (44) 

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

0                              if    0 ,

2      if    3 ,

1 22 3    if  3 5 ,

10, 2 2

22 2

22 2 3

k

t

Q p t t
c

Q p t Q I p t t
c c

v t Q Q I p t k
c

Q I p t k
c

Q I p t k
c

α

α α

α α

α

α

θ

θ θ θ
ρ

θ θ θ θ
ρ ρ

θ θ
ρ

θ θ
ρ

θ θ
ρ

−

≤ <

 
− ≤ < 

 
  

− + − − ≤ <  
  


= − − +




+ − − −


 
+ − − − 

 

( ) ( )   if    2 3 2 5 ,  1, 2, .k t k kθ θ



















 

 + ≤ < + = 

 (45) 

Similar explicit formulas for 1 6t θ≥  are excessively cumbersome. In this case, 
it is easier to directly use the recursive procedure based on (33) and (38) which 
has the same simple form regardless of the transient load duration and also 
provides exact results. 

5. Examples and Discussions 

Consider some examples of using the results of the previous section for 
mathematical modeling of piezoelectric cylindrical devices installed in a car as 
proposed in [5]. These devices transform the mechanical energy of the moving 
pistons or crank-shafts into electrical energy, which will be stored in the 
capacitor or the battery charger. We consider the uniaxial stress state for a 
cylinder and assume that the material of the cylinder is PZT-5A [4]. In this case, 
parameters , ,C e   and ρ  in Equations (3) have the following values: 

( )10 2

10 3

5.32*10  N m ; 19.89 N V m ;

76.12*10  farad m;  7750.0 kg m

C e

ρ−

= = ⋅

= =
 

Then the elastic wave speed c  in the piezoelectric material is equal to 
3684.06 m s . Next, we take into account that the total force instantaneously 
applied to the top of a piston in an internal combustion engine is around 6300 
pounds, which corresponds to approximately 28,640 N [19]. Suppose that this 
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force aF  is applied downward to a piezoelectric cylinder with a length of 
1 cmh =  and a diameter 1 cmd = . So, the area of the upper end face of the 

cylinder 2 2π 4 0.785 cmA d= = . Assuming that aF  is uniformly distributed 
over the upper end face, we get the amplitude of the pressure impulse acting on 
the top of the cylinder: 364.66 MPAap = . Let us assume that the applied 
normal stress load takes the form of the following rectangular compressive load 
(pressure) impulse: 

( ) ( ) ( )1ap t p H t H t t= − − −                 (46) 

where 1t  is the duration of the pressure impulse. 
We assume first that 0.5α =  and 1 2 1 21000 N s mkα

−= ⋅ ⋅  (see, e.g., [20]) in 
the damper boundary conditions (23). Consider the following three values of 

1 : 5, 10, 15 μst . Since the transit time of elastic waves between the upper and 
lower end faces 2.71 μsθ = , then these three durations correspond to the three 
cases of explicit exact solutions considered in 4. The operator Qα  is calculated 
according to (37). The calculated results for the output voltage V φ= ∆  (in kV) 
based on these exact solutions are presented for 50 μst ≤  in Figures 1-3 
below. 

Comparing the graphs we can see that the maximum or peak value does not 
depend on the pressure impulse duration 1t . However, the number of peaks in 
each figure depends on the 1t . The time distance between two neighboring 
peaks is approximately equal to 2θ . After the pressure load is removed, there is 
an attenuation of the output voltage vibrations. 

Now let us consider another set of the damper parameters: 2.0α =  and 
2 2250 N s mkα

−= ⋅ ⋅ . The parameters of the material and the impulse durations 
are the same as above. The operator Qα  is also calculated according to (37). 
 

 
Figure 1. Output voltage for 1 2 1 20.5, 1000 N s mkαα −= = ⋅ ⋅  and 1 5 μst = . 
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Figure 2. Output voltage for 1 2 1 20.5, 1000  N s mkαα −= = ⋅ ⋅  and 1 10 μst = . 

 

 
Figure 3. Output voltage for 1 2 1 20.5, 1000 N s mkαα −= = ⋅ ⋅  and 1 15 μst = . 

 
The calculated results for the output voltage V φ= ∆  (in kV) are presented for 

50 μst ≤  in Figures 4-6. 
Comparison of these graphs shows that the maximum value of the output 

voltage does not depend on the pressure impulse duration 1t  which similar to 
the case when 0.5α = . The difference is that now there is only one peak but its 
width depends on the 1t . After the pressure load is removed, the attenuation of 
the output voltage vibrations is very pronounced: the amplitude of vibrations 
after the load removal is almost negligible. 
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Figure 4. Output voltage for 2 22, 250 N s mkαα −= = ⋅ ⋅  and 1 5 μst = . 

 

 
Figure 5. Output voltage for 2 22, 250 Ns mkαα −= =  and 1 10 μst = . 

6. Conclusion 

One-dimensional transient dynamic piezoelectric problems for thickness 
polarized layers and disks, or length polarized rods, are considered here in the 
framework of a time-domain Green’s function method. As the result, a novel 
exact analytical recursive procedure is derived which is applicable for a wide 
variety of boundary conditions including the nonlinear damper case. Some new 
practically important explicit exact solutions are presented. The effectiveness of 
the proposed exact approach is demonstrated by examples of the time behavior 
of the output electric potential difference between two electrodes coated at the  
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Figure 6. Output voltage for 2 22, 250 N s mkαα −= = ⋅ ⋅  and 1 15 μst = .  

 
end faces of a piezoelectric cylinder fixed to a nonlinear damper at one end, and 
subjected to impulsive loading at the other. 
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Abstract 
A Faraday isolator is shown to develop a temperature difference between its 
input and output, but still complies with the second law when all the heat car-
riers, in this case, photons are homogeneous and indistinguishable. This result 
is a consequence of the H-theorem which assumes homogeneity and indis-
tinguishability of particles. However, when a thermal feedback path is added, 
in which heat carriers have physical properties different from the photons in 
the isolator, then a heterogeneous system is formed not covered by the 
H-theorem, and the second law is violated. 
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1. Introduction 

Reciprocity in absorption and emission is a requirement of detailed balance and 
expressed by Kirchhoff law of radiation for any wavelength and for any direction. 

( ) ( ), , , ,α ω θ ϕ ε ω θ ϕ=                    (1) 

In other words, the absorptivity α  is equal to the emissivity ε  for any val-
ue of frequency ω  and polar coordinate angles θ  and ϕ . This law is con-
ventionally accepted, yet non-reciprocity of transmission and reflection has been 
the puzzlement [1] to scientists as it appears to violate the principle of detailed 
balance and the second law. Non-reciprocal devices are used in a multitude of 
applications, for example Faraday isolators and optical and microwave circula-
tors. This paper discusses how such non-reciprocity leads to the breakdown of 
detailed balance and the second law. 

The Faraday isolator is a non-reciprocal optical device, i.e., a light diode. It 
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comprises an input linear polarizer, a polarization rotator and an output linear 
polarizer at 45˚ from the input polarizer. Light entering the isolator through the 
input is linearly polarized, then rotated by a 45˚ angle and exits unimpeded 
through the output polarizer. Light entering through the output is polarized, and 
then rotated another 45˚ thereby, encountering the first polarizer at a 90˚ angle 
and being stopped. The unidirectionality of the device seems to indicate that ob-
jects downstream of the light flow should get warmer and those upstream should 
get colder. 

Wien [2] attempts to prove that Faraday isolators cannot violate the second 
law. He describes a thought experiment involving two black bodies A and B se-
parated by a Faraday isolator comprised of polarizers X and Y and a Faraday ro-
tator R. The polarizers are nicol prisms which, he assumes, transmit half of the 
light and reflect the other half. Wien’s analysis assumes that the black bodies are 
initially at the same temperature. The analysis is illustrated in Figure 1 in which 
the width of the channels corresponds to the magnitude of heat flow. 

Half of the light coming from A is reflected back to A by the nicol X. The oth-
er half undergoes a 45˚ rotation, traverses nicol Y and reaches black body B. 

Half of the light coming from B is reflected back to B by nicol Y. The second 
half is rotated by 45˚ and as it reaches nicol X, is totally reflected toward B. Wien 
then carelessly assumes that this polarized light crosses nicol Y and reaches B. 
He concludes that B receives three times more energy than A. 

Wien’s careless assumption is erroneous. This error is corrected by Rayleigh 
as described further below. In any case, it is instructive to continue with Wien’s 
reasoning, and then discuss Rayleigh’s correction. 

To avoid a conflict with the second law, Wien proposes two solutions (original 
quote in French) [2]: 

“On peut résoudre de deux façons différentes cette contradiction avec le 
second principe de la Thermodynamique. 

Ou bien le magnétisme de la substance douée du pouvoir rotatoire est détruit 
par la radiation qui la traverse, c’est à dire que si la rotation est produite par des 
aimants permanents ces aimants sont affaiblis. 
 

 
Figure 1. Wien’s thought experiment using nicol prisms which transmit half of the light 
and reflect the other half. According to Wien, black body B receives three times more 
light than black body A. The figure shows the black bodies in an initial non-equilibrium 
state. 
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Ou tous les corps transparents doués du pouvoir rotatoire absorbent la lu-
mière en faisant tourner son plan de polarization.” 

Translated to English, Wien proposes that, either light that goes through the 
rotator attenuates the magnetic field, or that the rotator absorbs light as a func-
tion of the rotation imparted to light. 

Neither of his proposed solutions is acceptable. His first argument requires 
light to weaken the magnetic field, thereby impacting the bi-directional opera-
tion of the rotator. The complete elimination of the rotator’s operation is ob-
viously not possible because, then, Faraday isolators would not work. The partial 
reduction of the rotator’s operation can easily be countered by increasing the 
length of the rotator to restore its function. 

His second argument requires light to be asymmetrically absorbed by the ro-
tator as a function of the orientations of the non-local polarizers. In other words, 
light from one of the polarizers would have to be preferentially absorbed com-
pared to light from the other polarizer. There is no known physical mechanism 
by which this effect can be achieved. 

Rayleigh [3] properly completes Wien’s thought experiment, thereby correct-
ing Wien’s omission. As shown in Figure 2 Rayleigh finds that, after the reflec-
tion from X, light acquires another 45˚ rotation as it traverses the rotator a third 
time and instead of crossing nicol Y and reaching B, light is reflected by nicol Y 
towards A. 

At that point, the light has the correct polarization to cross nicol X and reach 
A. Surprisingly, Raleigh shows that the isolator is not unidirectional and he con-
cludes that the two black bodies receive the same amount of light and the second 
law is not violated. 

Rayleigh’s argument leaves one to wonder how an isolator can function prop-
erly if internal reflections cancel its unidirectional operation even under normal 
operation as a light diode. Both Wien and Rayleigh’s arguments are faulty as 
they rely on a non-working isolator design. In actual nicol-based isolators, light 
is not reflected backward by the nicols but deflected and absorbed by surround-
ing materials and collimators. 

Mungan [1] asserts without a detailed proof that no violation of the second 
law occurs because heat from the hot object is absorbed by the isolator and 
 

 
Figure 2. Rayleigh’s thought experiment. Black bodies A and B receives the same amount 
of light. However, the design is faulty as the isolator is not unidirectional. 
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eventually re-radiated to the cold object, thereby reestablishing detailed balance. 

2. Analysis of the Faraday Isolator 

The analysis below provides a quantitative analysis of Mungan’s argument and 
finds that Mungan is half right. Light is reradiated backward, but in insufficient 
amount to prevent a violation of detailed balance. The following thought expe-
riment considers two black bodies A and B separated by a Faraday isolator. The 
isolator utilizes absorbing polarizers, thereby avoiding the reflection issue raised 
by the nicols employed by Wien and Rayleigh. The following analysis uses a 
large number of simple linear equations and is clarified by the drawings. 

Before beginning the formal analysis, a baseline shall be established by ana-
lyzing a simpler device, that is one in which the polarization rotator within the 
Faraday isolator is replaced by a black body. Consider the system in Figure 3, 
comprised of black bodies A and B separated by a polarizer X, a blackbody Z, 
and a polarizer Y. 

In this arrangement, Z replaces the polarization rotator. The dimensions of 
the transmission channels are intended to represent how much radiation flows 
through these channels. 

Polarizers X and Y are ideal. They transmit half the light and absorb the re-
maining half. In the figure, emissivity is denoted by ε , absorptivity by α  and 
transmissivity by τ . The system is in thermal equilibrium, therefore, A Aε α= , 

B Bε α= , XA XBε α= , XZ XZε α= , YB YBε α= , YZ YZε α= , XA XBε α= , ZX ZXε α= , 
and ZY ZYε α= . Therefore, the black bodies A and B are at the same temperature 

A BT T=  as per Stefan-Boltzmann law. 
Let us now disturb the equilibrium state by suddenly replacing the black body 

Z with an ideal polarization rotator R as shown in Figure 4. We shall assume in-
itially, as Wien and Rayleigh did, that the rotator is a perfect transmitter, and 
that it only rotates the plane of polarization without otherwise absorbing or 
emitting any light. Further down in this paper, we shall show that relaxing this 
assumption reduces the performance of the device but does not qualitatively 
change the conclusion of the experiment that detailed balance is violated. 

In the instant immediately after the substitution, that is before the objects  
 

 
Figure 3. Replacing the polarization rotator Z of a Faraday isolator by a black body 
creates a perfectly symmetrical system in which two black bodies A and B reach isother-
mal equilibrium in compliance with detailed balance. 
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Figure 4. Reinserting the polarization rotator in the Faraday isolator breaks the system’s 
symmetry allowing a temperature difference to develop between two black bodies A and 
B on either side of the isolator. Thermal equilibrium is reached when the forward flow of 
polarized light is compensated by a counter flow of non-polarized light that partially by-
passes the input polarizer. The new equilibrium requires a temperature difference be-
tween A and B. 
 
have time to change their temperatures, all emissivities remain the same but ab-
sorptivities can change. For example, Aε  is determined by the temperature of A 
before the substitution, therefore 2XA Aα ε=  must also be the same as before. 
However, A XA R Aα ε τ →= +  must change immediately after the substitution be-
cause the polarizer transmits less light R Aτ → . A quick inspection of heat flow 
shows that A, being upstream in the light flow, absorbs less light immediately 
after the substitution, indicating that it will get colder after some time elapses. B 
is downstream, absorbs more light, indicating that it will get warmer. The fol-
lowing analysis solves the large number of linear equations that determine the 
thermal flow. The reader is invited to rely on the drawing to follow this analysis. 

For the sake of simplicity, we define X XA XRε ε ε= =  because X is at the same 
temperature throughout. Similarly, Y YB YRε ε ε= = . Using these guidelines the 
following heat flow equations can be inferred by inspection from Figure 3 (be-
fore the substitution) and from Figure 4 (after the substitution). Polarizers are 
assumed to be ideal, allowing through half of non-polarized light, and absorbing 
the remaining half. 

The amount of heat received by A and B immediately after the substitution 
can be quickly determined. 

2
Y

A X
εα ε= +  (Note: X XA XRε ε ε= = ; Y YB YRε ε ε= = )       (2) 

and 

2 2
X A

B Y
ε εα ε= + +                        (3) 

Since that the system was in equilibrium just before the substitution X Yε ε=  
(see Figure 3). Furthermore, since the polarizer is ideal, they transmit half of the 
light from the black bodies. The polarizers also absorb half of the light from the 
black bodies and emit half of the light. Hence 2X Y Aε ε ε= = . At the instant 
immediately following the substitution all temperatures are the same as before 
the substitution and all emissivities remain the same. Using this information and 
combining (2) and (3) one can show that 
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5
3

B

A

α
α

=                               (4) 

which indicates that heat flows from A to B. Interestingly, the polarizers display 
the opposite tendency with X absorbing more light and Y absorbing less light. 
Since 

1 1 1
2 2 2XA XR A YR Bα α ε ε ε+ = + +                     (5) 

and 

1 1
2 2YB YR B XRα α ε ε+ = +                         (6) 

one can show that 

5
3

XA XR

YB YR

α α
α α

+
=

+
                       (7) 

Immediately following the substitution, heat moves from black body A to 
black body B, away from the original equilibrium state. One can appreciate that 
a change does occur. The only way to prevent this shift in equilibrium is for the 
rotator R to behave exactly like the black body Z that it replaces (including being 
opaque to the polarized light that traverses it), which is obviously impossible 
even if the elements of the isolator including the polarizers and the rotator were 
not ideal. Eventually a new equilibrium is reached. 

The question is what is the steady state of the black bodies A and B? Assuming 
zero net heat flow in or out of A, A Aε α= : 

.
2
Y

A A X
ε

ε α ε= = +                           (8) 

Assuming zero net heat flow in or out of B, B Bε α= : 

.
2 2
X A

B B Y
ε ε

ε α ε= = + +                         (9) 

Subtracting Equation (9) from (8) produces 

3 2 .A B X Yε ε ε ε− = −                        (10) 

Assuming zero net heat flow in or out of X, 2 X XA XRε α α= + : 

2 .
2 2 2
A Y B

X XA XR
ε ε ε

ε α α= + = + +                     (11) 

Assuming zero net heat flow in or out of Y, 2 Y YB YRε α α= + : 

2 .
2 2
B X

Y YB YR
ε ε

ε α α= + = +                        (12) 

Subtracting Equation (12) from (11) yields 

.
5
A

X Y
ε

ε ε= −                            (13) 

Combining with (10) and solving for Aε  and Bε  we find that 

7
5

B

A

ε
ε

=                             (14) 
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indicating per Stefan-Boltzmann law that B is hotter than A, B AT T> . The pola-
rizers are also at different temperatures. Combining Equations (13) and (8) 
produces: 

11
8

X

Y

ε
ε

=                          (15) 

If one were to thermally clamp the two polarizers, forcefully setting X YT T=  
and X Yε ε= , (as one may do in an experimental test of this effect) one would 
find from Equation (10): 

3
2

B

A

ε
ε

=                          (16) 

This equilibrium state is illustrated in Figure 5 in which the dimensions are 
approximately proportional to the magnitude of the heat flows. One can see that 
B is warmer than A because Bε  is larger than Aε . (This configuration may be 
more appropriate for an experiment involving film polarizers and rotators in a 
sandwich). 

At room temperature, this difference in emissivity corresponds to a theoretical 
maximum temperature difference of 32˚C. Assuming polarizers and a rotator, 
each with a realistic transmissivity of 0.8, then one can show that 1.256B Aε ε =  
corresponding to a temperature ratio of 1.058B AT T =  as per Stefan- 
Boltzmann law. At 300 K the temperature difference is 17.6B AT T C− =  which 
should easily be observable with careful calorimetric experimental procedures 
designed to avoid thermal shorts by convection and conduction. For an experi-
ment running at room temperature the challenge is to find polarizers and rota- 
tors that operate at the corresponding black body radiation wavelength of about 
10 microns. 

Let us now revisit the assumption made by Wien and Rayleigh, and that was 
 

 
Figure 5. Thermally clamping the polarizers X and Y increases the temperature differ-
ence between A and B. The dimensions in the figure are approximately proportional to 
the conditions of Equation (16). The net flow of heat through the rotator is to the left, in-
dicating that the system is not in static equilibrium and that heat flows to the right 
through the thermal connector. 
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also made in the analysis above. The rotator was assumed to be a perfect trans-
mitter, and that it only rotates the plane of polarization without otherwise ab-
sorbing or emitting any light. Let us now consider the case of an imperfect iso-
lator that partially behaves like a black body and partially like a perfect isolator. 
For example, we could combine Figure 3 and Figure 4 such that the rotator is 
50% comprised of black body and 50% of perfect rotator. Clearly the perfor-
mance of the Faraday isolator is degraded but some unidirectionality is retained 
and a difference in temperature between black bodies A and B still emerges and 
our conclusion that B AT T>  remains qualitatively unchanged. 

The thought experiment above began with a modified Faraday isolator in 
which the rotator is replaced with an internal black body Z inserted between the 
two polarizers X and Y. This arrangement is perfectly symmetrical and isother-
mal equilibrium is reached. Replacing this internal black body with the rotator R 
introduces an asymmetry. Light flows preferentially in one direction causing a 
temperature difference between the two external black bodies A and B. Even-
tually a new equilibrium is reached with B AT T> , in which the forward flow of 
light is counterbalanced by a radiative counterflow of internally generated 
non-polarized light, half of which bypasses the blocking function of the input 
polarizer. (This explanation is different from Wien who incorrectly relied on a 
polarized counterflow). Statistical symmetry is restored. Mungan’s assertion that 
the isolator would heat up and cause heat to flow backward thereby avoiding a 
violation of the second law, is shown to be unsubstantiated by the quantitative 
analysis above. 

Reflective non-reciprocity is also well established for example in optical circu-
lators and ferromagnetic optical materials. The reader is directed to [4] [5] [6] 
[7] [8] in particular to the non-reciprocal reflective thought experiment by Zhu 
and Fan [4]. The above discussion applies equally to reflective non-reciprocity. 

The above discussion shows that a Faraday isolator placed between two black 
bodies causes the black body downstream to become hotter than the one up-
stream. The next question to be addressed is whether the second law and the 
principle of detailed balance are being violated. Two kinds of systems shall be 
discussed: 
1. Homogeneous Faraday isolator systems. 
2. Heterogeneous Faraday isolator systems. 

3. Homogeneous Faraday Isolator Systems 

Can this system convert heat to work, for example by placing a photoelectric de-
vice on the colder black body A to capture radiant thermal energy from the hot-
ter black body B? The answer depends on the path taken by photons traveling 
from B to the photoelectric device on A. 

The Faraday isolator carries thermal energy travels from the colder body A to 
the warmer body B. This shall be called the forward path. The path taken by 
photons traveling from B to the photoelectric device on A shall be called the re-
verse path. 
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If the reverse path is homogenous with the forward path, in other words, if the 
photons from B go through the Faraday isolator to reach the photoelectric device 
on A, then, these photons are indistinguishable from those in the forward path 
and no energy can be generated. This result complies with the H-theorem that 
requires homogeneity and indistinguishability of particles. 

4. Heterogeneous Faraday Isolator Systems 

If a heat engine is connected between A and B using a reciprocal photon or 
phonon flow channel, for example, a conventionally conducting material as 
shown in Figure 6, then useful work can be produced. The reason is that the 
heat phonons traveling through the thermal connectors are not affected by the 
non-reciprocity and they can be differentiated from the photons going through 
the isolator. 

A Faraday isolator is a photon diode that produces a temperature difference 
between its input and output. Using a heterogeneous reverse path, this tempera-
ture difference can be used to convert heat to work. How is this concept different 
from the discredited idea that energy can be produced from the built-in poten-
tial in a semiconductor diode by connecting leads across the diode? In a diode, 
the carriers in the reverse path (the leads) have the same statistics as the ones in 
the forward path (the junction). The reverse path carriers are subjected to the 
same potential energy gradients as the diode’s carriers. The electrical potentials 
at the contacts between the diode and the leads cancel out the diode built-in po-
tential. 

In contrast, the heat carriers in the system depicted in Figure 6 are different 
in the forward path and in the reverse path. In the forward path, the heat carriers 
are photons traveling through the non-reciprocal isolator and in the reverse 
path, they are phonons in a conventional reciprocal thermal conductor. The two 
kinds of heat carriers are physically different, have different statistics, and there-
fore, can be distinguished from each other. The H-theorem does not apply. Heat 
energy can be extracted from the system. 
 

 
Figure 6. A heat engine can extract useful work from the non-reciprocal transmitter or 
reflector only if the connections to the heat engine do not go through the non-reciprocity. 
Such a system is heterogeneous and falls outside the coverage of the H-theorem. 
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5. Conclusions 

This paper explores the limits of applicability of the second law. As stated by the 
H-Theorem, this law requires that the entropy of an isolated system can never 
decrease. The theorem, however, makes a crucially important assumption: the 
system must be homogeneous and its constituent particles indistinguishable. 
The Faraday isolator is used as a vehicle to exemplify two kinds of systems: the 
first, in which particles are homogeneously distributed and indistinguishable; the 
second, in which particles of different species such as fermions and bosons are 
heterogeneously distributed. This second kind of system falls outside of the 
H-Theorem. 

The paper begins by showing that a temperature difference can arise sponta-
neously between two black bodies separated by a Faraday isolator. 

If a heat engine is thermally connected to these black bodies by particles ho-
mogeneous with, and indistinguishable from those in the isolator, (i.e., connect-
ing photons traversing polarizers and rotator similarly configured as in the iso-
lator) then the entire system conforms with the H-Theorem. The connecting 
photons produce the same temperature difference as those in the isolator. Even 
though a temperature difference does exist between the black bodies, this tem-
perature difference cannot be communicated to the engine, and no useful work 
is generated in compliance with the second law. 

This phenomenon is reminiscent of the built-in potential across a semicon-
ductor junction. This potential is also unusable. The electrical carriers are ho-
mogeneous and indistinguishable throughout the system. Since electrical poten-
tial is a scalar field, contact potentials exactly cancel the built-in potential. 

Both examples (isolator and semiconductor junction) describe homogeneous 
systems: the photons in the isolator behave the same as the photons in the ther-
mal connector. Similarly, the electrons in the semiconductor junction have 
properties indistinguishable from the electrons in the electrical connectors. In 
such systems, voltage and temperature differences can occur spontaneously but 
are unusable to produce work. This result complies with the H-Theorem and the 
second law. 

However, heterogeneous systems are not bound by the H-Theorem. As de-
scribed in this paper, a Faraday isolator can produce a temperature difference 
between two black bodies. A heterogeneous system can be then formed by con-
necting a heat engine between the black bodies, using heat carriers with physical 
properties different from the photons in the isolator. The heat carriers could, for 
example, be heat phonons in a metallic conductor, not susceptible to the influ-
ence of the polarizers and the magnetic field in the rotator. The engine can then 
produce useful work. 

The Faraday isolator is another example uncovered by the author, of hetero-
geneous systems falling outside the H-Theorem. These systems combine par-
ticles with different statistics such as fermions and bosons. In other publications 
[9] [10] the author shows that under proper conditions, a thermoelectric junc-
tion can spontaneously produce a detectable temperature difference even in the 
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absence of any electrical input. This effect has been observed in the lab [11] as a 
failure of the voltage-temperature Seebeck curve to pass through the origin. In 
the thermoelectric example, a heterogeneous system is formed when the thermal 
loop is closed by heat phonons in a thermally conductive medium. Since a ther-
mometer can be viewed as a heat engine, the simple act of measuring a temper-
ature difference output that arises without any electrical input constitutes a vi-
olation of the second law. Such violations are not mere microscopic fluctuations 
but have been observed [11] as large scale phenomena and dismissed as unex-
plained experimental error. 
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Abstract 
In this paper, we construct a modified least squares regression algorithm 
which can provide privacy protection. A new concentration inequality is ap-
plied and the expected error bound is derived by error decomposition. Fur-
thermore, via the error analysis, we find a method to choose an appropriate 
parameter   to balance the error and privacy. 
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1. Introduction 

Privacy protection attracts much attention in many branches of computer sci- 
ence. To deal with this, Dwork et al. proposed differential privacy in [1]. Soon [2] 
builds an exponential mechanism which is a useful approach to construct a dif-
ferential private algorithm. The concept is introduced into learning theory in [3]. 
There, the authors consider output perturbation and object perturbation for 
ERM algorithms. Analysis of privacy and generalization for those algorithms al-
so has been conducted. P. Jain and his collaborators have done a lot of work on 
differential private learning afterwards [4] [5] and etc. Recently, in [6], the au-
thors find that the empirical average of the output from a differential private al-
gorithm can converge to its expectation. And [7] provides another analysis of 
this convergence, which motivates our work. 

In this paper, we consider the following statistical learning model (see [8] [9] 
for more details): The input space X  is a compact metric space, and the output 
space is Y ⊂   as a regression problem. Throughout the paper, we assume the 
output Y  is uniformly bounded, i.e., y M≤  for some 0M >  almost surely. 
On the sample space :Z X Y= × , we try to find a function :f X Y→  via some 
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algorithms  , reflecting the relationship between the input and output. Algo-
rithm   relies on the random chosen sample { } ( ){ }1 1

,
mm

i i ii i
z x y

= =
= =z , while 

the sample is drawn according to a distribution function ρ  on Z . Furthermore, 
we assume there is a marginal distribution Xρ  on X  and conditional distri-
bution ( )y xρ  on Y  given some x . 

Now we expect the algorithm can provide some privacy protection. We as-
sume   satisfies the ( ),γ  differential private condition [1]. Denoting the 
Hamming distance between two sample sets { }1 2,z z  is 

( ) { }1 2 1, 2,, # 1, , : ,i id i m z z= = ≠z z   

i.e., there is only one element is different. Then ( ),γ -differential private is de-
fined as follows: 

Definition 1 A random algorithm : mA Z →  is ( ),γ -differential private 
if for every two data sets 1 2,z z  satisfying ( )1 2, 1d =z z , and every sets ∈   
we have 

( ){ } ( ){ }1 2Pr e Pr .A A γ∈ ≤ ⋅ ∈ +z z   

Here   is a function space from X  to Y , which is called the hypothesis 
space. In the sequel, we focus on the ( ), 0 -differential privacy with some 
0 1< < , which is always called  -differential privacy for simplicity. How to 
choose an appropriate   is a fundamental problem in differential private algo-
rithms [10], and we will provide a method during our error estimation in the 
following sections. 

2. Concentration Inequality 

In this section, we study the error between average and expectation for an algo-
rithm   providing  -differential privacy. Our first result can be stated as fol-
low: 

Theorem 1 If an algorithm   provides  -differential privacy, and outputs 
a positive function , :zg X Y× →   with bounded expectation , ,z zg G≤   
for some 0G > , where the expectation is taken over the sample via the algo-
rithm output. Then 

( ) ( ), , ,
1

1 d 2 ,
m

z z i zZ
i

g z g z G
m

ρ
=

 − ≤ 
 

∑ ∫     

and 

( ) ( ), , ,
1

1d 2 .
m

z z z iZ
i

g z g z G
m

ρ
=

 − ≤ 
 

∑∫     

Denote sample sets { }1 2 1 1, , , , , , ,j j j j mz z z z z z− +′=w    for { }1, 2, ,j m∈ 

. 
We observe that 

( ) ( )( )

( ){ }

, , ,
1 1

,0
1

1 1

1 dPri

m m

z z i z z i
i i

m

z z z i
i

g z g z
m m

g z t t
m

= =

+∞

′
=

  = 
 

= ≥

∑ ∑

∑ ∫
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( ){ }

( )( ) ( )( )

( ) ( )

( )

,0
1

, , ,
1 1

, , , ,
1 1

, ,

1 e dPr

1 1e e

1 1e d e d

e d .

i i

i i i i i i

i i

m

z z w i
i

m m

w z w i w z w i
i i
m m

w w z zZ Z
i i

z zZ

g z t t
m

g z g z
m m

g z g z
m m

g z

ρ ρ

ρ

+∞

′
=

= =

= =

≤ ≥

= =

= =

=

∑ ∫

∑ ∑

∑ ∑∫ ∫

∫

 

    

 








 
   

 
   


 

 

Then 

( ) ( )

( ) ( )( )
, , ,

1

, ,

1 d

e 1 d 2 .

m

z z i zZ
i

z zZ

g z g z
m

g z G

ρ

ρ

=

 − 
 

≤ − ≤

∑ ∫

∫





  


  

 

On the other hand, 

( ) ( )

( ) ( ) ( )

( )( ) ( ){ }

( ){ }

( )( )

, , ,
1

, ,
1 1

, ,0
1 1

,0
1

, ,
1

1d d

1 1d d

1 1 dPr

1 e dPr

1 1e e

i i i i

i i i i i

i

m

z z z zZ Z
i
m m

w w w w i iZ Z
i i
m m

w z w i z z w i
i i
m

z z z i
i

m

z z i z
i

g z g z
m

g z g z z
m m

g z g z t t
m m

g z t t
m

g z
m m

ρ ρ

ρ ρ

=

= =

+∞

′
= =

+∞

′
=

=

=

= =

= = ≥

≤ ≥

= =

∑∫ ∫

∑ ∑∫ ∫

∑ ∑ ∫

∑ ∫

∑

  

   

    

 

  

   

   

  







 
   ( ), .z ig z

 
This leads to 

( ) ( )

( ) ( )

, , ,
1

, ,
1

1d

1e 1 2 .

m

z z z iZ
i

m

z z j
i

g z g z
m

g z G
m

ρ
=

=

 − 
 

= − ≤

∑∫

∑





  


  

 

These verify our results. 
Remark 1 Similar results are proposed in [6] and [7]. However, there the au-

thors limits the function to take value in [ ]0,1  or { }0,1 , our result here ex-
tends theirs to the function taking value in +



. This makes our following error 
analysis implementable. 

3. Differential Private Learning Algorithm 

In this section we consider the differential private least squares regularization 
algorithm. For a Mercer kernel K  defined on X X× , the function space 

( ){ }: span , ,K K x x X= ⋅ ∈  is the induced reproducing kernel Hilbert space 
(RKHS). Denote ( ) ( ),xK y K x y=  for any ,x y X∈ , and 

( ),sup ,x y X K x yκ ∈= . It is well known that ( ) , x Kf x f K=  as the 
reproducing property. In the sequel, we always assume y M≤  for some con-
stant 0M > . The least squares regularization algorithm, which has been exten-
sively studied in such as [8] [11] [12] and etc. is: 
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( )( )2 2
,

1

1arg min .
K

m

z i i Kf i
f f x y f

mλ λ
∈ =

= − +∑


                (1) 

Denote π  as a projection operator as we did in [13] [14]: 

( )( )
( )

( ) ( )
( )

,
, .

,

M f x M
f x f x M f x M

M f x M
π

>
= − ≤ ≤
− < −

 

Then we add a noise term b  in the original algorithm (1) like the output 
perturbation algorithm in [3]: 

( ) ( )( ), ,z zf x f x bλπ= +                             (2) 

where the density of b  is independent with z  which will be clarified in the 
following analysis. Moreover, we take the following notation for simplicity: 

( ) ( )( ) ( ) ( )( )22

1

1d ,  .
m

z i iZ
i

f f x y f f x y
m

ρ
=

= − = −∑∫   

Definition 2 We denote zf∆  as the maximum infinite norm of difference 
when changing one sample point in z , i.e., if ( ), 1d ′ =z z , 

,
sup .z z z
z z

f f f ′ ∞
′

∆ = −  

Then we have the following result: 
Lemma 1 Assume ( )( ),zf xλπ∆  is bounded, and b  has density function  

proportion to ( ),

exp
z

b
f λπ

  − 
∆  


, then algorithm (2) provides  -differential  

privacy. 
The proof is just as Theorem 4 in [15]. For all possible function r , and , ′z z  

differ in one element, then 

{ } ( ){ } ( )
( )

,
, ,

,

Pr exp ,Pr
z

z z
b z

r f
f r b r f

f
λ

λ
λ

π
π

π
∞

 −
 = = = − ∝ −
 ∆
 




 

and 

{ } ( ){ } ( )
( )

,
, ,

,

Pr exp .Pr
z

z z
b z

r f
f r b r f

f
λ

λ
λ

π
π

π
′ ∞

′ ′
′

 −
 = = = − ∝ −
 ∆
 




 

So 

{ } ( ){ }
( ) ( )

( ) { }
, ,

,
, , ,Pr Pr e e Pr .

z z

z

f f

f
z z zf r f r f r

λ λ

λ

π π

ππ

′−
∞

∆
′ ′= ≤ = × ≤ =




    

Then the lemma is proved by a union bound. 
Now we will bound the term ,zf λ∆ . 
Lemma 2 For the function ,zf λ  obtained from algorithm (1), assume 

,z K
f Rλ ≤  for any mZ∈z  for some R M≥ , and 0 1λ< ≤ , we have 

( )2

,
2 1

.z
R

f
mλ

κ κ
λ

+
∆ ≤  
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Assume ,zf λ  and ,zf λ′  are two results derived via algorithm (1) given any 
sample set , ′z z  satisfying ( ), 1d ′ =z z . Without loss of generality, we set 

( )1 2 1, , , ,m mz z z z ′−′ =z 

. Since the two functions are both the optimizer of algo-
rithm (1), take derivative for f  we have 

( )( ), ,
1

2 2 0
i

m

z i i x z
i

f x y K f
m λ λλ

=

− + =∑  

and 

( )( ) ( )( )
1

, , ,
1

2 2 2 0.
i m

m

z i i x z m m x z
i

f x y K f x y K f
m mλ λ λλ

−

′ ′ ′
=

′ ′− + − + =∑  

These lead to 

( ) ( )( ) ( )

( )( ) ( )( )

, , , ,
1

, ,

1

1 .

i

m m

m

z i z i x z z
i

z m m x z m m x

f x f x K f f
m

f x y K f x y K
m

λ λ λ λ

λ λ

λ′ ′
=

′ ′

− + −

 ′ ′= − − − 

∑
 

Take inner product with , ,z zf fλ λ′−  by both sides we have 

( ) ( )( )

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

22
, , , ,

1

, , ,

, , ,

1

1

         .

m

z i z i z z K
i

z m m z m z m

z m m z m z m

f x f x f f
m

f x y f x f x
m

f x y f x f x

λ λ λ λ

λ λ λ

λ λ λ

λ′ ′
=

′ ′

′

− + −

 ′ ′ ′ ′= − −

− − − 

∑

 

This means 

( ) ( )

( )

2
, , , , , ,

, , , ,

1

1 2 .

z z z m m z m m z zK

z z z z K

f f f x y f x y f f
m

f f M f f
m

λ λ λ λ λ λ

λ λ λ λ

λ

κ

′ ′ ′ ∞

′ ′∞ ∞

 ′ ′− ≤ − + − ⋅ − 

≤ + + −
 

The last inequality is from the fact that 

( )sup sup , .x x K KK K
x X x X

f f x f K K f fκ
∞

∈ ∈
= = ≤ ⋅ ≤  

Since ,z K
f Rλ ≤ , then ,z K

f Rλ′ ≤  as well. Therefore, 

( ) ( )
, ,

2 11 2 2z z K

R
f f R M

m mλ λ
κ κ

κ κ
λ λ′

+
− ≤ + ≤  

for any 0 1λ< ≤ . So 

( )2

, ,
2 1

z z
R

f f
mλ λ

κ κ
λ′ ∞

+
− ≤  

for any , ′z z , and our lemma holds. 
It can be easily verified by discussion that 

( ) ( ), , , ,z z z zf f f fλ λ λ λπ π ′ ′ ∞∞
− ≤ −  

for any , ′z z , so we have the choice of noise b  and the result for algorithm (2). 
Proposition 1 Assume ,z K

f Rλ ≤  for any mZ∈z  for some R M≥ , and 
b  takes value in ( ),−∞ +∞ , we choose the density of b  to be  
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( )2
1 exp

2 1
m b

R
λ

α κ κ
 
−  + 

 , where ( )24 1R
m

κ κ
α

λ
+

=


, then the algorithm (2) pro- 

vides  -differential privacy. 
The proof is by combining the two lemmas and the inequality above. And by 

simply calculation we can get the expression of α . 

4. Error Analysis for Differential Private Learning Algorithm 

In this section, we will study the expectation of the error between 

( ) ( ),zf fρ−  , where ( )d
Y

f y y xρ ρ= ∫  is the regression function which mi-
nimizes ( )f . Firstly we shall introduce the error decomposition: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( )( ) ( )
( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

( )

2
, , ,

, , , ,

2
, ,

, , , ,

2
, ,

, , , ,

2

1 2 ,

z z z K

z z z z z z z

z z z K

z z z z z z z

z z z K

z z z z z z z

z K

f f f f f

f f f f

f f f

f f f f

f f f

f f f f

f f f

D

ρ ρ λ

λ

λ λ ρ

λ

λ λ ρ

λ

λ λ ρ

λ

π

π λ

π

λ

π

λ

λ

− ≤ − +

≤ − + −

+ + −

≤ − + −

+ + −

≤ − + −

+ + −

≤ + + +

 

  

  

  

   

   

 

   

 

   



  



            (3) 

where fλ  is a function in K  to be determined and 

( ) ( )1 , , ,z z zf f= −    

( ) ( )( )2 , , ,z z z zf f λπ= −    

( ) ( ) ,z f fλ λ= −    

( ) ( ) ( ) 2 .KD f f fλ ρ λλ λ= − +   

Here 1  and 2  involve the function ,zf   from random algorithm (2) so 
we call them random errors.   and ( )D λ  are similar as classical ones in the 
past literature in learning theory and we still call them sample error and ap-
proximation error. In the following, we will study these errors respectively. 

4.1. Error Bounds for Random Errors 

Proposition 2 For function ,zf   obtained from algorithm (2) with density of 
b  as described in Proposition 1, we have 

( )22 4
2

, 1 2 2 2

2 1
8 .z

R
M

m
κ κ
λ

 +
 ≤ +
 
 

 


  

Note that 

( )( ) ( )( )2 2
1 , ,

1

1d ,
m

z z i iZ
i

f x y f x y
m

ρ
=

= − − −∑∫    

analogous analysis to the proof of Theorem 1 tells us that 
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( )( ) ( )( )

( ) ( )( )( )

( )( )( ) ( )( )( )( )
( )

2 2
, , ,

1

2

,
1

22
, ,

22 4
2

2 2 2

1d |

1e 1 d

2

8 1
2 4 ,

m

z z z i iZ
i

m

z z i i
i

z b z i i z i i

f x y f x y
m

f x b y
m

b b f x y f x y

R
M

m

λ

λ λ

ρ

π ρ

π π

κ κ
λ

=

=

 − − − 
 

≤ − + −

= + − + −

 +
 ≤ +
 
 

∑∫

∑



 

 

  









 

which verifies the proposition. 
For the term 2 , we have the same analysis. 
Proposition 3 For function ,zf   obtained from algorithm (2) with density of 

b  as described in Proposition 1, we have 

( )22 4

, 2 2 2 2

8 1
.z

R
m

κ κ
λ

+
≤ 

  

Since 

( ) ( )( )
( )( ) ( )( )( )

( )( )( )

( )( )( )

2 , ,

22
, ,

1

,
1

2
,

1

1

1 2 2

12 ,

z z z z

m

z i i z i i
i
m

z i i
i

m

z i i
i

f f

f x y f x y
m

b b f x y
m

b b f x y
m

λ

λ

λ

λ

π

π

π

π

=

=

=

= −

 = − − −  

= + −

= + ⋅ −

∑

∑

∑





  

 

we have 

( )22 4
2

, 2 2 2 2

8 1
.z z b

R
b

m
κ κ
λ

+
= ≤ 

    

And the proposition is proved. 

4.2. Error Estimates for Sample Error and Approximation Error 

Error estimates for sample error and approximation error have been extensively 
studied since [8]. Here we provide the proof for completeness. It is known that 
fλ  in the error decomposition (3) can be arbitrarily chosen in K  in [12] [13] 

[14] and etc. Here we simply choose it to be the classical one 

( ) 2arg min .
K

Kf
f f fλ λ

∈
= +


  

From [16] [17] we have the expression of fλ  is 

( ) 1 ,K Kf L L fλ ρλ −= +  

where KL  is the operator defined on 2
X

Lρ  as 

( ) ( ) ( ), d .K XX
L f t f x K x t ρ= ∫  

[8] told us that KL  has a eigenvalue sequence { } 1i i
µ

≥  satisfies 
0 0i iµ µ> →  when i →∞ , and 2

KL κ≤ . Now we recall the Hoeffding in-
equality [18]. 
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Lemma 3 Let ξ  be a random variable on a probability space Z  satisfying 
( )z Bξ ξ− ≤  for some 0B >  for almost all z Z∈ , then 

( )
2

2
1

1Pr 2exp .
2

m

i
i

mz
m B

εξ ξ ε
=

  
− ≥ ≤ −   

   
∑   

Then we have the following analysis. 
Proposition 4 For fλ  and fρ  defined as above, assume ( )2

X

r
Kf L Lρ ρ∈ , we 

have 

( ) { } ( )
2 2min 2 ,1 4 2 4 4

,
8 2π 2 .r r r r

z K
MD L f

m ρ ρ
λ λ κ κ− − −+ ≤ + + +  

Firstly we bound the sample error. 

( ) ( )

( )( ) ( )( )22

1

1d .

z

m

i iZ
i

f f

f x y f x y
m

λ λ

λ λρ
=

= −

= − − −∑∫

 
 

Let ( ) ( )( )2
z f x yλξ = − − , since ( ) ( )d

Y
f x y y x Mρ ρ= ≤∫ , and 

( )

( )

1

1 ,

K K

K K

f L I L f

L I L f M

λ ρ

ρ

λ

λ

−

∞ ∞

−

∞

= +

≤ + ⋅ ≤
 

we have 28Mξ ξ− ≤ . So from Hoeffding inequality there holds 
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For the approximation error, note that ( ) ( ) 2
f f f fλ ρ λ ρ ρ

− = −   [9] 

which is independent with z  and b , we have 
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On the other hand, in [8], the authors pointed out that 
1
2

KKf L f
ρ

−
=  for  

any Kf ∈ . So 
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Combining the 3 bounds above, we can verify the proposition. 

4.3. Convergence Result with Fixed   

In our analysis for , 1z   above, we indeed have the following result 
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Therefore, the error decomposition can be 
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Then by choosing 
{ }2 min 4,3 21 r

m
λ

+
 =  
 

 for balance we have the following  

result. 
Theorem 2 Let ,zf   derived from algorithm (2), ,zf λ , fλ  defined in the  

above subsections, and assume ( )2X

r
Kf L Lρ ρ∈ , take 

{ }2 min 4,3 21 r

m
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,  

there holds 
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( ) ( ) ( )( )
1 4min ,
2 3 2
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11 2 ,

r
r

z zf f C
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where constant  

( ) ( ) ( )
22 4

22 4 2 4 4
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24 1
8 2π 1 2 2r r r

K
M
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κ κ
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. 

4.4. Selection of   and Total Error Bound 

From the analysis for random error, sample error and approximation error 
above, we can obtain the whole error bound as follow. 

Theorem 3 Let ,zf   derived from algorithm (2), ,zf λ , fλ  defined in the  

above subsections, and assume ( )2X

r
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It can be seen from error decomposition (3) that 
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Since ( ) ( )2 2 2
, , , 0z z z z zK K

f f f Mλ λ λλ λ≤ + ≤ ≤  , we have ,z K

Mf λ λ
≤ , i.e., 

we can choose MR
λ

= . Now take 
{ }2 min 4,3 21 r

m
λ

+
 =  
 

 and 
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( ){ }min 1 3,4 3 61 r r

m

+
 =  
 

  for balance, and the result is proved. 

5. Conclusions 

Theorem 2, where   is taken as a constant, reveals that the generalization error 
( )( ),zfπ   converges not to the one of regression function ( )fρ , but a little 

different one ( ) ( )1 2 fρ+    in expectation. 
It can be seen from the definition of differential privacy that algorithms will 

provide more privacy when   tends to 0. However, Theorem 3 shows that   
cannot be too small, since the expected error will be very large accordingly. 
Hence our choice can be regarded as a balance between privacy protection and 
the expected error. In [19], the authors announce that   also needs tend to 0 in 
some rates to keep generalization which matches our result. 

Compared with previous learning theory results [12] [20] [21] [22] and etc., 
our learning rate is not so good since a perturbation term is introduced. Howev-
er, in our result Theorem 1, we did not need a capacity condition as what we did 
in classical error analysis, i.e., conditions on covering numbers, VC or Vγ di-
mensions. Instead the  -differential private condition is adopted. So it may be 
capable and interesting for us to apply such condition to other learning algo-
rithms. 
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Abstract 
The motion of objects where the interaction propagated with a finite velocity 
was analyzed in my previous paper “The Contribution of the Gravitational 
Propagation Delay to Orbital and Center of Mass Motions”. It is shown here 
that this analysis is valid for the case when the wavelength of the gravitational 
wave excited by the motion of the masses is much larger than the system of 
masses. It is also proven here that the conclusion reached in my previous pa-
per conserves energy. Since this interaction is conservative, the energy is equal 
to the Hamiltonian. Therefore, the Hamiltonian is calculated and it is shown 
that the time derivative of the Hamiltonian is equal to zero. Thus, the Hamil-
tonian and therefore, the energy, are constants. 
 

Keywords 
Propagation Delay, Gravitation, Newtonian Mechanics, Lagrangian,  
Hamiltonian, Constants, Gravitational Waves 

 

1. Introduction 

It is determined here, that for the case when the wavelength of the gravitational 
wave generated by the motion of the point objects are much larger than the dis-
tance between objects, Newtonian Classical Mechanics gives accurate results. 
The correction to Classical Mechanics due to the curvature of space-time in this 
limit, is approximately the same size as the ratio of the Schwarzschild radius di-
vided by the distance between objects. The curvature of space-time due to the 
masses is described by the General Relativity Theory. An equation for the wave-
length of the gravitational wave generated by the motion of the objects is de-
rived. 
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The motion of objects where the interaction propagated with a finite velocity 
was analyzed in my previous paper “The Contribution of the Gravitational 
Propagation Delay to Orbital and Center of Mass Motions” [1]. This analysis has 
been questioned if the result conserves energy. Here it is proven that the model 
in the above paper does conserve energy. 

2. Comparison of Gravitational Wavelength and System Size 

The gravitational interaction is modeled by the General Relativity Theory as a de-
formation of space-time caused by the presence of masses [2]. Mathematically, the 
space-time continuum is described by the geodetic tensor. The deformation of the 
space-time continuum by moving masses propagates as Gravitational Waves is 
schematically shown in Figure 1. Indeed, Einstein’s equations have wave like so-
lutions for space-time. Gravitational Waves have recently been measured [3]. 

The gravitational interaction propagates with the speed of light among ob-
jects. The obvious way to model this interaction is by the gravitational waves de-
rived by the General Relativity Theory. However, for the objects considered in 
this paper, the gravitational waves generated by the motion of these objects have 
wavelengths very much larger than the size of the system of the objects, see Fig-
ure 1. Indeed, the reason that the Newtonian model is so successful is that the 
gravitational waves generated by systems described by the Newtonian Classical 
Mechanics [4] have wavelengths substantially longer than the size of the systems.  

 

 
Figure 1. Schematic representation of a system with two objects in a deformed space-time 
continuum. The system consisting of Objects 1 and 2 is small compared to the wave-
length of its gravitational wave. The coordinate axes follow the path of light beams. 
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The oscillating and orbiting objects will cause steady state gravitational waves in 
the space-time continuum surrounding the objects. At large distances from the 
objects, the steady state gravitational waves are spherical-wave like. An expres-
sion for the wavelengths of the gravitational waves generated by the systems is 
derived in Appendix B. The calculations in Appendix B are based on a deriva-
tion in Appendix A. The gravitational waves travel with the speed of light. The 
wavelength λ of this wave is derived in equation B 14b of Appendix B and the 
equation below: 

22π
ss

RR
r

λ =                           (1) 

where R is the average distance between objects and rss is the Schwarzschild ra-
dius of the sum of the masses of the objects. The Schwarzschild radius is given 
by: 

( )Object 1 Object 2

2

2
.ss

m M G
r

c

+
=                    (2) 

The first result we have been seeking is given by Equation (1). For systems 
where the average distance R between objects is much larger than the Schwarz-
schild Radius rss, the wavelength λ of the Gravitational Wave is much larger than 
the system that generates the wave. For such systems, Newton’s Classical Me-
chanics and the method to describe delayed interactions are very good mathe-
matical models of nature. 

For example, for the Earth Sun system R is approximately equal to twice the 
orbital semi major axis. The semi major axis is equal to one astronomical unit 
AU = 149,597,870,700 m. The solar Mass M



 is equal to 1.989 × 1030 kg. The 
mass of the Earth ME is equal to 5.972 × 1024 kg. This results in a Schwarzschild 
radius rss which equals 2954.038 m. For the Earth Sun system the wavelength of 
the gravitational wave is 89426.148 times longer than the average orbital diame-
ter. Thus, the size of the Earth Sun system is equal to a very small fraction of the 
wavelength of the steady state gravitational wave it excites. 

To determine if one could use a Newtonian approximation to calculate the 
measured gravitational waves resulting from the two colliding galaxies R would 
have to be the distance between points in the galaxies, not the 410 Mpc distance 
to us. Also, for the observation of the deflection of light from a star by the solar 
mass the static form of the deformed space-time continuum through which the 
light passes would have to be calculated. By using the General Relativity Theory 
one obtains that light is deflected by the Solar mass. It is deflected by an angle of 
4.24612 micro-radians, approximately equal to the Schwarzschild radius ssr



 of 
the Sun divided by the Sun radius R



.  

3. Conservation of the Energy Analysis 

The Wavelength of the Gravitational Wave generated by the system is substan-
tially larger than the size of the system analyzed here. Since this interaction is 
conservative, the energy is equal to the Hamiltonian. First, the Hamiltonian is 
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calculated. Next, it is shown that the time derivative of the Hamiltonian is equal 
to zero. Thus, the Hamiltonian and therefore the energy are constants of the 
motion. 

Here the initial steps of the propagation delay paper of reference [1] are restated: 
The motion of the objects with a delayed interaction can be derived from a 

method similar to the Euler Lagrange model of Classical Mechanics [4]. One can 
develop a causal Lagrangian Lk that contains the effect of the delayed gravita-
tional interaction. Since the propagation time of the gravitational interaction is 
very short compared to the orbital period, one can extend the Lagrangian L of 
the centrally symmetric Kepler problem [4] to include the propagation delay ef-
fect. 

( )( )

( )( )

( )( )

2 2

1 1

1 1
2 2

1 1
2 2 2

2

k k k k k

k k k k

k k k k

mMGL mx x My y
x y x y

mMGL mx x My y
x y x y

mMG

y x y x

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ

− −

− −

= + +
− −

→ = + +
− −

+
− −

   

          (3) 

where summation over repeated Greek indices is implied. The Latin subscripts 
label discrete times. The single gravitational potential of the Kepler formulation 
is split into two potentials as shown in Equation (3). The first potential describes 
a gravitational interaction that was radiated by the Planet in the past at time tk-2 
and is sensed currently at time tk by the Moon. The second potential describes a 
gravitational interaction that was radiated by the Moon in the past at time tk-1 
and is sensed currently at time tk by the Planet. Thus, the Lagrangian Lk is causal. 
Half of each of these potentials as described by Dirac [5] is used. 

An equation of motion similar to the Euler Lagrange equation of motion is 
derived by a least action method described in my paper “Reaction Mechanics for 
Point Objects” [6]. The Euler Lagrange method for the derivation of the equa-
tions of motion is most readily implemented using tensor notation. Here m is 
the mass and xµk is a component of the position vector xk of the Moon at time 
step tk and M is the mass and yµk is a component of the position vector yk of the 
Planet at time step tk. The time differences such as 1k kt t −−  are propagation de-
lays. The 1k kt t −−  are finite time durations. The time steps such as 

2 1 1, , ,k k k kt t t t− − + , and 2kt +  are not necessarily consecutive. They are just time step 
labels. The time steps are not integer related. Bold letters such as x denote vec- 

tors, single superior dots such as d
d
xx
t

=  denote time derivatives and double 

superior dots such as 
2

2
d
d

xx
t

=  denote second time derivatives. 

The derivation of the Hamiltonian from the Lagrangian of Equation (3) is 
performed in Appendix A. The Hamiltonian Sum is the Legender transform [7] 
of the Sum of Lagrangians with respect to the current velocities for systems with 
delayed interactions. This calculation is performed in Appendix A. The time de-
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rivative of the Hamiltonian Sum with respect to a current time tk is given by Eq-
uation (A8) in Appendix A. Equation (A8) in the more compact vector form is 
rewritten below. 

( ) ( )

( ) ( )

1 2 2 1 2 1 1 1
1 1 3 3

1 2 2 2 1 1

2 1 1 2 1 2 2 2
2 2 3 3

2 1 1 1 2 2

d
d

k k k k k k
k k

k k k k k

k k k k k k
k k

k k k k

mMG u mMGH m
t

mMG u mMG u
M

− +

− +

− +

− +

− ⋅ − ⋅
= ⋅ + +

− −

− ⋅ − ⋅
+ ⋅ + +

− −

u u u u u
u u

u u u u

u u u u
u u

u u u u



 

 

 

      (4) 

The equations of motion of the Moon and Earth are given by Equations (A3). 
Equations (A3) are rewritten here in the more compact form in vector notation. 

) ( ) ( )

) ( ) ( )

1 2 2 2 1 1
1 3 3

1 2 2 2 1 1

2 1 1 1 2 2
3 3

2 1 1 1 2 2

a  0

b  0

k k k k
k

k k k k

k k k k
k

k k k k

mMG mMG
m

mMG mMG
M µ

− +

− +

− +

− +

− −
+ + =

− −

− −
+ + =

− −

u u u u
u

u u u u

u u u u
u

u u u u





         (5) 

By substituting the equations of motion of Equation (5) into Equation (4) one 
obtains: 

) da  0 and thus Constant
d k

H H
t

= =                  (6) 

The second result we are seeking is given above by Equation (6). Since this is a 
conservative system, the Hamiltonian is equal to the energy. The time derivative 
of the Hamiltonian is equal to zero. Therefore the Hamiltonian is a constant, 
and thus, the energy, too, is a constant. 

4. Conclusion 

It is shown here that the very successful Kepler Newtonian model, and thus the 
mathematical model analyzing the effect of the gravitational propagation delay is 
valid. This occurs in the case when the wavelengths of the gravitational waves 
excited by the motion of the masses which are much larger than the system of 
masses. For this range of system parameters, the extension of the Newtonian 
Gravitational potential that includes the gravitational propagation delay is also 
valid. It was questioned if the solution reached in the paper “The Contribution 
of the Gravitational Propagation Delay to Orbital and Center of Mass Motions” 
[1] conserved energy? This is a conservative system and therefore, the Ha- mil-
tonian is equal to the energy. Here, the Hamiltonian sum has been calculated 
from the Lagrangian sum. It is shown that the time derivative of the Hamilto-
nian sum is equal to zero. This implies that the Hamiltonian sum is a constant. 
Therefore, the energy is constant and is conserved. 
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Appendix A 

To include the effect of both finite and infinitesimal time increments in the de-
rivation of the equation of motion, a sum S of Lagrangians Lk is used. The me-
thod used here is similar to the discrete Nagumo equation [8] 

k

k
k

S L
=∞

=−∞

= ∑                       (A1) 

The equations of motion are obtained by inserting the sum of Lagrangians in-
to an equation similar to the Euler Lagrange equations of motion for the Moon 
and the Planet. 

) )d da  0                b  0
d dk k k k k k

S S S S
t x x t y yµ µ µ µ

∂ ∂ ∂ ∂
− = − =

∂ ∂ ∂ ∂ 

       (A2) 

This equation of motion was derived in my paper titled “Reaction Mechanics 
for Point Objects” [6]. By using the Lagrangians Lk of Equation (3) in the sum of 
Lagrangians S in Equation (A1), and substituting this sum into Equations (A2) 
one obtains the following discrete Nagumo [8] like equation of motion for the 
Moon and Planet respectively: 

) ( )
( ) ( )

( )
( ) ( )

) ( )
( ) ( )

( )
( ) ( )

2 2
3 3
2 2

-2 2 2 2

1 1
3 3
2 2

-1 1 1 1

a  0
2 2

b  0
2 2

k k k k
k

k k k k k k k k

k k k k
k

k k k k k k k k

mMG x y mMG x y
mx

x y x y x y x y

mMG y x mMG y x
My

y x y x y x y x

µ µ µ µ
µ

ν ν ν ν ν ν ν ν

µ µ µ µ
µ

ν ν ν ν ν ν ν ν

− +

− + +

− +

− + +

− −
+ + =

   − − − −   

− −
+ + =

   − − − −   





 (A3) 

In order to calculate the Hamiltonian [4] of this system, it is necessary to first 
calculate the components of the Reaction Mechanics momentums [6] pµk and qµk 
of the Moon and the Planet at time step tk. 

) ( ) ) ( )1 1a                 b  k k k k
k k

k k

L L L L
p q

x yµ µ
µ µ

+ +∂ + ∂ +
= =

∂ ∂ 

      (A4) 

Only the current Lk and the future Lk+1 Lagrangians are functions of the cur-
rent coordinate components kxµ  and kyµ  of the Moon and Planet. By substi-
tuting Equation (3) for the Lagrangians Lk and Lk+1 into equation A4 one obtains 
for the components of the Reaction Mechanics momentums. 

) )a                 b  k k k kp mx q Myµ µ µ µ= =             (A5) 

The Hamiltonian sum H is equal to the Lagender transform [7] of the sum of 
Lagrangians S with respect to the velocity components. 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

- 2 2 1 1

- 2 2 1 1

1 1  
2 2

       
2 2

       
2 2

k k

k k k k k k k k
k k

k

k k k k k k k k k

k

k k k k k k k k k

H p x q y mx x My y

mMG mMG

x y x y y x y x

mMG mMG

x y x y y x y x

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ µ µ

=∞ =∞

=−∞ =−∞

=∞

= ∞
− − − −

=

= ∞
+ + + +

 = + − + 
 

 
 − +
 − − − − 
 
 − +
 − − − − 

∑ ∑

∑

     

∞

∑

 (A6) 
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Using Equations (A5) in Equation (A6) and collecting terms in the resulting 
expression. 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

- 2 2

1 1 2 2

1 1

2 2 2

2 2

      
2

k
k k k k

k k k k k

k k k k k k k k

k k k k

p p q q mMGH
m M x y x y

mMG mMG

y x y x x y x y

mMG

y x y x

µ µ µ µ

µ µ µ µ

µ µ µ µ µ µ µ µ

µ µ µ µ

=∞

= ∞
− −

− − + +

+ +


= + −

 − −

− −
− − − −


−
− − 

∑

   (A7) 

Taking the time derivative with respect to a current time tk of the Hamilto-
nian sum in Equation (A7). 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

2 1
3 3
2 2

2 2 1 1

1 2
3 3
2 2

1 1 2 2

d
d

       

k k k k k k
k k

k
k k k k k k k k

k k k k k k
k k

k k k k k k k k

mMG x y x mMG x y xH mx x
t

x y x y y x y x

mMG y x y mMG y x y
My y

y x y x x y x y

µ µ µ µ µ µ
µ µ

µ µ µ µ µ µ µ µ

µ µ µ µ µ µ
µ µ

µ µ µ µ µ µ µ µ

− +

− − + +

− +

− − + +

− −
= + +

   − − − −   

− −
+ + +

   − − − −   

 

 

 

 

 (A8) 

Equations (A8) and (A3) are rewritten as Equations (4) and (5) in the main text. 
By substituting the equations of motion, Equations (A3) into Equation (A8) 

one obtains: 

) da  0      and thus    Constant
d k

H H
t

= =                (A9) 

Since this is a conservative system, the Hamiltonian is equal to the energy. 
The time derivative of the Hamiltonian is equal to zero. Therefore, the Hamilto-
nian is a constant, and the energy, also is a constant. 
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Appendix B 

Returning to Equation (A7) to investigate the relationship between the wave-
length of the gravitational wave generated by the motion of the masses m and M, 
and the size of the system. It is assumed here that the wavelength of the gravita-
tional wave is very much larger than the size of the system. In this limit the 
General Relativity Theory reverts to the Classical Mechanics model of nature. 
Therefore, one can use the much simpler Classical Mechanics for the calcula-
tions. For simplicity, neglecting the propagation delay and using the more com-
pact vector notation one obtains for the equations of motions of the Moon and 
Earth from Equation (A7): 

) ( )

( )

) ( )

( )

1 2
1 3

2 2 2
1 1 1 1

1 2
3

2 2 2
1 1 1 1

a  0         
2

b  0
2

MG

u u u u

mG
u

u u u u

−
+ =

− +

−
− =

− +

u u
u

u u





                (B1) 

It is conventional to make a transformation of variables at this point: 

) )1 2 1 2a           b  m M
m M m M

= − = +
+ +

q u u Q u u          (B2) 

where q is the vectorial distance between objects and Q is the center of mass 
coordinate vector. Inverting Equations (B2). 

) )1 2a          b  M m
m m m M

= + = −
+ +

u Q q u Q q            (B3) 

Substituting equations B3a and B3b into Equations (B1). 

) )3 3a  0         b  0
  
M MG m mG

m m m Mq q
+ + = − − =

+ +
q qQ q Q q 

     (B4) 

First, subtract Equation (B4b) from Equation (B4a) and dot multiply the result 
by the vector q. Next, subtract Equation (B4b) from Equation (B4a) and cross 
multiply the result by the vector q. Last, multiply Equation (B4a) by m and equ-
ation B4b by M and add the resulting expressions. 

) ( ) ) ) ( )a  0      b  0           c  0
m M G

m M
q

+
⋅ + = × = + =q q q q Q   (B5) 

Equation B5c implies that the center of mass velocity Q  is a constant of the 
motion. Next, making a transformation to cylindrical coordinates. 

) )1 2a  cos       b  sinq qρ θ ρ θ= =                  (B6) 

Substituting equations B6 into Equations (B5a) and (B5b). 

) ( ) ) ( )

) ) )

2 2
32

2 2
2

ˆa  0        b  2 0

dc  0        d         e  
d

m M G

t

ρ ρθ ρρθ ρ θ
ρ

ρ θ ρ θ θ
ρ

+
− + = + =

= = =

a  

 



  



   (B7) 

Here λ is the angular momentum which is a constant of the motion. By subs-
tituting Equation (B7e) into Equation (B7a) one obtains the equation of motion. 
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( )2 2

2 3 2
d 0 
d

m M G
t
ρ

ρ ρ
+

− + =
                    (B8) 

where ρ is the distance between objects. Approximating the distance between 
objects ρ by its average value R and a small oscillating portion rcos ω t. 

cosR r tρ ω= +                          (B9) 

The oscillation of the distance between objects is observed as an eccentric or-
bit where the distance between objects change periodically. Substituting Equa-
tion (B9) for the distance between objects ρ into Equation (B8) and expanding 
the resulting expression to first order in the small parameter cosr t

R
ω . 

( ) ( )2 2
2

3 4 2 3

23cos cos cos 0
m M G m M G

r t r t r t
R R R R

ω ω ω ω
+ +

− − + + − ≈
   (B10) 

Collecting terms in Equation (B10): 

) ( ) ) ( )2 2
2

4 3 3 2

23a  0         b  0
m M G m M G

R R R R
ω

+ +
− + − ≈ − + ≈

     (B11) 

Solving Equation (b11b) for the angular momentum λ and substituting the 
result into Equation (B11a). 

( )2
3

m M G
R

ω
+

=                          (B12) 

Solving this equation for the oscillating frequency f: 

) ( ) )1a         where     b  2π
2π

m M G
f f

R R
ω

+
= =      (B13) 

The oscillating and orbiting objects will cause gravitational waves in the 
space-time continuum surrounding the objects, see Figure 1. The gravitational 
waves travel with the speed of light. The wavelength λ of this wave is equal to: 

) ) 2a               b  2π
ss

c RR
f r

λ λ= =                  (B14) 

where R is the average distance between objects. Here rss is the Schwarzschild ra-
dius of the sum mass given by: 

( )
2

2
ss

m M G
r

c
+

=                         (B15) 

Equations (B14b) and (B15) are the results we are seeking. Equations (B14b) 
and (B15) are rewritten as Equations (1) and (2) in the main text. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Applied Mathematics and Physics, 2017, 5, 922-932 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2017.54081  April 30, 2017 

 
 
 

Decay Rate for a Viscoelastic Equation with 
Strong Damping and Acoustic Boundary 
Conditions 

Zhiyong Ma 

College of Science, Shanghai Second Polytechnic University, Shanghai, China 

 
 
 

Abstract 
This paper is concerned with a nonlinear viscoelastic equation with strong 

damping: ( ) ( )
0

, d 0,
t

t tt tt tu u u u g t s u x s s uρ − ∆ − ∆ + − ∆ − ∆ =∫ . The objective 

of the present paper is to provide some results on the long-time behavior to 
this equation with acoustic boundary conditions. By using the assumptions on 
the relaxation function due to Tatar [1], we show an arbitrary rate of decay 
with not necessary of an exponential or polynomial one and without the as-

sumption ( )
0

1d
2

g s s
∞

<∫  condition. The result extends and improves some 

results given in Cavalcanti [2]. 
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1. Introduction 

In this paper, we investigate the following viscoelastic system with acoustic 
boundary conditons 

( ) ( ) ( ) ( )
0

, d 0,   , 0, ,
t

t tt tt tu u u u g t s u x s s u x tρ − ∆ − ∆ + − ∆ − ∆ = ∈ +∞∫    (1.1) 

( ) ( ) [ ), 0          , 0, ,tu x t x t
ν

∂
= ∈Γ× +∞

∂
                  (1.2) 

( ) ( ) [ )1, 0,           , 0, ,u x t x t= ∈Γ × +∞                  (1.3) 

( ) ( ) ( ) ( ) ( ) [ )00
, , , d   , 0, ,

ttt
t

u u ux t x t g t s x s s y x t
ν ν ν

∂ ∂ ∂
+ − − = ∈Γ × +∞

∂ ∂ ∂∫   (1.4) 

( ) ( ) ( ) ( ) ( ) [ )0, , 0     , 0, ,t tu x t p x y q x y x t x t+ + = ∈Γ × +∞          (1.5) 
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( ) ( ) ( ) ( )0 1, 0 , , 0 ,    ,tu x u x u x u x x= = ∈Ω              (1.6) 

where ( )1, 2n nΩ ⊆ =  is a bounded domain with smooth boundary 

0 1Γ = Γ Γ


, ν  is the unit outward normal to Γ , the function g  represents 
the kernel of a memory, p  and q  are specific functions, and ρ  is a real 
number such that 

21    if   3;    1   if   1, 2.
2

n n
n

ρ ρ< ≤ ≥ > =
−

               (1.7) 

Our problem is of the form 

( ) 0,t tt ttf u u u u− ∆ − ∆ =                       (1.8) 

which has several modeling features. In the case, ( )tf u  is a constant; Equation 
(8) has been used to model extensional vibrations of thin rods (see Love [3], 
Chapter 20). In the case, ( )tf u  is not a constant; Equation (8) can model ma-
terials whose density depends on the velocity tu , for instance, a thin rod which 
possesses a rigid surface and with an interior which can deform slightly. We re-
fer the reader to Fabrizio and Morro [4] for several other related models. 

Recently, Liu [5] considered the following viscoelastic problem with acoustic 
boundary conditions 

( ) ( ) ( ) ( )
0

, d 0,    , 0, ,
t

ttu u g t s u x s s x t− ∆ + − ∆ = ∈ +∞∫           (1.9) 

( ) ( ) [ )1, 0,           , 0, ,u x t x t= ∈Γ × +∞               (1.10) 

( ) ( ) ( ) ( ) [ )00
, , d    , 0, ,

t
t

u ux t g t s x s s y x t
ν ν
∂ ∂

− − = ∈Γ × +∞
∂ ∂∫      (1.11) 

( ) ( ) ( ) ( ) ( ) [ )0, , 0     , 0, ,t tu x t p x y q x y x t x t+ + = ∈Γ × +∞       (1.12) 

( ) ( ) ( ) ( )0 1, 0 ,  , 0 ,      ,tu x u x u x u x x= = ∈Ω             (1.13) 

the authors obtain an arbitrary decay rate of the energy. In the pioneering paper 
[6], Beale and Rosencrans considered the acoustic boundary condition (1.12) 
and the coupled impenetrability boundary condition (1.11) with a general form, 
which had the presence of tty  in (1.2), in a study of the model for acoustic wave 
motion of a fluid interacting with a so-called locally reacting surface. Recently, 
many authors treated wave equations with acoustic boundary conditions, see [7] 
[8] [9] [10] and references therein. For instance, Rivera and Qin [10] proved the 
polynomial decay for the wave motion with general acoustic boundary condi-
tions by using the Lyapunov functional technique. Frota and Larkin [8] estab-
lished global solvability and the exponential decay for problems (1.9)-(1.13) with 

0g ≡ . They overcame the difficulties which were arisen due to the absence of 

tty  in (1.12) by using the degenerated second order equation. Recently, Park 
and Park [9] investigated problems (1.9)-(1.13) and proved general rates of de-
cay which depended on the behavior of g , under the additional assumption of  

that ( )
0

d .g s s
+∞

∫  

Many authors have focused on the viscoelastic problem. In the pioneer work of 
Dafermos [11] [12], existence and asymptotic stability for a one-dimensional vis-
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coelastic problem were proved but no rate of decay has been specified. Since then 
problems related to viscoelasticity have attracted a great deal of attention [13] [14] 
[15]. It seems all started with kernels of the form ( ) ,  0tg t e β β−= > , then with 
kernels satisfying ( ) ( ) ( )1 2g t g t g tξ ξ′− ≤ ≤ − , for all 0t ≥ , for some constants 

1ξ  and 2ξ  and some other conditions on the second derivative, Cavalcanti et al. 
[2] studied the following equation with Dirichlet boundary conditions 

0t tt tt tu u u u g u uρ γ− ∆ − ∆ + ∗∆ − ∆ =            (1.14) 

where ( ) ( )
0

d
t

g u g t s u s s∗∆ = − ∆∫ . They established a global existence result 
for 0γ ≥  and an exponential decay of energy for 0γ > , and studied the inte-
raction within the t ttu uρ  and the memory term g u∗∆ . Messaoudi and Tatar 
[16] established, for small initial data, the global existence and uniform stability 
of solutions to the equation 

2p
t tt ttu u u u g u b u uρ −− ∆ − ∆ + ∗∆ =             (1.15) 

with Dirichlet boundary condition, where 0, , 0, 2b pγ ρ≥ > >  are constants. 
In the case 0b =  in (15), Messaoudi and Tatar [17] proved the exponential 
decay of global solutions to (15) without smallness of initial data, considering 
only the dissipation effect given by the memory. 

In [18] [19], the condition has been replaced by ( ) ( ) ( )g t t g tξ′ ≤ − , where 
( )tξ  is a positive function. Similarly, Han and Wang [20] proved the energy 

decay for the viscoelastic equation with nonlinear damping 

0,m
t tt tt t tu u u u g u u uρ − ∆ − ∆ + ∗∆ + =                (1.16) 

with Dirichlet boundary condition, where 0, 0mρ > >  are constants. Then 
Park and Park [21] established the general decay for the viscoelastic problem 
with nonlinear weak damping 

( ) 0,t tt tt tu u u u g u h uρ − ∆ − ∆ + ∗∆ + =                 (1.17) 

with the Dirichlet boundary condition, where 0ρ >  is a constant. We also 
mention that Fabrizio and Polidoro [22] obtained the exponential decay result 
under the conditions that ( ) 0g t′ ≤  and ( ) ( )1 0,te g t Lα ∈ +∞  for some 0α > . 
Recently, Tatar [23] improved these results by removing the last condition and 
established a polynomial asymptotic stability. In fact, he considered the kernels 
having small flat zones and these zones are not too big (see also [24] for the case 
of coupled system). More recently, under the assumptions that ( ) 0g t′ ≤  and 
( ) ( ) ( )1 0,g t t Lγ ∈ +∞  for some nonnegative function ( )tγ , Tatar [1] genera- 

lized these works to an arbitrary decay for wave equation with a viscoelastic 
damping term. Moreover, we would like to mention some results in [25]-[30]. 

The rest of our paper is organized as follows. In Section 2, we give some pre- 
parations for our consideration and our main result. The statements and the 
proofs of our main results will be given in Section 3. 

For convenience, we denote the norm and scalar product in ( )2L Ω  by ⋅  
and ( ),⋅ ⋅ , respectively. C  denotes a general positive constant, which may be 
different in different estimates. 
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2. Preliminaries and Main Result 

For the memory kernel g  we assume that: 
( )1 :H g + +→   is a non-increasing differentiable function satisfying that 

( ) ( )
0

0 0,  1 d 0.g l g s s
+∞

> = − >∫                    (2.1) 

( )2H  suppose that there exists a nondecreasing function ( ) 0tγ >  such  

that ( )
( ) ( )t

t
t

γ
η

γ
′

=  is a decreasing function and ( ) ( )
0

dg s s sγ
+∞

< +∞∫ . 

For the functions p  and q , we assume that ( )0,p q C∈ Γ  and ( ) 0p x >  
and ( ) 0q x >  for all 0x∈Γ . This assumption implies that there exist positive 
constants ( ), 0,1i ip q i =  such that 

( ) ( )0 1 0 1 0,   ,   .p p x p q q x q x≤ ≤ ≤ ≤ ∈Γ               (2.2) 

We use the notation 

( ){ }
( ) ( ) ( ) ( ) ( ) ( )

0 0

1
1: 0 on ,

, d ,   and , d .

V u H u

u v u x v x x u v u x v x
ΓΩ Γ

= ∈ Ω = Γ

= = Γ∫ ∫
 

Let λ  and λ  be the smallest positive constants such that 

0

2 2 2 2,      .u u u uλ λ
Γ

≤ ∇ ≤ ∇                    (2.3) 

Firstly, we have the following existence and uniqueness results, it can be es-
tablished by adopting the arguments of [2] [31]. 

Theorem 2.1 Let ( ) ( )( )2
0 1,u u V H V∈ Ω ×



. Assume that 1 2,H H  and (2.2) 
hold. There exists a unique pair of functions ( ), tu y , which is a solution to the 
problem (1.1) in the class 

( )( ) ( )20, , ,    0, , ,tu L T V H u L T V∞ ∞∈ ∩ Ω ∈                 (2.4) 

( )( ) ( )( )2 2 2
00, , ,    , ; .t

ttu L T L y y L L∞ +∈ Ω ∈ Γ               (2.5) 

We introduce the modified energy functional 

( ) ( )( ) ( ) ( )

( ) ( ) ( )
0

2 2

2 0

2 2

1 1 11 d
2 2 2

1 1 , d ,
2 2

t
t

t

E t u g s s u g u t

u t q x y x t

ρ

ρρ
+

+

Γ

= + − ∇ + ∇
+

+ ∇ + Γ

∫

∫



     (2.6) 

where 

( ) ( ) ( ) ( ) ( ) 2

0
d .

t
g u t g t s u t u s s∇ = − ∇ −∇∫  

Clearly 

( ) ( ) ( ) ( )
0

2 2 2d 1 1 .
d 2 2t tE t u t g t u g u py
t Γ

′= − ∇ − ∇ + ∇ − ∫          (2.7) 

To state our main result, we introduce the following notations as in [32]. For 
every measurable set +⊂  , we define the probability measure ĝ  by 

( ) ( )1ˆ d .
1

g g s s
l

=
− ∫                        (2.8) 
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The flatness set and the flatness rate of g  are defined by 

( ) ( ){ }: 0 and 0g s g s g s+ ′= ∈ > =                    (2.9) 

and 

( ) ( )1ˆ d
1 g

g gg g s s
l

= =
− ∫                     (2.10) 

respectively. We denote 

( ) ( ) ( ) ( )1 d .
t

G t t g s s sγ γ γ
+∞−= ∫                     (2.11) 

Now, we are in a position to state our main result. 
Theorem 2.2 ([23]) Let ( ) ( )( )2

0 1,u u V H V∈ Ω ×


, Assume that (2.1)-(2.2) 

hold and 1
2g < . If ( ) ( ) ( )1 2

0
2

l l
Gγ

− −
< , then there exist positive constants  

C  and ν  such that 

( ) ( ) ,    0.E t C t tνγ −≤ ≥                    (2.12) 

3. Arbitrary Rate of Decay 

Now we define 

( )
0 0

21 1d d d d .
1 2t t tt u u u x u u x py uyρ

ρ Ω Ω Γ Γ
Φ = + ∇ ⋅∇ + Γ + Γ

+ ∫ ∫ ∫ ∫   (3.1) 

Using (1.1) and (3.1), we have 

( ) ( ) ( )

( )
0 0

2 22

2 0

2

1 d d
1

 d 2 d d .

t
t t

t t

t u u u u g t s u s s x

u u uy q x y

ρ

ρρ
+

+ Ω

Ω Γ Γ

′Φ = − ∇ + ∇ + ∇ − ∇
+

+ ∆ Γ + Γ − Γ

∫ ∫

∫ ∫ ∫
  (3.2) 

We use here the following identity due to [1], to give a better estimate for the  

term ( ) ( )
0

d d
t

u g t s u s s x
Ω
∇ − ∇∫ ∫ : 

( ) ( )

( )( ) ( ) ( ) ( ) ( )
0

22

0 0

d d

1 1 1d d .
2 2 2

t

t t

u g t s u s s x

g s s u g t s u s s g u t

Ω
∇ − ∇

= ∇ + − ∇ − ∇

∫ ∫

∫ ∫ 

  (3.3) 

From (2.1), (3.2) and (3.3), integration by parts and Young’s inequality, we 
derive for any 0 0δ > , 

( ) ( ) ( )

( ) ( ) ( )( )

( )
0 0

22 2
0 02

2

0

2 2

0

1 11
1 2

1 1 d
2 2
1 d .

t t

t

t

lt u u t u

g t s u s s g u t

y q x y

ρ

ρ
δ δ λ

ρ

δ

+

+

Γ Γ

+ ′Φ ≤ + + ∇ − − ∇ +  

+ − ∇ −

+ − Γ

∫

∫



      (3.4) 

As in [5], we have: 
Lemma 3.1 For ( )1

0u H∈ Ω , we have 
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( ) ( ) ( )( )( ) ( ) ( ) ( )
2

0
d d 1 .

t
g t s u t u s s x l g u tλ

Ω
− − ≤ − ∇∫ ∫        (3.5) 

Now we define the functional 

( ) ( ) ( ) ( )( )
0

1 d d .
1

t
t t tt u u u g t s u t u s s xρ

ρΩ

 
Ψ = ∆ − − − + 

∫ ∫      (3.6) 

It follows from (1.1) and (3.6) that 

( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )( )
0

2

0 0

0 0

2 20
20

0

0

0

1 2

d d d

 1 d d d

d
 d d

1

 d d

1 d d
1

 d d

t t
t t

t t

t
t

t

t
t

t
t t

t
t

t u g t s u t u s s x g s s u

g s s u t g t s u t u s s x

g s s
g t s u t u s s x u

u g t s u t u s s x

u u g t s u t u s s x

y g t s u t u s s

I I

ρ

ρ

ρ

ρ

ρ

Ω

Ω

+

+Ω

Ω

Ω

Γ

′ ′Ψ = ∆ − − − ∇

+ − ∇ ⋅ − ∇ −∇

+ − ∇ −∇ −
+

+ ∇ − ∇ −∇

′− − −
+

− − − Γ

= − +

∫ ∫ ∫

∫ ∫ ∫

∫
∫ ∫

∫ ∫

∫ ∫

∫ ∫

( )( ) 3 4 5 6 7 80
1 d .

t
g s s I I I I I I− + − + − −∫

  (3.7) 

For any 0δ > , we have 

( ) ( ) ( )( ) ( )2
1

0
.

4t
g

I u t g s u tδ λ
δ

′≤ ∇ − ∇                 (3.8) 

For all measurable sets   and   such that \+=   , 3I , 4I  and 6I  
can be estimated as in [1]: 

( ) ( ) ( )

( ) ( ) ( ) ( )

22
3 1

1

22
1

1 d d
4

3 1ˆ       1 d ,    0,
2 2

t

t

lI u g t s u t u s s x

l g u g t s u s s

δ
δ

δ

Ω

−
≤ ∇ + − ∇ −∇

+ − ∇ + − ∇ >

∫ ∫

∫






     (3.9) 

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

2
4

2

2
2 2

11 1 d d

ˆ       1 1 d d ,    0,

t

t

I l g t s u t u s s x

l g g t s u t u s s x

δ

δ δ

Ω

Ω

 
≤ + − − ∇ −∇ 
 

+ + − − ∇ −∇ >

∫ ∫

∫ ∫






(3.10) 

( ) ( ) ( )

( ) ( ) ( )

22
6 1

1

22
1

1 d d
4

3 1ˆ       d ,      0,
2 2

t

t

t

t

I u g t s u t u s s x

g u g t s u s s

δ
δ

δ

Ω
≤ ∇ + − ∇ −∇

+ ∇ + − ∇ >

∫ ∫

∫






     (3.11) 

where ĝ  is defined in (2.8). For any 0δ > , 

( ) ( ) ( )( ) ( )2
7

0
.

4t
g

I u t g s u tδ λ
δ

′≤ ∇ − ∇                 (3.12) 

For 8I , for 3 4, 0δ δ > , we use a different estimate as 
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( ) ( ) ( )( )( )
( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( )

0

0

0

0

0

8

22

2

3

22
3

4
2

4

d d

d d

11 d d
2 2

1 ˆ
4

1ˆ 
4

1 d .

t

t

t

t

t

t

t

t

t

I y g t s u t u s s

y g t s u t u s s

l
y g t s u t u s s x

g y

g u y

l g t s u s s

λ

δ

δ λ
δ

δ λ

Γ

Γ

Γ Ω

Γ

Γ

= − − Γ

+ − − Γ

−
≤ + − ∇ −∇

+

+ ∇ +

+ − − ∇

∫ ∫

∫ ∫

∫ ∫

∫



















       (3.13) 

Taking into account these estimates in (3.6), let t∗  be a number such that  

( )
0

d
t
g s s g∗

∗=∫ , we obtain that 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( )( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
1 2

1 3

22 2

1 2

2
2

4

2 1
3 ˆ ˆ1 1
2

1 1
1 d d

4 2
3 0

4
ˆ1 1 d d

1
 1

2

t

t

t

t t
g gt u u

g l g g

gu l g t s u t u s s x

g g u t

l g g t s u t u s s x

g l g t s

ρ

ρ
δ

ρ

δ δ λ δ

δ λ
δ δ

λ
δ

δ

δ λ

+∗ ∗
+

∗

∗
Ω

Ω

∗

 ′Ψ ≤ − + ∇ −  + 
  + − + − + +  

  
 − +

× ∇ − + + − ∇ −∇ 
 

′− ∇

+ + − − ∇ −∇

− + + − − ∇ 
 

∫ ∫

∫ ∫

∫















 



( )

( )
0

2

2

3 4

ˆ1 1 .
2 4 4 t

u s

g
y

δ δ Γ

 
+ + + 
 



(3.14) 

Let 

( ) ( ) ( ) 2

0
d d ,

t
I t G t s u s s xγΩ

= − ∇∫ ∫                    (3.15) 

and ( )G tγ  is given in (2.11), we define the following functional 

( ) ( ) ( ) ( ) ( ) ,F t ME t t t I tε= + Φ + Ψ +                  (3.16) 

then we know from [1] that 

( ) ( ) ( ) ( ) ( )

( ) ( )

22

0

2

0

0 d

 d .

t

t

I t G u t G t s u s s

g t s u s s

γ γη′ ≤ ∇ − − ∇

− − ∇

∫

∫
           (3.17) 

At the same time, we have the following lemmas. 
Lemma 3.2 For M  large enough, there exist two positive constants 1ρ  and 

2ρ  such that 
( ) ( )( ) ( ) ( ) ( )( )1 2 .E t I t F t E t I tρ ρ+ ≤ ≤ +                (3.18) 

Proof. See, e.g. Liu [5]. 
Proof of Theorem 2.2 By using (2.7), (3.4), (3.13)-(3.16), a series of com- 



Z. Y. Ma 
 

929 

putations yields, for t t∗≥ , 

( ) ( ) ( )( ) ( )

( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2

2

2
1 0

2
2

2
1 3 0

2

1 2

3 0
2 4 1 1

 1
2 2

ˆ 1 1 d d

3 1ˆ ˆ 1 1 0
2 2

1 1
 1

4 2

t

t

t

gMF t g g u t u t

gM u t

l g g t s u t u s s x

lg l g g eG u

gl

ρ

ρ

γ

ελ
δ ρ ρ

δ ε δ

δ

δ δ λ δ ε δ λ

δ λ
δ δ

+∗
+

∗

Ω

∗

∗

  ′ ′≤ − ∇ − −   + +   
 − + − − + ∇  

+ + − − ∇ −∇

 +    + − + − + + + − − ∇    
    

 − +
+ − + +

∫ ∫



 






 

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )
00

2

2 2
40

22
0

0 3 4

d d

1
 d 1 d d

2 2 2
ˆ1 1 d .

2 4 4

t

t

t

t

g t s u t u s s x

gg t s u s s g u t l g t s u s s x

g
t q x y Mp y

ε ε δ λ

εη ε
δ δ δ

Ω

∗

ΓΓ


− ∇ −∇ 

 
−  − − − ∇ − ∇ + − − ∇      

  
− − Γ − − − + +  

   

∫ ∫

∫ ∫

∫













(3.19) 

For n∈ , as in [32] we introduce the sets 

( ) ( ){ }: 0 .n s ng s g s+ ′= ∈ + ≤                   (3.20) 

It is easy to see that 

{ }\ ,n g g
n

+= ∪



                        (3.21) 

where g  is given in (2.9) and g  is the null set where g′  is not defined. 
Additionally, we denote \n n

+=   , then 

( ) ( )ˆ ˆlim ,n gn
g g

→∞
=                         (3.22) 

since 1n n+ ⊂   for all n  and n g gn = ∪


   . Then, we take n=   
and n=   in (3.18), it follows that 

( ) ( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( )

2

2

2
1 0

2
4 0

1 3

2
0

3 0
2 4 1 1

 1
2 2

1
 1 d

2

3 ˆ ˆ 1 1 0
2

1      1
2

1
 1

t

t

t

n n

gMF t g g u t u t

gM u t

g l g t s u s s

g l g g eG

l u

l

ρ

ρ

γ

ελ
δ ρ ρ

δ ε δ

ε
δ λ

δ δ λ δ

σ σ ε εδ λ

+∗
+

∗

∗

∗

  ′ ′≤ − ∇ − −   + +   

 − + − − + ∇  
+ − − − − − − ∇ 

 

  + − + − + + +  
 

+ − + − + ∇    

−
+ −

∫











 

( ) ( ) ( )

( )( ) ( ) ( )( )

( ) ( ) ( ) ( )
00

22

1 2

2

22
0

0 3 4

1
d d

4 2

ˆ 1 1
2

ˆ1 1 d ,
2 4 4

t

n

n
t

g g t s u t u s s x

l g g u t

g
t I t q x y Mp y

δ λ
δ δ

ε δ

εη ε
δ δ δ

∗
Ω

ΓΓ

 +
+ + − ∇ −∇ 

 

 − − + − ∇ 
 

  
− − Γ − − − + +      

∫ ∫

∫












(3.23) 
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for some 0 1δ< < . Since ( ) 1ˆ
2g gg= <  , we can choose 2,ε δ  small enough  

and ,n t∗  large enough such that 

( ) ( ) ( )2 ˆ1 1 0
2 nl gε δ− + − ≥                    (3.24) 

and 

( ) ( ) ( )3 1ˆ1 1 0
2 2n

ll g g σε∗
+

− − − <                 (3.25) 

with ( ) ( )
( )

3 1 1
2 1

l g
g l

σ ∗

∗

− −
=

+
. Note that for t∗  large enough. Furthermore, we  

require that 

( ) ( ) ( )

( ) ( ) )

4

1 3 0

1 1 11 1
2 0 2

ˆ                                                1 .n

g ll
G

g g
γ

ε δ λ σ ε

δ δ λ εδ λ δ

∗

∗

+ − ++ − ≤ ≤ −


− − − − +



 




   (3.26) 

Combining (3.24) and (3.25), we obtain 

( ) ( ) ( ) ( ) ( )1 3 0
3 1ˆ ˆ1 1 0 0
2 2n n

lg l g g eGγδ δ λ δ ε εδ λ∗
+ − + − + + + − + < 

 
    (3.27) 

Choose our constants properly so that: 

( )3 0 ,
2 4 4
M Mg λ

δ
− ≥                        (3.28) 

( )
0

0 3 4

ˆ1 1 0,
2 4 4

ng
Mp ε

δ δ δ
 

− − + + ≥ 
 


                 (3.29) 

( ) 2

1 2

1 11 0
4 2 4

g Ml
n

δ λ
δ δ

∗ − +
− + + − < 

 



                 (3.30) 

together with (3.22) yield 

( ) ( ) ( ) ( )1 ,    .F t C E t t I t t tη ∗′ ≤ − − ≥                    (3.31) 

As ( )tη  is decreasing, we have ( ) ( )0tη η≤  for all t t∗≥ . Then (3.30) be-
comes 

( ) ( ) ( ) ( ) ( ) ( )1 ,    .
0

CF t t E t t I t t tη η
η ∗′ ≤ − − ≥  

Since ( )F t  is equipped with ( ) ( )E t I t+ , we get 

( ) ( ) ( )2 ,F t C t F tη′ ≤ −                    (3.32) 

integrating (3.31) over [ ],t t∗  yields 

( )
( )

( )
2 d

,    .

t
C s s

tF t e F t t t
η
∗

−

∗ ∗≤ ≥
∫

 

Then using the left hand side inequality in (3.17), we get 

( ) ( )( )
( )

( )
2 d

1 ,    .

t
C s s

tE t I t e F t t t
η

ρ ∗

−

∗ ∗+ ≤ ≥
∫
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By virtue of the continuity and boundedness of ( )E t  in the interval [ ]0, t∗ , 
we conclude that 

( ) ( ) ,    0E t C t tνγ −≤ ≥                       (3.33) 

for some positive constants C  and ν .  
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Abstract 
The starting point in this note is ( )f R  modified gravity in a cosmological 
setting. We assume a spatially flat universe to describe late-time cosmology 
and the perfect-fluid equation of state p ωρ=  to model the hypothesized 

dark energy. Given that on a cosmological scale, ( )f R  modified gravity 
must remain close to Einstein gravity to be consistent with observation, it was 
concluded that either (1) Einstein’s cosmological constant was the only ac-
ceptable model for the accelerated expansion, or that (2) the equation of state 
for dark energy was far more complicated than the perfect-fluid model and 
might even exclude a constant ω . 
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1. Introduction 

The discovery that our universe is undergoing an accelerated expansion [1] [2] 
has led to a renewed interest in modified theories of gravity. One of the most 
important of these, ( )f R  modified gravity, replaces the Ricci scalar R  in the 
Einstein-Hilbert action 

4
EH dS g R x= −∫  

by a nonlinear function ( )f R : 

( ) ( ) 4d .f RS g f R x= −∫  

(For a review, see Refs. [3] [4] [5].) 
An alternative to the modified gravity model is the hypothesis that the accele-

ration is due to a negative pressure dark energy, implying that 0a >  in the 
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Friedmann equation 

( )
( ) ( )4π 3 .

3
a t

p
a t

ρ= − +


 

(We are using units in which 1.c G= = ) In the equation of state p ωρ= , 
0a >  corresponds to the range of values 1 3ω < − , referred to as quintessence 

dark energy. The case 1ω = −  is equivalent to assuming Einstein’s cosmological 
constant. It has been forcefully argued by Bousso [6] that the cosmological con-
stant is the best model for dark energy. In this note, we go a step further and 
propose that ( )f R  modified gravity implies that 1ω = −  is the only allowed 
value in the equation of state p ωρ= . 

2. The Solution 

For convenience of notation, we start with the spherically symmetric line ele-
ment 

( )

( ) ( )
2

22 2 2 2 2 2dd e d d sin d .
1

r rs t r
b r r

θ θ φΦ= − + + +
−

          (1) 

It was shown by Lobo [7] that under the assumption that ( ) 0r′Φ ≡ , the 
Einstein field equations are 

( ) ( ) ( )
2 ,

b r
r F r

r
ρ

′
=                         (2) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 1 ,

2r

b r rb r b r b r
p r F r F r F r

rr r
′ −  

′ ′′= − + − − 
 

      (3) 

and 

( ) ( ) ( ) ( ) ( ) ( )31 ,
2t

F r b r F r
p r b r rb r

r r r
′  

′= − − + −    
 

           (4) 

where d
d

fF
R

= . The curvature scalar R  is given by 

( ) ( )
2

2
.

b r
R r

r
′

=                        (5) 

For our purposes, a more convenient form of the line element is 
( ) ( ) ( )2 2 2 2 2 2 2d e d e d d sin d .r rs t r rν λ θ θ φ= − + + +           (6) 

Here the Einstein field equations can be written [8] 

2 2

1 18π e ,
r r r

λ λρ − ′ = − + 
 

                     (7) 

2 2

1 18π erp
rr r

λ ν− ′ = + − 
 

                     (8) 

and 

( ) ( )21 1 1 18π e .
2 2 2tp

r
λ ν ν λ ν ν λ−  ′ ′′ ′ ′ ′ ′= + − + −  

          (9) 
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Then if 0ν ′ ≡ , Lobo’s equations become 

( ) ( ) 2 2

1 18π e ,r F r
r r r

λ λρ − ′  = − +    
             (10) 

( ) ( ) ( ) ( )2 2

1 18π e e e
2r

F r
p r F r F r

r r
λ λ λλ− − −′  ′ ′′= − + −  

      (11) 

and 

( ) ( ) ( )
8π e e .

2t

F r F r
p r

r r
λ λλ− −′

′= − −                  (12) 

Now substituting into the equation of state p ωρ= , we obtain 

( )

( ) ( ) ( )

2 2

2 2

1 1e

e 1 e e .
2

F r
r r r

F r
F r F r

r r

λ

λ
λ λ

λω

λ

−

−
− −

′  − +    
′ 

′ ′′= − + − 
 

          (13) 

This equation can be rewritten as follows: 

( ) ( ) ( ) ( ) ( )2

1 11 e 1 0.
2

F r F r F r
r r

λλλ ω ω
′ ′′ ′ ′− + + + − =  

      (14) 

Since we are dealing with a cosmological setting, we may assume the FLRW 
model, so that 0ν ≡ : 

( ) ( )
2

2 2 2 2 2 2 2
2

dd d d sin d .
1

rs t a t r
kr

θ θ φ
 

= − + + + − 
       (15) 

Observe that we now have 

( )2
2

1e
1

a t
kr

λ =
−

                        (16) 

and 

( ) ( ) 12 2ln ln 1 ,a t krλ
−

= + −                   (17) 

so that 

2

2 ,
1

kr
kr

λ′ =
−

                         (18) 

which is independent of time. The significance of the special value 1ω = −  in 
Equation (14) now becomes apparent: the entire equation has become time in-
dependent, i.e., 

( ) 2 2

2 0.
1 1

kr kF r F F
kr kr

′′ ′− − =
− −

                 (19) 

(For later reference, observe that if 0k = , then ( ) 1 2F r c c r= + .) The solu-
tion of Equation (19) is 

( ) ( )
( )

2 2
1

2 2
2

cos 2ln 1

sin 2ln 1 , 0.

F r c k r k r

c k r k r k

 = + −  
 + + − ≠  

          (20) 

This solution can also be written 
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( ) 2 2sin 2ln( 1 ,F r c k r k r φ = + − +  
               (21) 

where 2 2
1 2c c c= +  and ( )1

1 2tan c cφ −= . 

3. Staying Close to Einstein Gravity 

In a cosmological setting, ( )f R  modified gravity must remain close to Eins-
tein gravity to be consistent with observation. In this section, we wish to show 
that it is possible, at least in principle, to choose the arbitrary constants in Equa-
tion (21) so that this goal is achieved. 

The sinusoidal solution (21) has a large period and a small slope, especially for 
large r . To confirm this statement, observe that the function 

( ) ( ) ( )2 2sin 2ln 1 sin lng r k r k r r = + − ∼  
          (22) 

for large r . So both ( )g r′  and ( )g r′′  approach zero as r →∞ . As a result, 
( )sin lnr  has the approximate form ar b+  on any interval that is not exces-

sively large, and since the slope a  is small in absolute value, we have 

, 1 1.ar b b b+ ≈ − ≤ ≤                       (23) 

We can now show that it is possible in principle to choose the arbitrary con-
stants c  and φ  in such a way that ( )F r  remains close to unity and both 
F ′  and F ′′  close to zero on one complete period. 

Let 0φ = , so that 

( ) ( )2 2sin 2ln 1 .F r c k r k r = + −  
             (24) 

First observe that ( ) 0F r =  whenever 

( )2 22ln 1k r k r nπ+ − =  

for all integers n . Solving for r , we get 

1 πosh .
2

nr c
k

=  

Now choose a particular n  for which ( ) 0F r ≥  on the interval [ ]1 2,r r , 
where 

( )
1 2

1 π1 π 1cosh and cosh .
2 2

nnr r
k k

+
= =              (25) 

Next, subdivide the interval [ ]1 2,r r  into i  subintervals iI  each of which is 
small enough so that b  remains in a narrow range. Then on each separate 
subinterval, construct a tangent line i i ia r b b+ ≈  near the midpoint, thereby 
ensuring that 0ib ≠ . (See Figure 1) So we may now choose 1i ic b=  for the 
arbitrary constant c . We then repeat the procedure on the interval [ ]2 2, πr r + , 
so that ( ) 1F r ≈  on the entire period [ ]1 2, πr r + . Since both F ′  and F ′′  are 
close to zero [from Equation (22)], the periodicity of ( )F r  guarantees that our 
( )f R  modified gravity is close to Einstein gravity for all r . 
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Figure 1. The line segment i ia r b+  on the interval iI  (not drawn to scale). 

4. The Cosmological Constant 

Suppose we return to Equation (14) and substitute Equations (16)-(18). Then we 
obtain 

( )2
2 2 2 2

2 1 1 1 0.
1 1 1

kr kF F F a t
kr kr r kr

ωω +  ′′ ′− + + − =  − − −  
     (26) 

While we normally assume that 0k ≠ , it is noted in Ref. [3] that 0k = , 
representing a spatially flat universe, is not a dramatic departure from generality 
when it comes to late-time cosmology. 

With 0k = , the time-dependent solution is 

( ) ( )

( )

2 2
1

2 2
2

1 1exp ln 4 4 4 5
2 2

1 1           exp ln 4 4 4 5 .
2 2

F r c r a a

c r a a

ω ω

ω ω

  = − − − + −    
  + − − + +    

     (27) 

In the special case 1ω = − , ( ) 1 2F r c c r= + , in agreement with Equation (19) 
with 0k = . 

In the previous section, we dealt with a time-independent solution due to the 
assumption 1ω = − . This allowed our ( )f R  modified model to remain close 
to Einstein gravity at least in principle. By contrast, solution (27) is time depen-
dent. So if 1ω ≠ − , we are dealing with two possibilities: 

(a) if 1ω > − , there is no real solution; 
(b) if 1ω < − , then the ( )f R  model is far removed from Einstein gravity, 

i.e., if ( )2a t  increases indefinitely, then the first term in solution (27) goes to 
zero, while the second term gets large. So ( )F r  cannot remain close to unity. 

We conclude that 1ω = −  in the equation of state p ωρ=  is the only al-
lowed value. Since this note deals with rather reasonable assumptions, the only 
plausible objection to this conclusion is that the equation of state for dark energy 
is much more complicated than the perfect-fluid equation of state p ωρ= . This 
possibility was also raised by Lobo [5], who stated that a mixture of various in-
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teracting non-ideal fluids may be necessary. This could imply that dark energy is 
dynamic in nature, thereby forcing us to exclude models with constant ω , in-
cluding the cosmological constant. 

5. Conclusions 

The starting point in this note is ( )f R  modified gravity in a cosmological set-
ting. We also assume a spatially flat universe to describe late-time cosmology [3]; 
thus 0k =  in the FLRW model. Our key assumption is the perfect-fluid equa-
tion of state p ωρ=  to describe the hypothesized dark energy. While 

1 3ω < −  is sufficient to yield an accelerated expansion, it is concluded that 
1ω = −  is the only value which allows our solution to remain close enough to 

Einstein gravity to be consistent with observation. 
Weighing the above assumptions, we conclude that either (1) Einstein’s cos-

mological constant is the only acceptable model for dark energy, or that (2) the 
equation of state is far more complicated than the above perfect-fluid equation 
and may even exclude a constant ω . 
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Abstract 
We present a class of non-convective classical solutions for the multidimen-
sional incompressible Navier-Stokes equation. We validate such class as a 
representative for solutions of the equation in bounded and unbounded do-
mains by investigating the compatibility condition on the boundary, the 
smoothness of the solution inside the domain and the boundedness of the 
energy. Eventually, we show that this solution is indeed the unique classical 
solution for the problem given some appropriate and convenient assumptions 
on the data. 
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1. Introduction 

In this article, a well known model is to be investigated that represents the flow 
of an incompressible fluid in both bounded and unbounded domains of N . 
This model is commonly called the Navier-Stokes equation following the French 
engineer Navier who was the first to propose this model. This model was inves-
tigated later by Poisson and de Saint Venant. However, Stokes was the one who 
justified the model based on the principles of continuum mechanics. By advent 
of 1930, the interest in this model increased significantly and outstanding results 
were obtained by Leray, Hopf, Ladyzhenskaya and Finn. 

This equation describes the flow of what is so called the Newtonian fluid. 
These are the fluids that exhibit shearing stress due to the presence of frictional 
forces. Frictional forces within fluids are consequences of its viscosity. Also, the 
gradient of the velocity represents a measure for the relative motion of the fluid’s 
particles. Moreover, deformation of fluids is commonly associated with internal 
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and external body forces; the internal force is what we refer to as the pressure of 
the fluid. The derivation of the Navier-Stokes equation is a natural application of 
Newton’s second law of motion, the balance of momentum and the mass con-
servation, which eventually leads to the definition of the Cauchy stress tensor. In 
Newtonian fluids, this stress tensor is a function in the pressure, the viscosity 
and the gradient of the velocity. For a convenient physical background about the 
basics of continuum mechanics and how we derive the Navier-Stokes equation 
we propose [1] [2]. Also a very interesting work from a physical point of view 
can be found in [3] [4]. In particular, the work of Kambe in [4] was the source of 
inspiration for the ideas in this article. 

This model poses a serious challenge when it comes to proving the existence 
and the smoothness of its solution. This problem was perfectly addressed by La-
dyzhenskaya in two dimensional spaces among many other issues in higher di-
mensional spaces [5]. However, a decisive answer in the three-dimensional space 
or higher remains unavailable. It is almost impossible to enlist all the results ob-
tained for this equation. Therefore, we suggest for the interested reader to review 
the monographs [5] [6] [7] and the references within for much more details. 

Recently, the interest in this equation is not fading at all. There are persistent 
efforts to clarify the properties of the solution, especially its smoothness. Among 
many respectful results, we mention the outstanding analysis by Tao in [8], the 
work of Constantin in [9] [10] [11]. A very interesting result for partial regulari-
ty of suitable weak solutions was obtained by Caffarelli in [12]. 

In this article the idea is simple. A class of possible solutions is proposed and 
then it is proved that it indeed represents the unique classical solution of the 
problem. Most of the results are obtained by considering standard theories of 
partial differential equations. Some of the results in the monograph [7] are also 
used repeatedly. In the next section a statement of the problem is introduced 
along with some definitions, notations and employed functional spaces. After- 
wards, the proofs of the main results are established. 

2. Statement of the Problem 

The spatial domain is Ω  which is either a bounded region in N  or the 
whole of N  and this point shall be specified explicitly. For the sake of con-
ciseness, the notation tΩ  is used to denote ( ) ( ){ }, : , 0,t t tΩ = ∈Ω ∈ ∞x x . 
Clearly, such notation should not be taken to imply a moving boundary. The 
main model equation is in the form 

( )

( ) ( ) ( ) ( )
( ) ( )

0 0 0

*
1

in ,
in ,

,0 and in ,

, , on ,

0 in

t t

t

N t

t

p

x x

t t

µ

−

 + ⋅∇ = ∆ −∇ + Ω


= ∇× Ω
 = = ∇× Ω


= ∂Ω
∇ ⋅ = ∇ ⋅ = Ω

v v v v f
v

v x v x v

v x v x

v

ω
ω

ω

          (1) 

where the last equation in the above model is what many authors commonly re-
fer to as the incompressibility condition or the solenoidal condition. The first 
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term in the first equation is the acceleration of the fluid’s flow in time, the 
second is the convective term that represents the acceleration of the flow in 
space, the third represents the diffusion scaled by the kinematic viscosity con-
stant µ , the fourth is the pressure, and the last one represents the total of the 
external body forces. The initial profile is denoted by 0v  and the boundary da-
tum is denoted by *v . The solution v  is the vector field representing the ve-
locity of the flow in each direction, and its rotation ω  is the vorticity. Note that 

0∇ ⋅ =ω  in tΩ  by compatibility. 
The well known Lebesgue spaces ( )qL Ω  will be used repeatedly to represent 

the functions with bounded mean of order q. The Sobolev space ( )mH Ω  is 
used to represent functions with bounded derivatives such that for a vector field 

{ }1, , Nv v=v   one has ( )2
iv Lα∂ ∈ Ω  for every 1, , mα =   and 1, ,i N=  . 

This motivates the usage of the space ( )mV Ω , which is a well known space of 
functions in the theory of incompressible fluids as a representative for diver-
gence free (solenoidal) bounded vector fields such that  

( ){ }( ) : 0 in m mV HΩ = ∈ Ω ∇⋅ = Ωv v . 
By laws of classical mechanics, the energy generated by a moving object is 

proportional to the square of its velocity. Hence, the energy ( )E t  generated by 
the flow v  is defined as follows 

( ) ( ) 2
, d .E t t

Ω
= ∫ v x x                         (2) 

Recall that the above integral represents the norm of v  in the Lebesgue 
space ( )2L Ω . The smoothness of ( )0v x  is such that 

( ) ( ) ( )2 2
0 .NV +∈ Ω Ωv x C                       (3) 

The smoothness of the boundary datum ( )*
1,N t−v x  is such that 

( ) ( ) ** * *
1, ( ) and , ~ for any 1.K

N tt t t K∞ −
− ∈ ∂Ω ⋅ >Cv x v  (4) 

Finally, the forcing term f  is smooth in space and time such that 

( ) [ ] ( ) ( )( ) ( )1 1 3, 0, ; and , ~ for any 0.Kt H t t K−∈ ∞ Ω Ω ⋅ >f x fC C  (5) 

Note that the intersections in the above conditions are not really required in 
the case of bounded domain since boundedness of the domain and continuity of 
the functions are enough to imply boundedness in the sense of the mean. How-
ever, these requirements are of significant importance in the case of unbounded 
domain as will be shown later. 

The target is to define a class of possible solutions to Model Equation (1) from 
which v , ω  and p  can be concluded. Once v  is obtained, then p  can 
easily be recovered from the main model. The validity of this solution as a mea-
ningful physical solution will be investigated when inserted in the main model. 
A meaningful solution is a unique and smooth solution that vanishes as t →∞ , 
and in the case of unbounded domain it vanishes as →∞x  as well. 

Remark. The curl operator or the rotation of a vector field has a physical 
meaning only in three dimensional space. However, it will be used in N  for 
the sake of generality. Most of the results depend on the curl operator in the sense 
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of a differential operator without direct exposure to its definition. Note that the 
main interest is to find the velocity, which means that any use of the rotation, in 
spite of its significance in this work, is nothing more than a transient step. It can 
always be assumed that the space is three dimensional when needed, and a genera-
lization becomes possible by reverting back to the results of the velocity. In partic-
ular, some of the vorticity ideas introduced in [7] are adopted in this study. 

3. Main Results 

In this section a class of possible solutions is proposed and the insertion of these 
solutions in the main model is investigated to check where they will lead to. This 
is initiated by the statement of the following claim. 

Claim 1. The unique solution of Model Equation (1) is in the form 
( ) ( ) ( ), ,t t tψ=v x x u  where : Nψ × →    is a scalar field and 

( ) ( )( )1 , , Nu t u t=u   is a vector field such that, at least, ( ) ( )2, ttψ ∈ ΩCx  
and ( )∈u C . 

An important question in the theory of Navier-Stokes equation is the ability to 
verify the compatibility condition on the boundary with minimum restrictions 
on the flux passing through the boundary especially if ∂Ω  is divided into sever-
al parts ([6], p. 4-8). This condition is a natural consequence of the incompressi-
bility of the flow. Hence, it takes the form 

( ) 1d 0,N−∂Ω
⋅ =∫ v n x

                      (6) 

where n  is the outward unit vector normal to ∂Ω . This motivates the intro-
duction of the following lemma. 

Lemma 1 (Tangential flow). Let Ω  be an arbitrary domain, 
( ), : Ntψ × →x     be any scalar field such that ( )1ψ ∈ ΩC  and let 
( ) ( ) ( )( )1 , , Nt u t u t=u   be any vector field independent of x . The 

Compatibility Condition (6) is satisfied for every divergence free vector field 
( ), : N Nt × →v x     in the form ( ) ( ), t tψ=v x u . In particular, on every part 

of ∂Ω , v  and its rotation ω  are tangents to ∂Ω  such that  
0⋅ = ⋅ =v n n 

ω . 
Proof. Given that ( ) ( ), t tψ=v x u  is divergence free such that 0∇ ⋅ =v  

leads to 

1
0.

N

i
i i

u
x
ψ

=

∂
=

∂∑                          (7) 

Identity (7) can be used to deduce that ( ) ( )⋅∇ = ∇ =v v v v 0 . Upon dot 
product by v  one obtains 

( ) ( ) ( )2 2T 1 10 ,
2 2

= ∇ ⋅ = ∇ ⋅ = ⋅∇ = ∇ ⋅v v v v v v v v v v           (8) 

and when integrated over Ω  for any 0t >  provides 

( ) ( )2 2
10 d d ,N−Ω ∂Ω

= ∇ ⋅ = ⋅∫ ∫v v x v v n x                   (9) 

which is a true identity for every arbitrary Ω , ψ  and u  and for every 0t > . 
On the other hand, given that ( ) 0⋅∇ =v v , one can use the identity 



W. S. Khedr 
 

943 

( )21 ,
2
∇ = ⋅∇ + ×∇× = ×v v v v v v ω                  (10) 

where = ∇× vω , which upon dot product by ω  provides 

( )2 0,∇ ⋅ =v ω  

where we used also that 0∇ ⋅ =ω . Integrate over Ω  for any 0t >  to get 

( ) ( )2 2
10 d d ,N −Ω ∂Ω

= ∇ ⋅ = ⋅∫ ∫
v x v n xωω                (11) 

which is true for arbitrary Ω , ψ  and u . Now, since = 0∇⋅ v  one also has 

( ) ( ) 10 d d .N−Ω ∂Ω
= ∇ ⋅ = ⋅∫ ∫v x v n x

                (12) 

Identity (10) implies that 2∇ v  is orthogonal to the space spanned by v  
and ω . Combine Identities (9), (11) and (12), and exclude the cases 1=v  and 

0=v  by the arbitrariness of the choice to deduce that it is necessary that 
0⋅ =v n ; that is to say v  is tangential to every part of ∂Ω . It can also be de-

duced that either =v ω  on every part of ∂Ω  (this actually means 0= =v ω  
on ∂Ω ), or 0⋅ =nω  on every part of ∂Ω . Both cases imply that 0⋅ =nω  
on every part of ∂Ω . Hence, both v  and ω  are tangential to the boundary. 

Remark. As pointed out, the question of verifying the Compatibility Condi-
tion (6) on the boundary of Ω  is an important open question in the mathe-
matical theory of Navier-Stokes equation. Some results were obtained to justify 
the validity of such compatibility under certain restrictions on the flux of the 
flow in terms of the viscosity of the fluid, for details on this issue refer to [6]. In 
the present case, the compatibility is naturally achieved given, of course, that the 
solution of Model Equation (1) is indeed in the form proposed in Claim 1. This 
shall be verified by the statements of the following theorems. 

Theorem 2 (Bounded Domain). Let NΩ ⊂   be a bounded domain with 
sufficiently smooth boundaries ∂Ω  and let ( )0,tΩ = Ω× ∞ . Suppose ( )0v x , 

( )*
1,N t−v x  and ( ), tf x  satisfy Conditions (3), (4) and (5) respectively. If 

( ), tv x  is in the form proposed in Claim 1, then Model Equation (1) has a clas-
sical solution ( ), , pv ω  with bounded energy ( )E t  such that 
( ) ( ), tt ∞∈ Ωv x C , ( ) ( ), tt ∞∈ Ωx Cω  and ( ) [ ] ( )( )1 3, 0, ;p t C C∈ ∞ Ωx . In 

particular, the exact solution is given by solving the following system 

( ) ( )
( ) ( )
( ) ( ) ( )

*
1

*
1

0 0

in ,

, ,
on ,

, ,

, 0 in ,

0 in

t

t

N
t

N

t

p

t t

t t

x

µ

−

−

 = ∆ +∇× 
 ∆ = −∇× Ω

∆ = ∇ ⋅ 
 =  ∂Ω = ∇× 
 = = ∇× Ω
∇ ⋅ = ∇ ⋅ = Ω

f
v

f

v x v x

x v x

x x v

v

ω ω
ω

ω

ω ω

ω

             (13) 

where p∇  can be defined uniquely in terms of the values of v  and f  on 
the boundary. Moreover, if ( )t

∞∈ Ωf C  then ( )tp C∞∈ Ω . 
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Proof. The proof is quite simple and it depends mostly on classical results and 
the standard theory of linear parabolic and elliptic equations of second order. If 

( ) ( ), t tψ=v x u , then by virtue of Identity (7) one has ( ) 0⋅∇ =v v . Hence, the 
main equation takes the form 

.t pµ= ∆ −∇ +v v f                      (14) 

Apply the divergence operator to get 

,p∆ = ∇ ⋅ f                          (15) 

where the incompressibility condition 0∇ ⋅ =v  is used. By the standard theory 
of elliptic equations, if f  satisfies Condition (5), then [ ] ( )( )1 30, ;p C C∈ ∞ Ω . 
However, if ( )t

∞∈ Ωf C , then p  is actually ( )tC∞ Ω , for details on such 
equation see ([13], pp. 326-343). This concludes one part of System (13), how-
ever, a further discussion on a unique definition of p  will be introduced at the 
end of this proof. 

Now, revert to Equation (14) and apply the curl operator to get 

,t µ= ∆ +∇× fω ω                         (16) 

which is the first equation in System (13). Finally, given the incompressibility of 
v  and applying a simple vector identity lead to the third equation in System (13) 
that is 

.−∆ = ∇×v ω                            (17) 

The fundamental solution ω  to Equation (16) with initial profile 0ω  and 
force ∇× f  is given formally by 

( ) ( ) ( )

( )( ) ( ) ( )

2

2

42 0

42
0

, 4π e d

4π e , d d .

N
t

Nt t s

t t

t s s s

µ

µ

µ

µ

−
−−

Ω

−
−− −

Ω

= ∇×

+ − ∇×

∫

∫ ∫

x y

x y

x v y y

f y y

ω
  (18) 

As explained in ([14], Chapter 7), because of the smoothing property of the 
Gaussian kernel, it is enough to have a contentious data under the integral sign 
to guarantee that ( )t

∞∈ ΩCω , which is what has been already assumed. Given 
the assumptions on the growth of f  in time and the form of Formula (18), the 
solution 0→ω  as t →∞ . Moreover, the continuity of the data, the clear de-
cay in time and the assumed boundedness of Ω  imply that C<ω  in tΩ , 
which implies actually that ( )2L∈ Ωω  for every 0t > . Uniqueness of ω  as 
per Expression (18) is not clear unless we insert the boundary datum *∇× v  ex-
plicitly in Expression (18). This can be done by introducing the auxiliary variable 

* =  - ∇×w v ω  for which one obtains a homogeneous heat equation. Anyhow, 
the presence of any form of boundary conditions guarantees the uniqueness of 
ω.  Moreover, since ω  is actually a derivative of ,v  then it suffices to show 
that v  is unique, which is our main concern, to conclude the uniqueness of ω.  

Now, go back to Equation (17). By virtue of the results obtained above for ω  
and the standard theory of elliptic equations one directly concludes that  

( )t
∞∈ Ωv C , for more details see ([13], pp. 326-343). Such regularity, the boun-

dedness of Ω  and the global decay of ω  in time imply that v  is bounded in 
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( )2L Ω  for every 0t > , which in turn implies the boundedness of the energy of 
the flow ( )E t  as defined by Expression (2). Since ( )2L∈ Ωω , then ([7], Propo-
sition 2.16]) can be used to conclude that a formal solution for Equation (17) takes 
the form 

( ) ( )1, , d ,N
N

t t
ω Ω

−
= ×

−∫
x yv x y y

x y
ω                   (19) 

where Nω  is the area of the unit sphere in N . The solution v  can be en-
forced to take the values *v  on the boundary in a standard manner by intro-
ducing Dirichlet Green’s function. We refrain from discussing these details be-
ing highly dependent on the choice of the domain. The uniqueness of v  fol-
lows by the presence of the boundary condition *v , for details see [13] [14].  

Finally, go back to Equation (15) to solve for p . In this case one only needs 
to calculate p∇ ⋅n



 from the main model by knowing the values of ,tv  ∆v  
and f  on the boundary. This provides a form of boundary conditions for p  
which consequently guarantees its  uniqueness up to a constant, for details see 
[14]. The infinite differentiability of p  also follows from the main model and 
the fact that ( )t

∞∈ Ωv C  provided, of course, that ( )t
∞∈ Ωf C  as well. If 

0=f , then p  is certainly ( )tC∞ Ω . This completes the proof. 
Remark. As explained in the proof of Theorem 2, the uniqueness of ω  fol-

lows by the ability to define v  uniquely. The order of solving the equations in 
System (13) is not really important since none of the quantities ( , , )pωv  in-
duces the other; they act simultaneously. Another way of solvability can be in-
troduced by which one can obtain the same results. This can be a topic for a fu-
ture study.  

The problem of proving the existence of regular and smooth enough solutions 
for the Navier-Stokes equation in bounded domain was exhaustively investigated 
as pointed out in the introduction. The real problem was to prove the bounded-
ness of the solution in an unbounded domain, clearly because of the unboun-
dedness of the domain itself. This fact manifests the need to show that the solu-
tion’s support is bounded in N , or equivalently to show that the solution v  
decays rapidly as →∞x . 

The solution obtained in Theorem 2 represents a perfect candidate as a solu-
tion for Model Equation (1) in unbounded domains also except for one issue. 
One needs to prove the boundedness of v  in ( )2 NL   for every 0t >  so 
that the boundedness of the energy ( )E t  can be claimed, and also to ensure 
that the solution does indeed vanish as →∞x . For v  to be bounded in 

( )2 NL  , it should attain a rate of decay, at least, ( ) ( ) 2
1

N
C

δ− +
≤ +v x  for any 

0δ > . One can argue that some of the results in the literature require a rate of 
decay higher than that for the surface integrals to vanish; these restrictions can 
be dropped because these integrals already vanish by virtue of Lemma 1, (see [7], 
Lemma 1.5]). However, this does not mean that rapid rates of decay are not 
achievable, they are achievable as demonstrated next. 

In order to derive such an estimate one goes back to Formula (19) that 
represents the fundamental solution for v . If C≤ω  then it is expected that 
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the outcome of this integral will provide nothing less than a linear rate of growth 
for v , which is a bad answer to the problem in hand. Therefore, Formula (18) 
shall be used to help us estimate some rates of decay for ω  and consequently 
for v  so that boundedness in 2 ( )L Ω  can be proved for every 0.t >   

Theorem 3 (The Domain N). Suppose all the conditions of Theorem 2 are 
satisfied for NΩ =  . Then there exists a classical solution ( ), , pv ω  for Model 
Equation (1) represented by the System (13) and defined as 

( ) ( ) ( ) ( ) ( ) ( )
22

44
0 0

, e d e , d d ,N N

t t stt h t h t s s sµµ

−− −−
−= + −∫ ∫ ∫

x yx y

x y y g y y
 

ω ω   (20) 

and 

( ) ( )1, , d ,N N
N

t y t y
ω

−
= ×

−∫
x yv x

x y
ω                (21) 

where ( ) ( ) 24π
N

h t tµ −= , = ∇×g f  and Nω  is the surface area of a unit  

sphere. The pressure p  can be defined from Model Equation (1) up to a con-
stant where np∇ ⋅



 can be specified uniquely in terms of the values of v  and 
f  on the boundary. Moreover, the energy of the flow ( )E t  is bounded for 

every 0t >  where v  grows at most as ( ) ( )6 2
~ 1

N− +
+v x . 

Proof. The proof of smoothness and uniqueness is identical to the one intro-
duced in the proof of Theorem 2 and it follows by the standard theory of linear 
second order elliptic and parabolic equations. The focus here will be on proving 
the boundedness in ( )2 NL   for both ω  and v , which necessarily entails an 
estimation of appropriate decay rates as pointed out in the preceding discussion. 
Since [ ] ( )( )1 30, ; NH∈ ∞f C , then [ ] ( )( )20, ; NH∈ ∞g C . By assumption, 

( )2
0

N NV +∈v   which implies that ( )1
0

N NV +∈ ω  and since 2N ≥  for 
meaningful physical interpretation, then at least ( )3

0
NV∈ ω . Hence, 

( ] ( )( )2 40, ; NL V∈ ∞ ω  as per the standard theory of linear second order pa-
rabolic equations, for details refer to ([13], Theorem 6, p. 386). Now, it is needed 
to show that v  is bounded in ( )2 NL   for every 0t > . There are two ways to 
show this; in one of them a rough estimate will be provided for the minimum 
rate of decay of v  given the assumptions on the data. 

The first direction depends on the results in ([7], Theorems 3.4 and 3.6). In 
these theorems a regularization technique by mollifiers along with energy esti-
mates were used to prove global in time existence. In particular, ([7], Theorem 
3.4) states that if 0

mV∈v  and [ ]2 2m N≥ + , then there exists a unique conti-
nuous solution locally in time such that this is true up to ( ) 1

mT C
−

≤ v , which 
coincides with the assumptions on 0v . The local existence of a unique continuous 
solution was extended to a global in time existence in ([7], Theorem 3.6) given that 

( ) ( )0
, d

t

T

L
x t t C∞ Ω

≤∫ ω  

and such that ( ] ( ) ( )( )1 20, ; mT V∈ Ω Ωv C C . Since 0ω  and g  are bounded 
in ( )2 NL   for every 0t > , then it follows that there exists a ball NB ⊂   
such that the supports of g  and 0ω  are entirely inside tB  where 

[ ]0,tB B= × ∞ . Hence, the integrals in Formula (20) can be restricted to the ball 



W. S. Khedr 
 

947 

B , apply Hölder’s inequality, maximize the exponential term which is bounded 
for every , B∈x y  and for every 0t > , and with some estimation procedures 
it becomes easy to find an estimate of the form ( ) ( ), t Ch t≤xω  in the whole of 

N  and for every 0t > . Since ( )h t  is a decreasing function in time then by 
assuming a simple scale of time one obtains 

( ) ( ) ( )
0 1

, d d .
tL

t t C h C∞

∞ ∞

Ω
≤ τ τ ≤∫ ∫xω  

It follows that all the conditions of ([7], Theorem 3.4, Theorem 3.6) are satisfied 
such that v  exists globally in time and such that ( )2N NV +∈v   for every 0t > , 
which implies the boundedness of the energy ( )E t  for every 0t >  as well. 

The second way is trying to get an estimate for v  in terms of x  to con-
firm the boundedness in ( )2 NL  . Consider the following argument: fix t  in 
Expression (20), calculate ∇ω , which is in ( )2 NL   for every 0t >  because 

( )4V∈ Ωω . Take the absolute value of both sides, perform some manipulation 
to the integrands, use ⋅ ≤x y x y  and maximize the time integral (the inte-
grand is a decreasing function in time) so that one finally gets the term with the 
highest power for x  as follows 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( )

2
1

2 2
4

0

0

1 e , d

M ,

M ,

t

t

t
L B L BB

L BL B

H t t

H t C B

C

µ
∞ ∞

∞∞

−
− 

 ∇ ≤ + +
 
 

≤ +

≤

∫
x yy

x y g y y
x

x x g

x x

ω ω

ω  

where ( )M x  is the collection of every possible appearance of any power of 
x  after the integration. Since ∇ω  is in ( )2 NL   as pointed out, then to ob-

tain a decreasing integrand when calculating the 2L -norm of this derivative it is 
necessary that ( )M x  is decreasing in x  such that it is at least  

( ) ( )
2
2M ~ 1

N δ+ +
−

+x x  for some 0δ > . But ω  is in ( )2 NL   as well, and the 

integrands of the above estimate are the same except for the terms with positive 

powers of x . That is to say that ( ) ( )
2
2M ~ 1

N

C
δ+ +

−
≤ +x xω . Incorporate 

this estimate in Expression (21) of the solution v  and one can readily see that
 

( ) 2~ 1
N δ+

−
+v x  as desired, which in turn confirms the boundedness of the 

energy ( )E t  for every 0t >  and implies the decay of v  as →∞x . 

However, since ( )4 NV∈ ω , then we actually have ( )4 2 ND L∈ ω  for 
every 0t > . This means that we can differentiate Formula (20) four times and 
repeat the same argument as above to conclude that we actually have  

( ) ( )
8
2M ~ 1

N δ+ +
−

+x x  which in turn leads to ( )
6
2~ 1

N δ+ +
−

+v x  and this  

completes the proof. 
Remark. Better estimates for the decay of v  can be obtained by repeating 

the same procedure described above for higher order derivatives of ω  which, 
of course, entails higher assumptions on the data so that we can claim the boun-
dedness of the considered derivative apriori. On the other hand, the assumptions 



W. S. Khedr 
 

948 

on the smoothness of the forcing term f  can be relaxed. It is enough to as-
sume that [ ] ( ) ( )( )1 1 10, ; N NH∈ ∞f  C C  so that one obtains  

[ ] ( )( )20, ; NL∈ ∞g C , which is sufficient to conclude that 
( ] ( )( )2 20, ; NL V∈ ∞ ω . The boundedness of ∇ω  in ( )2 NL   is enough to 

deduce a sufficient decay estimate for v  as shown above. The introduced as-
sumptions were chosen for consistency with the standard theory and the Em-
bedding Theorem, and in the same time to illustrate the estimation procedure. 
For more information review ([13], pp. 382-386).  

We managed to prove that our solution is indeed a classical solution of Model 
Equation (1). Here come some important questions, what if there exists another 
solution in a more general form? Moreover, does the choice of the domain or the 
choice of the boundary data play a role in the uniqueness of the solution? The 
answer to these questions is addressed by the statement of the next theorem. 

Theorem 4 (Uniqueness). Let NΩ ⊆   be an arbitrary domain. Suppose 

0v , *v  and f  are satisfying Conditions (3), (4) and (5) respectively. Then 
Claim 1 is true and the unique classical solution of Model Equation (1) is in the 
form ( ) ( ) ( ), ,t t tψ=v x x u . This solution is defined as per Theorems 2 and 3. 

Proof. The proof here depends on our results in Theorems 2 and 3, and also 
on ([7], Theorems 3.4 and 3.6). By virtue of the assumptions on the data and our 
results in Theorems 2 and 3, it is clear that our solution v  satisfies all the con-
ditions in [7] for every ( ]0,t∈ ∞ . 

Assume that there exists a more general solution than the proposed one and 
denote it by gv . Such solution should definitely inherit the smoothness proved 
in [7] as well. That is to say that ( ]( )1 20, ;g mV∈ ∞v C C  and such that 
( ), ,g g gpv ω  is the triad solution of Model Equation (1) with boundary datum 

*v  and initial profile 0v . Let g= −w v v  and let gq p p= − . Hence, w  has 
zero boundary and initial data and it obeys the equation 

( ) .g g
t qµ− ∆ +∇ = ⋅∇w w v v                  (22) 

Dot product the above equation by gv  and integrate by parts over any arbi-
trary domain Ω  to get 

( )
2 2

1 1
1 1d d d 0,
2 2

g g g
t N Nqµ − −Ω ∂Ω ∂Ω

⋅ − ∆ +∇ = ⋅ = ⋅ =∫ ∫ ∫v w w x v v n x v v n x   (23) 

where we used the Divergence theorem in the right hand side, the facts that 
0g∇ ⋅ =v  and that *g = =v v v  on the boundary, and the results of Lemma 1. 

Now, recalling that 0g∇ ⋅ =ω  and using the vector identity 

( )2
2 2 ,g g g g g∇ = ⋅∇ + ×v v v v ω                  (24) 

one can dot product Equation (22) by gω  and integrate as above to get 

( )
2

1

2

1

2
1

1d d
2
1 d
2
1 d 0,
2

g g g
t N

N

N

qµ −Ω ∂Ω

∗ ∗
−∂Ω

−∂Ω

⋅ − ∆ +∇ = ⋅

= ∇× ⋅

= ⋅ =

∫ ∫

∫

∫

w w x v n x

v v n x

v n x







ω ω

ω

         (25) 
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where Lemma 1 is used again. Identities (23) and (25) imply one of three possi-
bilities. Either 0g g= =v ω  which is excluded for being trivial, or  

0t qµ− ∆ +∇ =w w  almost everywhere. The third possibility is t qµ− ∆ +∇w w  
being orthogonal to the space spanned by gv  and gω , which by Equation (22) 
implies that ( )g g⋅∇v v  is orthogonal to gω  and gv . 

Let us start with 0t qµ− ∆ +∇ =w w  almost everywhere. Multiply this equa-
tion by w , integrate by parts over Ω , employ the Divergence theorem and re-
call that 0=w  on ∂Ω  to get 

2 2
1

1 d d d d 0.
2 d Nq

t
µ −Ω Ω ∂Ω

+ ∇ = − ⋅ =∫ ∫ ∫w x w x w n x  

This readily implies that 0=w  almost everywhere. But by the results ob-
tained for v  and gv , one concludes that at least ( )2∈ Ωw C  which implies 
that w  is identically zero. Hence, the solution v  is the unique solution for 
Model Equation (1) in this case. 

Now, if gv  and gω  are orthogonal to ( )g g⋅∇v v , then by Identity (24) we 
deduce that 

2g∇ v  is orthogonal to the space spanned by gv  and gω  eve-
rywhere, which is equivalent to the nature of the solution v . This means that 

2∇ v  and 
2g∇ v  are parallel to each other on the boundary. Since both solu-

tions coincide at the boundary and both are extended continuously to the inte-
rior of the domain, then it is not hard to conclude that g =v v  everywhere, 
which is the aim of this proof. Assume not. Let g= −θ ω ω  so that the differ-
ence equation for ω  takes the form 

( ) ( ) .g g g g
t µ− ∆ = ⋅∇ − ⋅∇v vθ θ ω ω                (26) 

where ( ) ( ) ( )g g g g g g⋅∇ − ⋅∇ = −∇× ⋅∇v v v vω ω . Use the vector identity 

( ) ( ) ( )T T
,g g g g g g∇ ⋅ = ∇ + ∇v v vω ω ω  

and given the incompressibility of gv  one also has 

( )2 21 1 .
2 2

g g g g g g g g∇ = ∇ − × ∇× = ∇ + ×∆vω ω ω ω ω ω ω  

Use these two identities, bearing in mind the incompressibility, to find that 

( ) ( )

( ) ( )

( )

( )

( )

( )( )
( )

2T

T 2

2

2

2

2

1

1
2

1
2

1
2
1
2

1
2

, .

g g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g

g g g g g

g g g g g

g gG

⋅ ∇ −∇ = ∇ ⋅ − ∇ ⋅

= ∇ ⋅ ⋅ − ∇ ⋅ − ∇ ⋅

 = ∇ ⋅ ⋅ − −∇ ⋅ 
 
 = ∇ ⋅ ⋅ − 
 

− ∇ ⋅ + × ⋅

= ∇ ⋅ ⋅ −

= ∇ ⋅

v v v v v v

v v v v v

v v v v v

v v v

v v

v v v

v

ω ω ω ω

ω ω ω

ω ω ω

ω ω

ω ω ω

ω ω

ω

   (27) 
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Now recall that we are discussing the possibility in which 
2g∇ v  is ortho-

gonal to gv  and gω  such that ( )2g g gC∇ = ×vv ω . Following the same 
steps as above one can write 

( ) ( )( ) ( )

( )( ) ( )

( )( )
( )( )

( )

2

2

2 2

2 2

2 , .

g g g g g g g g g g g g g

g g g g g g g g

g g g g g g g

g g g g g g g

g g

C

C

G

⋅ ∇ −∇ = ∇ ⋅ − ⋅ − ×∆ ⋅

= ∇ ⋅ − ⋅ − × ⋅∆

= ∇ ⋅ − ⋅ − ∇ ⋅∆

= ∇ ⋅ − ⋅ − ∆

= ∇ ⋅

v v v v v v

v v v v

v v v v

v v v v

v

ω ω ω ω ω ω ω

ω ω ω ω

ω ω ω

ω ω ω

ω

    (28) 

Now, dot product Equation (26) by gv , use Identity (27), integrate over Ω  
and use the Divergence theorem to reach 

( ) ( ) ( )1 1 1 1d , d , d .g g g
t N NG Gµ − −Ω ∂Ω ∂Ω

⋅ − ∆ = ⋅ = ⋅∫ ∫ ∫
 v x v n x v n xθ θ ω ω    (29) 

Also dot product Equation (26) by gω , use Identity (28), integrate over Ω  
and use the Divergence theorem to get 

( ) ( ) ( )2 1 2 1d , d , d .g g g
t N NG Gµ − −Ω ∂Ω ∂Ω

⋅ − ∆ = ⋅ = ⋅∫ ∫ ∫x v n x v n x 

ω θ θ ω ω  (30) 

Now, reverse the Divergence theorem in the surface integrals that include 
values of v  and ω  and reverse all the steps made to conclude 1G  and 2G  
to obtain identities in the form 

( ) ( )( )d d 0,g
t µ

Ω Ω
⋅ − ∆ = ⋅∇× ⋅∇ =∫ ∫v x v v v xθ θ          (31) 

and similarly 

( ) ( )( )d d 0.g
t µ

Ω Ω
⋅ − ∆ = ⋅∇× ⋅∇ =∫ ∫x v v xω θ θ ω         (32) 

Now, there are three other possibilities. The trivial solution; that is 
0g g= =v ω  and it is excluded. Another one is 0t µ− ∆ =θ θ  and this one is 

equivalent to 0t qµ− ∆ +∇ =w w  because the uniqueness of v  implies the 
uniqueness of ω  and vice versa. It remains that ( )( )g g∇× ⋅∇v v  is orthogon-
al to the space spanned by gv  and gω . But we already have ( )g g⋅∇v v  or-
thogonal to gv  and gω , which implies that ( )g g⋅∇v v  and its rotation (curl) 
are parallel to each other. By definition, the curl operator is the unique vector 
field for which ( ) ( )T∇ −∇ = ∇× ×s s a s a  for every vector field a  ([1], p. 32). 
If ( )λ= ∇×s s , then let λ= = ∇×a s s  to get T∇ = ∇s s  which in turn im-
plies that 0∇× =s  then 0=s  as well. Hence, it is necessary that 

( ) 0g g⋅∇ =v v  which implies that g =v v . This completes the proof. 
Remark. In the proof of uniqueness one can argue that the statement of the 

proof was given in the sense of classical solutions, and such that there still exists 
another solution in a weaker form. While this may sound true, but in fact it is 
not. The basic idea of the proof is based on using the coincidence on the boun-
dary and then moving back to the interior. Assuming the existence of a weaker 
solution does not change the fact that it is going to coincide with the proposed 



W. S. Khedr 
 

951 

one on the boundary. However, further investigation on this specific point will 
be introduced in a future study. 

4. Conclusions and Suggestions 

A class of possible solutions for the incompressible Navier-Stokes equation in 
bounded and unbounded regions of N  is proposed. It was demonstrated that 
for such class of vector fields, the flux of the energy of the flow is orthogonal to 
the space spanned by v  and its associated rotation ω . It was also proved that 
v  and ω  are tangential to the boundary such that 0⋅ = ⋅ =v n n 

ω . 
An investigation of the validity of this class of vector fields as a candidate for a 

solution to the incompressible Navier-Stokes equation was carried out in both 
bounded and unbounded domains. Given plausible assumptions on the data and 
a forcing term in the case of unbounded domains, it turned out that this class of 
solutions represents perfectly a classical solution of the problem. Verification 
was established for the infinite differentiability, the uniqueness and the boun-
dedness of the energy in appropriate spaces in light of well known and standard 
theories. An appropriate estimate was also given for the minimum rate of decay 
of the solution v  as →∞x . Moreover, global existence in time and the cor-
responding rate of decay were quite obvious in the deduced formulas. 

Finally, it was proved that this class of solutions represents actually the unique 
classical solution of the incompressible Navier-Stokes equation. In light of the 
non-convective nature of the proposed solution and the uniqueness argument 
under arbitrary settings, the incompressible Navier-Stokes equation can safely be 
reduced to a linear equation. This point is quite interesting and it motivates fur-
ther investigations on a possible relation between incompressibility and convec-
tion in fluid mechanics. 
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Abstract 
This research aimed to mechanically analyze vertebral stress concentration in 
one healthy subject and one subject with osteoporotic first lumbar (L1) verte-
bral compression fracture by using finite element analysis (FEA). We con-
structed three-dimensional image-based finite element (FE) models (Th12L2) 
by using computed tomographic (CT) digital imaging and communications in 
medicine (DICOM) for each patient and then conducted exercise stress simu-
lations on the spine models. The loadings on the 12th thoracic vertebra 
(Th12) due to compression, flexion, extension, lateral bending, and axial rota-
tion were examined within the virtual space for both spine models. The 
healthy and vertebral compression fracture models were then compared based 
on the application of equivalent vertebral stress. The comparison showed that 
vertebral stress concentration increased with all stresses in the vertebral com-
pression fracture models. In particular, compression and axial rotation caused 
remarkable increases in stress concentration in the vertebral compression 
fracture models. These results suggest that secondary vertebral compression 
fractures are caused not only by bone fragility but possibly also by the increase 
in vertebral stress concentration around the site of the initial fracture. 
 

Keywords 
Biomechanics, Finite Element Analysis, Vertebral Compression Fracture 

 

1. Introduction 

With the recent aging of the population, the trend toward increasing numbers of 
patients with osteoporosis has made fragility fractures a major problem in socie-
ty. Bone fractures cause loss of motor functions and other ailments that mar-
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kedly lower patient quality of life and lead to invalidity among many of the el-
derly, making fractures a grave concern in a society which is ageing. The diagno-
sis of osteoporosis demands methods of discovering and preventing bone frac-
tures early. However, presently, no valid method of diagnosis has been estab-
lished to quantitatively evaluate the extent of fracture risk due to the mechanical 
phenomenon of bone destruction. Moreover, the incidence of secondary com-
pression fractures after vertebral fractures is high. This is thought to be caused 
by bone fragility by osteoporosis. Finite element analysis (FEA) has been intro-
duced in the field of biomechanics over the last few decades. This methodology 
has been utilized in many clinical applications and gained popularity especially 
in the prediction of vertebral strength due to its subtle relationships that exist 
between structure and functionality under a variety of conditions. Moreover, 
due to the complexity and difficulty of in-vitro and in-vivo experiments, FEA 
seems to give more promising results. Furthermore, this computational ap-
proach reduces the cost and danger of other testing procedures, allowing one to 
achieve certain individualization when organ geometry and specific loading 
condition can be fully customized by means of medical image treatment and bio- 
mechanics simulation technology. The reliability of FEA is subsequently streng-
thened by the recent finding which demonstrated its better correlations to ver-
tebral strength then Dual-energy X-ray absorptiometry (DXA) approach [1]. In 
this study, FE models were constructed that reflect the bone density distribution 
and spinal shape of one healthy subject and one subject with vertebral compres-
sion fracture for the purpose of mechanically analyzing vertebral stress concen-
tration. This research aimed to mechanically analyze vertebral stress concentra-
tion in one healthy subject and one subject with osteoporotic first lumbar (L1) 
vertebral compression fracture by using FEA. 

2. Materials and Methods 
2.1. Patient-Specific FE Modeling 

Bone geometrical features were extracted from computed tomographic (CT) di- 
gital imaging and communications in medicine (DICOM) by using Mechanical 
Finder (MF) software (Research Center of Computational Mechanics Co. Ltd. 
Japan) [2]. Individual complex bone shapes and heterogeneous bone density 
distributions were considered in this bone modeling procedure. Heterogeneous 
bone density distributions are related to the Young’s modulus of bone and vary 
between cancellous bones and around the regions between the cortical and can-
cellous bones. To reflect this heterogeneity in the finite element analysis (FEA), 
the MF software program was used to calculate the apparent bone density and 
determine the Young’s modulus of each element separately [3] [4] [5]. Two sets 
of spinal models of healthy and osteoporotic subjects were developed. Written 
informed consent, permission, and cooperation were obtained from a 29-year- 
old Japanese male healthy subject (weight, 78 kg and height, 176 cm) and an 
86-year-old Japanese female patient with osteoporosis and first lumbar (L1) ver-
tebral compression fracture (weight, 47 kg and height, 160 cm; fish-type fracture; 
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Figure 1). To create the FE models, CT scan images of the patients’ vertebrae, 
from the 12th thoracic vertebra (Th12) to the second lumbar vertebra (L2), were 
obtained. The three-dimensional (3-D) image-based FE models were then con-
structed based on the extracted bone edges of the region of interest (ROI) 
around the outer region of the cortical bone on the CT scan images, to obtain 
the anatomical structure of the spinal bone. Because of the structural complexity 
of the vertebrae, we adopted tetrahedral elements instead of cubic elements to 
represent the smooth surface of the spinal bone [6]. The trabecular and inner 
portion of the cortical bone were modeled by using 3-mm linear tetrahedral 
elements. Triangular shell elements with a thickness of 0.4 mm were also 
adopted on the outer surface of the cortex to represent the thin cortical shell [7]. 
On average, the healthy spinal and osteoporotic models had 804,467 and 790,408 
tetrahedral solid elements, and 105,252 and 103,844 triangular shell elements, 
respectively. 

2.2. Calculation of the Bone Material Properties of the Spine FE 
Models 

The bone density of an element was determined from the average CT value 
(Hounsfield units [HU]) of 17 points, which was composed of the center and 
four points distributed on four lines connecting the center point to each apex of 
the tetrahedral element [8]. The bone density of each FE was computed based on 
the relationship. 

Poisson’s ratio was set to a constant value of 0.4, according to that used by 
Keyak et al. [5], Reilly and Burstein [9], and Van Buskirk and Ashman [10]. The 
elastic modulus of each finite element was determined based on the relationship 
between Young’s modulus, (Mpa), and the bone density provided by Keyak et al. 
[11] (Table 1). 
 

 
Figure 1. Lateral view of plain CT scan images performed during initial examination. 
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As Young’s modulus is defined by individual elements one by one as de-
scribed earlier, the heterogeneity of Young’s modulus in the femoral bone can be 
directly reflected in the FE models. Meanwhile, the yield stress (Mpa) of the 
models was calculated from the bone density as proposed by Keyak et al. [5]. 
The final FE models consisted of the T12-L2 vertebrae, intervertebral disks and 
facet joints (Figure 2). The material properties of the intervertebral disk and fa-
cet joint are listed in Table 2. 
 

    
(a)                                   (b) 

Figure 2. Three-dimensional finite-element model: (a) healthy subject (b) osteoporotic 
subject. 
 
Table 1. Spine material properties. 

Young’s modulus E (MPa) Bone density p (g/cm³) 

E = 0.01 p = 0.0 

E = 33900p² 0.0 < p ≤ 0.27 

E = 5307p + 469 0.27 < p ≤ 0.6 

E = 10200p2.01 0.6 ≤ p 

Yield stress σ (MPa) Bone density p (g/cm³) 

σ = 1.0 × 10²⁰ p ≤ 0.2 

σ = 137p1.88 0.2 < p ≤ 0.317 

σ = 114p1.72 0.317 ≤ p 

Poisson’s ratio Bone density p (g/cm³) 

0.4 0.0 ≤ p 

 
Table 2. Material properties of the finite-element models. 

Material Young’s modulus Poisson’s ratio 

Intervertebral disc 8.4 MPa 0.45 

Facet joint 11 MPa 0.2 
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2.3. Analysis 

The FE models were loaded with a compressive force of 1000 N and four rota-
tional/moment loadings on the superior surface of the T12 intervertebral disk to 
stimulate the four physiological motions/functions of the spine, which represent 
the movement of flexion, extension, lateral bending, and axial rotation. The in-
ferior side of the L2 intervertebral disk was rigidly fixed. The loading details are 
listed and depicted in Table 3 and Figure 3, respectively [12]. The biomechani-
cal effects of the osteoporotic bone model were analyzed and compared with 
those of the healthy bone model. Drucker-Prager stress distributions on the ver-
tebrae were evaluated [13]. In order to evaluate the stress distribution within and 
between the vertebral bodies, 30 points (10 points for each vertebra) were se-
lected to extract the average Drucker-Prager stress. This point represented a 
square plate that could measure the average stress distribution distributed un-
iformly throughout its square volume. The plate was placed in parallel to the 
vertebral end plates. The distance between each of the plate was set to 5 mm. 
Figure 4 is Young’s modulus distributions. 

The main procedures for FEA statistical analysis are as follows: 
1) Bone edges are extracted from the ROI defined from the CT DICOM data. 

 

 
Figure 3. Five basic vertebral physiological motions. 

 

 
Figure 4. Young’s modulus distribution. 
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Table 3. Loading conditions [12]. 

Motion Flexion Extension Lateral bending Axial rotation 

Loading (N.m) 4.2 1.0 2.6 3.4 

 
2) Three-dimensional image-based FE model contour data are calculated from 

the bone edge extraction data. 
3) Mesh segmentation is applied to the contour data, and a 3-D image-based 

FE model is constructed. 
4) Material properties are bestowed on each element based on conversion eq-

uations for the properties of the selected materials. 
5) Loads and boundary conditions are established. 
6) Statistical processing for each element is conducted based on established 

methods (i.e., static response analysis and linear regression). 
7) From these statistical results, information on aspects such as fracture load, 

strain distribution, and stress distribution is derived. 

3. Results 

The load transfer properties (stress and strain) significantly differed between the 
healthy vertebrae and the osteoporotic vertebrae in five different vertebral physio-
logical motions (Figure 5). In general, the osteoporotic subject tended to pro- 
duce higher stress and strain than the healthy subject in all physiological move-
ments. The maximum Drucker-Prager stresses (Figure 6) for the healthy subject 
were 6.45, 10.05, 1.69, 3.03, and 6.48 MPa for compression, flexion, lateral bend-
ing, and axial rotation, respectively. Meanwhile, the Drucker-Prager stresses for 
the osteoporotic subject were 16.85, 10.61, 2.25, 3.90, and 7.96 MPa for compres-
sion, flexion, lateral bending, and axial rotation, respectively. The largest relative 
difference (Figure 7) was found in compression activity (161%), followed by axial 
rotation (23%), flexion (6%), lateral bending (29%), and extension (33%) activities. 
The minimum principle strains (Figure 8) for the healthy subject were −3590, 
−1560, −334, −843, and −637 μs train for compression, flexion, extension, lateral 
bending, and axial rotation, respectively. Replicating the same distribution pattern 
as that of the Drucker-Prager stress distributions, the osteoporotic subject had a 
relatively higher minimum principle strain than the healthy subject. Topping the 
list (Figure 7) was axial rotation (801%), followed by compression (1816%), flex-
ion (727%), extension (321%), and lateral bending vertebral motion (632%). The 
result of the average Drucker-Prager stress distributions are shown in Figure 9. 
The results showed that the greatest Drucker-Prager stress for both subjects was 
found during compression. For the osteoporotic subject, this stress was substan-
tially higher under relatively similar level of compressive loading, approximately 5 
times higher for the osteoporotic than for the healthy subject. It is also important 
to note that the least relative stress difference was 50% under similar extensive 
loading, with the osteoporotic subject exhibiting higher stress than the healthy 
subject. The high degree of these stresses were then correlated with the high 
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Figure 5. The cross-sectional view of the Drucker-Prager stress distribution on the verte-
bral body in five different vertebral physiological motions: (a) compression; (b) extension, 
(c) flexion; (d) lateral bending; and (e) axial rotation. 
 

 
Figure 6. Drucker-Prager stress on the vertebral body of the healthy and osteoporotic 
subjects. 
 
degree of principle strain. That is, the Drucker-Prager stress values were directly 
proportional to the principle strain values, and most of the time, the strains were 
concentrated in the middle of the trabecular region for each of the vertebrae. 

4. Discussion 

The recent developments in computational dynamics technology has made possi-
ble the use of FEA to conduct a mechanical bone analysis that reflects the com-
plex structural morphology and material properties of bones. Indeed, through  
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Figure 7. Relative stress difference (%) between the osteoporotic and healthy subjects. 
 

 
Figure 8. Minimum Principle strain on the vertebral body of the healthy and osteoporotic 
subjects. 
 
such applications, various mechanical experiments and FEA on vertebral com-
pression fractures have been performed. The method involves conducting FEA 
structural analysis on 3-D bone models constructed based on DICOM data pro-
cured from quantitative CT bone analysis. Then, the intensity of external forces 
applied in any direction or at any strength are quantitatively examined [14] [15] 
[16]. First, the CT based 3-D bone structure and bone density distribution can 
be assessed. Simultaneously, bone density can be evaluated at each tetrahedral 
element by collecting CT values for bone mass phantoms and plotting them on a 
calibration curve that correlates the CT value of each tetrahedral element to 
bone density. Thus, based on the calibration curve, CT values can be converted 
to bone density data. The bone density data can be arranged just like in a pa-
tient’s bone in each area of the 3-D bone model derived from the DICOM data. 
Computer processing can then reproduce a 3-D bone image with structure and 
density distribution identical to that of the subject. Further processing can be 
done to construct FE models, against which virtual loads and boundary 
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Figure 9. Average Drucker-Prager stress distributions in the vertebral body of the healthy and osteoporotic subjects, measured 
from the superior end plate of T12 to the inferior end plate of L2: (a) compression, (b) flexion, (c) extension, (d) lateral bending, 
and (e) axial rotation. 

 
conditions can be established. Then, items such as strain distribution, stress dis-
tribution, yield load, and fracture load can be quantitatively assessed. Recently, 
some attempts have been made to understand the pathology of osteoporosis and 
judge therapeutic effects in individual patients based on CT data [17] [18] [19]. 
Other methods have involved the use of implants for surgical evaluations [20] 
[21] [22] [23] [24]. The first attempt to use FEA in bone strength analysis was 
made by Brekelmans et al. [25], whose analysis of the proximal end of the femur 
was far more accurate than the standard application of beam theory. Keyak [26] 
published a study in which the accuracy of FEA using CT of the proximal end of 
the femur was simultaneously tested along with the load testing of vertebrae 
samples from fresh cadavers. Another study involving lumbar vertebrae samples 
from fresh cadavers showed that CT-based FEA was highly accurate and corre-
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lated highly with vertical compression test results [27]. However, hitherto re-
ports of FE models of osteoporotic vertebrae have mainly focused on individual 
vertebrae, and no reports have considered vertebrae shape or spinal alignment. 
In this study, models of a set of three vertebrae were constructed, and further 
analyses of vertebrae shape and alignment were conducted with respect to verte-
bral compression fracture models. 

Lindsay et al. [28] reported that novel vertebral fractures occur through natu-
ral processes at a rate of 19.2% and that after initial vertebrae fractures, the 
probability of developing secondary compression fractures is extremely high. 
The results of this study indicated that all the stresses associated with compres-
sion, flexion, extension, lateral bending, and axial rotation observed in vertebral 
compression fracture models resulted in increases in stress concentration in ad-
jacent vertebrae. Thus, it is thought that the occurrence of secondary vertebral 
compression fractures is due not only to bone fragility but also to alterations in 
the stress concentrated on adjacent vertebrae due to changes in alignment after 
the initial vertebral fracture. Considering that hitherto studies on stress loading 
have not investigated stresses caused by factors besides compression, flexion, 
and extension [29] [30] and as we have confirmed particularly an increase in 
stress concentration due to compression and axial rotation, as well as from the 
perspective of providing guidance on daily activities after vertebral fractures, we 
believe new insight has been gained. 

These phenomena were proven to be well correlated with the deterioration of 
bone structural strength and reduced bone mass as characterized by osteoporo-
sis. The limitations of this study are a small sample size and we don’t have expe-
rimental validations. We will study far more sample after this. Validation study 
is very difficult, but we hope to try cadaver study. 

5. Conclusion 

The osteoporotic vertebral model with L1 vertebral compression fracture has 
significantly affected the load transfer pattern (stress and strain) distributions 
within the vertebral body. By utilizing the stress and strain distributions of the 
healthy subject as a comparison tool, we found that the osteoporotic subject 
seemed to exhibit extremely higher stresses and strains than the healthy subject 
under the five basic vertebral physiological motions. Worsening this condition 
was the accompanying uneven stress distribution within and between the verte-
bral bodies. Therefore, we strongly suggest that for the osteoporotic subject, the 
risk of vertebral fracture can occur at any time even with daily living activities. 
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Abstract 
Exact solution of the steady Navier-Stokes equations has been obtained for the 
thermal stagnation-point flow at the leading edge of a turbine blade under the 
assumptions of constant nose radius and external vorticity, and fluid proper-
ties independent of temperature. The solutions reveal that curvature affects 
local heat transfer and skin friction while external vorticity does not. The ef-
fect of external vorticity is to shift the zero skin friction point away from the 
stagnation point. This solution is valid for all Reynolds number, external vor-
ticity, and nose radius. In the limit of nose radius going to infinity and exter-
nal vorticity, going to zero, the exact solution for two-dimensional plane 
stagnation-point flow is recovered identically. In addition, it can be shown 
that the velocity field around the stagnation point of a rotating curved surface 
is the same as that around the stagnation point of a stationary curved surface 
with an external vorticity which equals to twice of the rotational speed. This 
realization renders the present solution equally valid for thermal stagnation-
point flow at the leading edge of centrifugal impeller blades. 
 

Keywords 
Navier-Stokes Equations, Exact Solutions, Thermal Stagnation-Point Flow, 
Displacement Effect 

 

1. Introduction 

Frequently, in the past, two-dimensional calculation methods were used to de-
termine the gas-side heat transfer coefficient on turbine blades [1]. All these 
methods, whether based on the integral or differential equations, were derived 
on the assumption that the flow is steady and the static pressure variation across 

How to cite this paper: So, R.M.C. and 
Kam, E.W.S. (2017) Exact Solution for 
Thermal Stagnation-Point Flow with Sur-
face Curvature and External Vorticity Ef-
fects. Journal of Applied Mathematics and 
Physics, 5, 966-989. 
https://doi.org/10.4236/jamp.2017.54085 
 
Received: February 19, 2017 
Accepted: April 27, 2017 
Published: April 30, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2017.54085
http://www.scirp.org
https://doi.org/10.4236/jamp.2017.54085
http://creativecommons.org/licenses/by/4.0/


R. M. C. So, E. W. S. Kam 
 
 

967 

the boundary layer has very little effect on the flow, and hence can be neglected 
[2]. Measurements of two-dimensional turbulent boundary layers along plane 
surfaces lend support to this assumption [3]. However, when these methods 
were used to calculate flows along curved surfaces, they were found to be inade-
quate comparing with measured data [2]. The reason is that existing two-dimen- 
sional method neglects the effect of curvature on the mean flow streamlines. 
This neglect is justifiable in laminar flows [4] [5] if 1kδ  . On the other hand, 
the neglect of the effect of streamline curvature is not justifiable in the case of 
turbulent flows [6] even when 1kδ  . 

Striking effects of curvature have been observed in turbulent boundary-layer 
flow over convex and concave surfaces [7] [8]. Boundary layer measurements 
showed that large convex curvature in the mean flow streamlines leads to va-
nishing shear stress in regions where the mean velocity gradient is still substan-
tial [7], while large concave curvature promotes the formation of Taylor-Gortler 
type instabilities [8]. As a result, various attempts were made by different inves-
tigators to account for the effect of streamline curvature in two-dimensional 
turbulent shear flows [9]-[14]. Attempt to use these techniques to calculate flow 
around compressor blades was first made in [13], and good correlations were 
obtained between measured and calculated results. Furthermore, these tech-
niques were extended to model heat transfer on curved surfaces alone [14] and 
curved surfaces with swirl [15]. Again, good correlations were obtained between 
measured and calculated heat transfer results. In view of this, the same technique 
has also been used to predict the flow and heat transfer around axial flow turbine 
blades where Coriolis effects are absent [15]. 

Generally, the solution of the two-dimensional plane stagnation-point flow 
[16] [17] [18] is used to provide initial conditions for heat transfer calculations 
along turbine blades. This assumption is valid as long as the surface curvature is 
considered to have negligible effect on the boundary-layer flow around the 
blades. With the introduction of improved techniques mentioned above [9]-[15], 
it is evident that, to be consistent with the improved techniques, the effect of 
surface curvature on the stagnation-point flow cannot be neglected. 

The boundary layer thickness in a stagnation-point flow is given by 
2.4 aδ ν= ; therefore, it can be seen that the neglect of curvature effect is valid 

only if aν  is much less than the radius of curvature of the surface at the 
stagnation point [18]. In the leading edge of a turbine blade, the nose radius is 
very small and the above condition is not necessary true. As a result, surface 
curvature may have a significant effect on the flow and heat transfer downstream 
of the forward stagnation of a turbine blade. In addition to being affected by 
surface curvature (k), the flow and heat transfer at the leading edge are also in-
fluenced by free stream vorticity (Ω ) in the flow approaching the turbine 
blades. Therefore, to obtain the correct initial conditions for subsequent heat 
transfer calculations around the blades using any one of the previously men-
tioned techniques [9]-[15], the effect of k and Ω  on the flow and heat transfer 
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at the leading edge have to be considered and analyzed. 
Effect of surface curvature on stagnation-point flow was first examined in [4] 

[5]. Assuming that 1Re  and 1kδ  , the analysis in [4] [5] proceeded to 
expand the stream function in terms of 1/Re. The problem was then solved using 
the technique of matched asymptotic expansions and the results gave the 
second-order effect on heat transfer coefficient and skin friction due to surface 
curvature. Further, second-order effect due to flow displacement and free- 
stream Ω  was also evaluated [4] [5]. Subsequently, other investigators [19] 
[20] [21] have also carried out analysis on the same problem invoking the same 
assumptions, but using different methods to solve the problem. The results ob-
tained by these investigators were no different than those presented earlier [4] 
[5]. In some cases [19] [20], the results were shown to be less accurate because of 
the assumptions the investigators had to invoke to simplify the problem. 

The effect of constant external Ω  on two-dimensional plane stagnation- 
point flow was also attempted and an exact solution to the governing equations 
was obtained [22]. Unlike the perturbation solution mentioned previously [4] 
[5], the exact solution, without accounting for the effect of flow displacement, is 
valid for all Re [22]. Further, it was found that the effect of external Ω  on the 
flow was to shift the zero skin friction point away from the stagnation point; 
however, no attempt had been made to analyze the heat transfer problem [22]. 
On the other hand, a complete second-order analysis of the problem was carried 
out and it showed that if displacement effect were also included [23], the shift of 
the zero skin friction point from the stagnation point is greater than that pre-
dicted in [22]. A thorough discussion of most second-order effects has been 
presented in [23] where the flows considered are not limited to stagnation-point 
flows. 

In spite of the fairly complete second-order treatment of stagnation-point 
flow on curved surfaces [4] [5] [23], the analysis is rather limiting because of the 
assumptions of 1Re  and 1kδ  . These assumptions could lead to two 
sources of error in the prediction of gas-side heat transfer coefficients on turbine 
blades. The obvious source is the inaccurate estimate of the heat transfer coeffi-
cient at the leading edge, which may or may not be too critical depending on the 
value of Re and kδ at the nose. A second source of error is associated with the 
incorrect estimate of initial conditions for subsequent convective heat transfer 
calculations on the rest of the blade. The effect of this error on the calculated 
heat transfer coefficient is difficult to estimate, and it could be more severe as Re 
decreases and kδ increases at the leading edge. Consequently, there is a need for 
a more exact theory that can correctly account for the effect of surface curvature 
and external Ω  on thermal stagnation-point flows at the leading edge of tur-
bine blades. 

The objective of the present paper, therefore, is to investigate the effect of sur-
face curvature and constant external Ω  on heat transfer at the leading edge of 
axial flow turbine blades. To simplify the problem, the flow near the leading edge 
of the blade is approximated by the flow around a two-dimensional cylinder of 
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the same radius as the nose. Also, the flow is assumed to be steady and laminar, 
and the fluid properties are assumed constant over the temperature range of in-
terest. As the first attempt, the assumption of laminar flow at the stagnation 
point and its immediate vicinity is reasonable. It is shown that exact solutions to 
the governing equations could be obtained and that these solutions would re-
duce to the exact solution with constant Ω  [22] as 0k → , and to the classical 
solutions [15] [16] [17] [18] in the limit of zero surface curvature and zero ex-
ternal Ω . Thus formulated, the solutions are valid for all values of Re, kδ and 
Ω . Once this solution is obtained, it is shown that the formulation can be ex-
tended to analyze the thermal stagnation-point flow at the leading edge of cen-
trifugal impeller blades. 

2. The Governing Equations 

The governing equations describing the steady incompressible flow and temper-
ature fields near the forward stagnation point of a two-dimensional cylinder of 
constant radius R can be written with respect to a co-ordinate system attached to 
the cylinder as shown in Figure 1. In component form, the full set of steady 
Navier-Stokes equations [24] is reduced to: 
 

 
    Figure 1. Curvilinear co-ordinate system for a stationary surface. 
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( ) 0,x yu hv+ =                          (1) 

( ) 1 1 2 1 12 ,x x xx yy y xyuu v hu p ν h u hu ku k h u kh vρ− − − − + = − + + + − +      (2) 

2 1 1 2 1 12 ,x y y xx yy y xuv hvv ku hp ν h v hv kv k h v kh uρ− − − − + − = − + + + − −    (3) 

1 ,x y xx yy yuT hvT h T hT kTα − + = + +                    (4) 

where subscripts denote partial differentiation, k is positive for convex and neg-
ative for concave curvature, and viscous dissipation of heat has been assumed 
negligible. The boundary conditions are no slip at the wall, uniform flow and 
temperature far upstream of the stagnation point, and inviscid flow with a con-
stant Ω outside a shear layer close to the wall. 

Assuming constant fluid properties allow the velocity field equations to be 
decoupled from the temperature field equation. A complete solution to the aero- 
dynamic problem, i.e. Equations (1)-(3), can be obtained by first finding a solu-
tion to the outer inviscid flow and then proceeding to determine the flow in the 
viscous region near the wall. Once the velocity field near the stagnation point is 
known heat transfer to or from the cylinder surface can be obtained by solving 
Equation (4) with the appropriate temperature boundary conditions. 

3. The Inviscid Solution 

Since the flow in the outer region is inviscid, the stream function, ( ),x yΨ , sa-
tisfies the Poisson equation, which can be written as 

( ) ( )1 1 1 ,x y yx
h h h h− − −Ψ + Ψ = −Ω                   (5) 

where the stream function is defined by 

,yu = Ψ                                 (6) 

.xhv = −Ψ                                (7) 

The boundary conditions are 
0Ψ =  on the body,                      (8) 

( ), ~x y ∞Ψ Ψ  far upstream.                  (9) 

This problem can be considered properly set for an elliptic differential equa-
tion, and a solution for Ψ  can be sought in the form 

( ) ( ) ( ) ( ), .x y P x Q y S yΨ = +Ω                 (10) 

Substituting (10) into (5) gives 
2

2 ,P h Q khQ n
P Q Q
′′ ′′ ′

− = + =                         (11) 

2 2 ,h S khS h′′ ′+ = −                           (12) 

where the primes denote ordinary differentiation with respect to x for P, and to y 
for Q and S. If the solution for ( ),x yΨ  is to approach the classical two-di- 
mensional plane stagnation-point flow solution when 0k →  and 0Ω→ , then 
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it can be shown that the only meaningful solution for (11) is given by 0n = . 
With 0n = , solutions for ( )P x  and ( )Q y  are 

( ) 1 ,P x a x=                            (13) 

( ) 2 ln ,a hQ y
k

=                         (14) 

where 1a  and 2a  are arbitrary constants. Since the homogeneous solution of 
(12) is identical to that obtained for Q and Ω  is constant, it can be easily 
shown that only the particular integral of Equation (12) is of interest. A particu-
lar solution of (12) is given by 

( ) ( )
2

1 ln .
4 2

y h hS y
k k
+

= − +                     (15) 

As a result, the solution for Ψ  with boundary conditions (8) and (9) can be 
written as: 

( ) ( )
2

1
, ln ln ,

4 2
y haxx y h h

k k k
Ω + Ω

Ψ = − +                 (16) 

where a is an arbitrary constant. It should be pointed out that in the limit of 
0k → , Equation (16) reduces to the solution given in [22], or 

2

0

1lim .
2k

axy y
→
Ψ = − Ω                          (17) 

Therefore, when 0Ω = , Equation (17) reduces to the classical potential solu-
tion for two-dimensional plane stagnation-point flow. 

The velocity field is given by 

( )1
,

2
y haxu

h h
Ω +

= −                          (18) 

ln ,a hv
kh

= −                             (19) 

and the pressure field is obtained by integrating the Euler equations which are 
the inviscid counterparts of (2) and (3). With the help of (18) and (19), the 
pressure field can be written as: 

( )222 2 2 2 2 4 2

0 2 2 2 2 2 2

ln1 2 ln 1 4 ln 1 ,
2 4

a ha x a x h h h h h hp p
kh h k h k h

ρ
 Ω − + Ω − −

− = + + + 
  

(20) 

where p is the pressure and 0p  is the pressure at the stagnation point. It should 
be noted that even when 0Ω→  the velocity u downstream of the stagnation 
point is not uniform as could be seen from Equation (18). This is necessary be-
cause curvature gives rise to a “centrifugal force” that is balanced by a normal 
pressure gradient. 

4. Viscous Flow and Heat Transfer 

Equations (18)-(20) represent a complete solution to the inviscid problem. Once 
the inviscid solution is known, the next task is to focus on the viscous flow and 
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heat transfer near the surface. Since the inviscid solution does not satisfy the 
no-slip condition at the wall, a viscous solution that is valid at and near the sur-
face will be sought. This solution has to approach (18) and (19) for large y, and 
in this limit, the vorticity also approaches Ω  in the external flow. In order not 
to impose any conditions on Re, kδ, and Ω , an exact solution to the governing 
Navier-Stokes Equations (1)-(3) is sought in the viscous layer. The pressure 
terms in the momentum equations are eliminated by cross-differentiating (2) 
and (3), and the resulting vorticity equation is given by 
2 3 2 2 2

3 2 2 3 2 2

2

2 ,
xy yy y y xx xy x x

xxy xx yyy yy y xy x xxx xyy

h uu h vu kh uv kh vu huv h vv hkvv khuu

ν hu ku h u kh u k hu k u khv k v v h v

+ + + − − + +

 = + + + − + + − − − 
 (21) 

where use has been made of Equation (1). Stagnation-point flow near the surface 
is, therefore, given by the solution of (21) subject to the boundary conditions 

( ) ( ), , 0 0,u x y v x= =                           (22a) 

( ) ( )

( )1 1

1
,

2

x y

y haxu x y
h h

h v h hu− −

Ω + 
→ − 


− →Ω 

 for large y.            (22b, c) 

Once the velocity field is known, the stagnation-point heat transfer problem 
can be analyzed by solving Equation (4) subject to the conditions of an isother-
mal body and a uniform temperature in the external flow. 

As in the case of plane flows with or without the effect of Ω  [15] [16] [17] 
[18] [22], a similar solution to Equation (21) is sought such that the velocity and 
temperature fields can be written as: 

( ) ( ) ,
Gνu axF

a h
η

η′= −Ω                    (23) 

( ) ,
F

v aν
h
η

= −                            (24) 

( ) ( ) ,w wT T T T η∞= + − Θ                         (25) 

where ( )a ν yη =  is the similarity variable, 1 1h k y Kη= + = +  and 

( )K ν a k= . Substituting Equations (23)-(25) into (21) and (4), the following 
equations for ( )F η , ( )G η , and ( )ηΘ  are obtained, 

( ) ( )2

2 3
2 0,

K F K hF K F K KhFF KF F F F
h h h

′ ′− − − ++′′′′ ′′′ ′′ ′+ + − =     (26) 

( )
2 2 0,

K F KF K hF KFG G G G
h h h

− ′′ ′− +′′′ ′′ ′+ + − =             (27) 

0,F Pr K
h
+′′ ′Θ + Θ =                        (28) 

where the primes denote ordinary differentiation with respect to η . The condi-
tions that ( ), 0 wT x T= , ( ), largeT x y T∞=  and (22) give the necessary boun-
dary conditions for (26)-(28). 

It is not convenient to choose ( )G η  at large η  as one of the outer boun-
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dary conditions for G because its value at large η  is dependent on displacement. 
As a result, the outer boundary conditions for G are defined by the functions 

( )G η′  and ( )G η′′  at large η . In terms of η , the boundary conditions for F, 
G, and Θ can then be written as 

( )at 0 : 0 0,Fη = =                         (29a) 

( )0 0,F ′ =                             (29b) 

( )0 0,G =                             (29c) 

( )0 0,Θ =                             (29d) 

( ) 1at large : ,F hη η −′ =                       (30a) 

( ) 2 ,F Khη −′′ = −                           (30b) 

( ) ,G hη′ =                             (30c) 

( ) ,G Kη′′ =                            (30d) 

( ) 1.ηΘ =                              (30e) 

The viscous flow and heat transfer problem at the stagnation point is reduced 
to solving three ordinary differential equations governing ( )F η , ( )G η  and 
( )ηΘ , and subject to boundary conditions (29) and (30). Thus formulated, so-

lutions of these equations will represent exact solutions to the thermal stagna-
tion-point problem at the leading edge of axial flow turbine blades. 

5. Numerical Integration of the Governing Equations 

The ordinary differential equations governing F, G, and Θ are highly nonlinear 
and analytic solutions for (26)-(28) are not easily obtainable and are not pre-
sently available. However, numerical technique could be used to simulate the 
solutions for (26)-(28). Since numerical solutions of ordinary differential equa-
tions is far better developed than those of highly nonlinear partial differential 
equations, such as the Navier-Stokes equations, and a lot more accurate, there-
fore, numerical solutions of (26)-(28) are both accurate and reliable. 

To further simplify the governing equations for numerical analysis, a trans-
formation first put forward in [20] is adopted. If the new similarity variable is 
denoted by 

( )ln 1
,

K
K

η
ζ

+
=                                (31) 

and the new functions for F, G, and Θ are written as 

( ) ( ) ,f Fζ η=                                (32) 

( ) ( ) ,g Gζ η=                                (33) 

( ) ( ) ,θ ζ η= Θ                                (34) 

then it can be easily shown that in terms of f, g, and θ, (26)-(28) become 

( ) ( )24 4 2 0,f f K f K Kf f f′′′′ ′′′ ′ ′′+ − + − − =                 (35) 
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( ) ( )4 2 2 0,g f K g K f K g f g′′′ ′′ ′ ′′+ − − − − =                 (36) 

0.f Prθ θ′′ ′+ =                                (37) 

The boundary conditions can be obtained from (29) and (30) with the help of 
(31)-(34). The transformed boundary conditions are given by 

( )at 0 : 0 0,fζ = =                           (38a) 

( )0 0,f ′ =                                (38b) 

( )0 0,g =                                (38c) 

( )0 0,θ =                                (38d) 

( )at large : 1,fζ ζ′ =                           (39a) 

( ) 0,f ζ′′ =                                (39b) 

( ) ( )exp 2 ,g Kζ ζ′ =                           (39c) 

( ) ( )2 exp 2 ,g K Kζ ζ′′ =                            (39d) 

( ) 1,θ ζ =                                (39e) 

where the primes now denote differentiation with respect to ζ. Equations 
(35)-(37) are much simplified compared to (26)-(28). However, they are still 
highly nonlinear and two additional initial conditions each, namely, ( )0f ′′′ , 

( )0f ′′  and ( )0g′′ , ( )0g′  are required for the numerical integration of (35) 
and (36). Fortunately, a first integral of (35) and (36) can be obtained, whereas 
such is not possible for (26) and (27). These integrals can be used to estimate one 
of the required initial conditions for the integrations of (35) and (36). 

Integrating (35) and (36) once from 0 to ζ and making use of (38a-38d) gives 

( ) ( )2
0

4 4 2 d 0 4 0 ,f ff f K f Kf ff f Kf C
ς

ζ ′′′ ′′ ′ ′′ ′ ′′ ′′′ ′′+ − − − + = − =  ∫     (40) 

( ) ( ) ( ) 10
4 2 2 2 d 0 4 0 .g fg f g K g f K g gf g Kg C

ς
ζ ′′ ′ ′ ′ ′ ′′ ′+ − − + − − = − =  ∫  (41) 

The constants C and C1 can be determined by evaluating (40) and (41) at large 
ζ and making use of (39a-39e) and the following conditions. 

Since the effect of displacement have not been included in the present formu-
lation for ( )f ζ , it follows from (39a) that 

( ) * at large ,f ζ ζ δ ζ= −                          (42a) 

where *δ  is the displacement thickness for the 0K ≠  but 0Ω =  case. Also, 
the condition of constant in the external flow gives 

( ) 0 at large .f ζ ζ′′′ =                         (42b) 

On the other hand, the displacement effect on ( )g ζ  can be easily analyzed 
and it will be carried out in the following analysis. 

From (39c) it can be shown that 

( ) ( ) ( )*1 exp 2 exp 2 at large ,
2

g K K
K

ζ ζ δ ζ = −                (43a) 
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if displacement effect on g (ζ) are neglected, and 

( ) ( )1 exp 2 1 at large ,
2

g K
K

ζ ζ ζ= −                      (43b) 

if displacement effect on ( )g ζ  are included. In the absence of curvature, (43a) 
reduces to the result given in [22] where displacement effect is not included, and 
(43b) reduces to the result presented in [4] [5] where displacement effect is ac-
counted for. Therefore, two sets of solutions for ( )g ζ  will be obtained de-
pending on whether ( )g ζ  is taken to satisfy (43a) or (43b) at large ζ in the 
evaluation of C1. 

With the conditions for f and g defined at large ζ, it can be easily shown that C 
and C1 are given by 

( ) ( ) 2
0

0 4 0 1 2 d 4 ,C f Kf K ff K
ζ

ζ′′′ ′′ ′′= − = − − +∫              (44) 

( ) ( )

( ) ( ) ( )

( ) ( ){ }

1

* * *

*
0

0 4 0
1 exp 2 1 2 exp 2

2
12 exp 2 exp 2 d ,

2

C g Kg

K K K
K

K gf K K
K

ζ

δ δ δ

ζ δ ζ

′′ ′= −

 = − − − 

 ′+ − −  ∫

         (45a) 

if displacement effect on g is neglected, or 

( ) ( ){ }* *
1 0

12 1 exp 2 exp 2 d ,
2

C K gf K K
K

ζ
δ ζ δ ζ  ′= − − − − −    

∫      (45b) 

if displacement effect on g is included. It should be pointed out that in the limit 
of 0K → , as expected, (45a,b) reduce to 1 0C =  and *

1 0C δ= − , respectively. 
In the limit of 0K → , (40) and (41) together with (44) and (45a) reduce to 

the equations analyzed in [22]. According to [4], the solution given in [22] can 
only account for the kinematic effect of external Ω . If the dynamic effect were 
to be analyzed, then the displacement effect on g cannot be neglected. In other 
words, C1 has to be evaluated from (45b). The second-order equation for vortic-
ity effect analyzed in [4] [5] is inhomogeneous. However, it was shown in [4] [5] 
that the inhomogeneous part of the second-order equation is given by *

0δ− . 
This is different from the present analysis. According to (45b), the result 

*
1 0C δ= −  is true only when 0K = ; in other words, only for two-dimensional 

plane stagnation-point flow. Therefore, the approximate treatment [4] [5] can 
only be interpreted as accounting for the displacement effect resulting from a 
two-dimensional plane stagnation-point flow, and not that at the leading edge of 
turbine blades. 

From this discussion, it can be seen that the present formulation for the stag-
nation-point flow problem including surface curvature and external Ω  effects 
indeed approaches the two limiting cases of 0K = , 0Ω ≠  and 0K = , 

0Ω = correctly. Therefore, the solutions obtained are exact and are valid for all 
values of Re, kδ, and Ω . In addition, the solutions correctly account for the 
boundary-layer displacement effect at the stagnation point. 
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Although one additional initial condition each is required for the integration 
of (40) and (41), these two equations are not convenient to solve numerically 
because they involve the integrals of f and g. As a result, (35) and (36) are solved, 
and (44) and (45) are used to estimate the initial values for ( )0f ′′  and ( )0θ ′  
once the initial guesses on ( )0f ′′  and ( )0g′  are known. The integrals in (44) 
and (45) are evaluated from the previous iterations for f and g. A fourth-order 
Runge-Kutta technique is used to start the integration of (35) - (37) using the 
approximate results given in [4] [5] as initial guesses for ( )0f ′′ , ( )0g′ , and 

( )0θ ′ . Subsequent integration of the equations is performed by a predic-
tor-corrector method that has accuracy in both predictor and corrector of 

( )5O ζ∆ . Details of this method are outlined in [25]. The complete integration 
of equations (35)-(37) is iterated with different initial conditions until the outer 
boundary conditions (39a)-(39e) are satisfied. The outer boundary conditions 
are considered satisfied when numerical values at the last two consecutive outer 
steps agree to within 52 10−× . When this condition is reached, convergent solu-
tions for f, g, and θ are obtained. 

6. Discussion of Results 

Equations (35)-(37) with boundary conditions (38) and (39) are solved for thir-
teen different values of K; namely, K = 0, ±0.015, ±0.03, ±0.05, ±0.1, ±0.2, ±0.3, at 
a Pr = 0.7. The integration of f, g, and θ are carried out to ζ = 10 for all values of 
K except K = -0.1, -0.2 and -0.3, and the outer boundary conditions are applied 
there instead of at ζ → ∞ . For large negative values of K, integrations are car-
ried out to ζ = 12; this choice of ζ is satisfactory because f, g, and θ approach 
their outer boundary conditions very rapidly even for large values of K . For all 
the cases considered, it is found that f, g, and θ approach their free stream value 
around ζ = 8. Hence, the choice of ζ = 10 or 12 for all integrations is more than 
adequate. 

Local heat transfer and skin friction can be evaluated from 

0

,
y

Tq
y

κ
=

 ∂
=  ∂ 
                            (46) 

0

.w
y

T
y

τ µ
=

 ∂
=  ∂ 

                          (47) 

With the help of (23), (25) and equations (32)-(34), (46) and (47) can be re-
duced to 

( ) ( )0 ,w
aq T T
ν

κ θ∞ ′= −                    (48) 

( ) ( )0 0 .w a aνxf gτ ρ µ′′ ′= − Ω                  (49) 

It can be seen from (49) that the effect of external Ω  is to shift the zero 
shear point away from the stagnation point, which is located at x = 0. The shear 
stress that is responsible for this shift is designated ( )w v

τ  and is given by, 
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( ) ( )0 .w v
gτ µ ′= − Ω                        (50) 

The calculated value is ( ) 1.4065w v
τ µ= − Ω  with displacement effect on g 

included, and is ( ) 0.6079w v
τ µ= − Ω  when displacement effect is neglected. 

These results show that ( )w v
τ  is not affected by K but depends on Ω  and the 

displacement. They validate the approximate analysis results of [4] [5], and show 
that, indeed, the effect of curvature on ( )0g′  is negligible. 

If the origin of the coordinate axes is located at the zero-shear point and the 
new x coordinate is denoted by x , then (49) can be rewritten as 

( )0 .a aνxfτ ρ ′′=                      (51) 

Denoting the local heat transfer and skin friction of the K = 0 case by a sub-
script “o”, the following relations for the ratio of local heat transfer and skin fric-
tion with and without curvature effect included are obtained 

( )
( )
0

,
0o o

q
q

θ
θ
′

=
′





                         (52) 

( )
( )
0

.
0o o

f
f

τ
τ

′′
=

′′
                         (53) 

These results are shown in Figure 2 and Figure 3, respectively. 
In the approximate analysis of [4] [5], the inviscid surface velocity in the im-

mediate vicinity of the stagnation point was expanded in the form 

( ) ( )2 3
11 12, 0 ,u x u x u x O x= + +                 (54) 

where 11u  has the dimension of (time)−1 and 12u  has the dimension of 
(length)−1 (time)−1. Using this expansion, the approximate analysis gives rise to 
the following expressions for the local heat transfer and skin friction ratios; 
namely, 

1 2
12

5 2
11

1 0 258356 1 810687 ,
o

ν uq . K .
q u

Ω
= − +





              (55) 

1 2
12

5 2
11

1 1 552226 4 743353 .
o

ν u. K .
u

τ
τ

Ω
= − +                (56) 

On first examination, it seems that the approximate results of [4] [5] are quite 
reasonable because one would indeed expect the effect of external Ω  to be felt 
by the local heat flux and the wall shear. The approximate analysis [4] [5] 
showed that, in addition to shifting the zero-shear point away from the stagna-
tion point, external Ω  also influences local heat transfer and skin friction. 
However, on closer examination, it could be seen that the inviscid solution 
(18)-(20) deduced from the present analysis gives an inviscid surface velocity of 

( ), 0u x ax=  only. This implies that the last term in (55) and (56) should be 
identically zero; i.e., 12 0u ≡ . In other words, assuming (54) for ( ), 0u x , as sug-
gested in [4] [5], is incorrect; at least in the immediate vicinity of the stagnation 
point. Setting 12 0u =  reduce the equations for local heat flux (55) and local 
shear stress (56) to: 
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1 0.258356 ,
o

q K
q

= −




                       (57) 

1 1.552226 .
o

Kτ
τ

= −                       (58) 

These results are shown in Figure 2 and Figure 3 for comparison. 
It can be seen in Figure 2 that the exact wall heat flux decrease with K for K > 

0 is faster than that predicted by the approximate analysis [4] [5], and the oppo-
site is true for K < 0. But as shown in Figure 3, there is no discernible difference 
between the exact result for wall shear stress and that obtained from the ap-
proximate analysis [4] [5]. However, on close examination, a consistent differ-
ence does exist, especially for large K. This is evident from the results tabulated 
in Table 1 where the values of ( )0f ′′  and ( )0θ ′  are reported to the fourth 
decimal point. The approximate results [4] [5], which are denoted by a subscript 
VD, are also listed in Table 1  for comparison. It can be seen that the approx-
imate results are correct for values of K up to 0.015K = . Thereafter, they de-
viate from the exact solutions. The variations are small for small values of K ,  
 

 
Figure 2. Wall heat flux, oq q  , at different values of K (red solid line—approximate 
analysis [4] [5]; blue dashed line—exact solutions). 
 

 
Figure 3. Wall shear stress, oτ τ , at different values of K (red solid line—approximate 
analysis [4] [5]; blue dashed line—exact solutions). 
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Table 1. A comparison of ( )0f ′′  and ( )0θ′  with approximate results deduced from 

[4] [5] for different values of K. 

 
K 

−0.3 −0.2 −0.1 −0.05 −0.03 −0.15 0 0.15 0.03 0.05 0.1 0.2 0.3 

(0)f ′′  1.8092 1.6188 1.4250 1.3286 1.2901 1.2613 1.2326 1.2039 1.1753 1.1372 1.0426 0.8553 0.6717 

( )0VDf ′′  1.8066 1.6152 1.4239 1.3283 1.2900 1.2613 1.2326 1.2039 1.1752 1.1369 1.0413 0.8499 0.6586 

( )0θ′  0.5268 0.5781 0.5078 0.5021 0.4996 0.4978 0.4959 0.4959 0.4920 0.4892 0.4820 0.4656 0.4457 

( )0VDθ ′  0.5343 0.5215 0.5087 0.5023 0.4997 0.4978 0.4959 0.4959 0.4920 0.4895 0.4895 0.4702 0.4574 

 
but increase as K  increases. These small differences are significant because in 
the course of numerically integrating (35) and (37), it is found that, if the ap-
proximate values are used for ( )0f ′′  and ( )0θ′ , the numerical results fail to 
approach the boundary conditions at ζ = 10 or 12 correctly and still satisfy the 
accuracy criteria imposed on ( )f ζ′′ , ( )f ζ′′′ , and ( )θ ζ . The situation gets 
worse when K  increases and at 0.1K ≥  the numerical computations fail to 
converge to a meaningful solution. Consequently, it can be concluded that the 
approximate analysis of [4] [5] gives the correct slope for oτ τ  and oq q   at K 
= 0 only. This was pointed out in [21] where the authors concluded that there is 
actually no justification for attaching any significance to the curvature of the 
curves for oτ τ  and oq q   when they are deduced from any one of the known 
approximate methods [19] [20] [21]. 

The higher wall shear given by the exact analysis is a direct consequence of the 
more favorable pressure gradient seen by the flow for a given K. From (2) it can be 
deduced that the pressure gradient at the wall along the flow direction is given by 

2
1

2
0 00

.
y yy

p u uν νk
x yy

ρ−

= ==

   ∂ ∂ ∂  = +    ∂ ∂∂    
                 (59) 

With the help of (23) and equations (31) - (33), it can be shown that (59) re-
duces to 

( ) ( ) ( ) ( )1 2

0

0 2 0 0 2 0 .
y

p a x f Kf ν g Kg
x

ρ−

=

∂  ′′′ ′′ ′′ ′= − − Ω −        ∂ 
     (60) 

Again, the effect of external Ω  is to shift the zero pressure gradient point 
away from the stagnation point. Consequently, (60) can be written as 

( )
( ) ( )0

2 0 2 0 ,yp x
f Kf

a xρ
=

∂ ∂
′′′ ′′= −                  (61) 

while the corresponding result deduced from the approximate analysis [4] [5] is 

( ) 0
2 1 1 880488 .y

VD

p x
. K

a xρ
=

∂ ∂ 
= − + 

  
                (62) 

These results are plotted in Figure 4. They show that the decrease in favorable 
pressure gradient with K, for K > 0, is faster for the exact solution than for the  
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Figure 4. Wall pressure gradient ratio, ( ) 2

0y
p x a xρ

=
∂ ∂ , at different values of K (red 

solid line—approximate analysis [4] [5]; blue dashed line—exact solutions). 
 
approximate analysis. The opposite is true for K < 0. 

Some sample plots of f, f ′ , f ′′ , g, g′ , and q for three different values of K 
are shown in Figures 5-10, respectively. They clearly demonstrate the effect of 
curvature on these profiles. Therefore, if the plane stagnation-point-flow solu-
tion is used as initial conditions for subsequent heat transfer calculations around 
turbine blades, the error incurred could be substantial, depending on the nose 
curvature and the external Ω . The latter effect would shift the zero shear point 
and the zero pressure gradient point away from the stagnation point, and this 
could have an impact on transition to turbulence and local separation. However, 
curvature would affect the wall shear, the wall heat flux, the pressure distribution 
around the leading edge and, more importantly, the boundary layer thickness in 
the vicinity of the stagnation point (Figure 6). This means that if the K = 0 solu-
tion is used as initial conditions, a wrong estimate of the velocity profile and 
momentum and displacement thicknesses would have been used for subsequent 
heat transfer calculation around turbine blades. The seriousness of this error is 
best illustrated by examining the variation of the displacement thickness ratio, 

* *
oδ δ , with K for the case 0Ω =  (Figure 11), which clearly underlines the 

importance of including surface curvature effect in the calculation of leading 
edge heat transfer. 

Finally, consider the determination of “a” which is as yet undefined. To ac-
complish this, consider the flow along the stagnation streamline toward a circu-
lar cylinder in the absence of external vorticity. In the vicinity of the stagnation 
point, the velocity along the stagnation streamline as given by (i) the plane stag-
nation-point flow inviscid solution, (ii) the present inviscid solution, and (iii) 
the potential solution around a cylinder, can be written as 

(i) 
p

oV ay
V V∞ ∞

= −  (plane wall) 

(ii) 
( )
( )

2 ln 1c
o aR y RV

V V R y∞ ∞

+
= −

+
 (curved wall) 
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Figure 5. Effects of surface curvature on f (red solid line—K = 0.3; blue dashed line—K = 
0; black solid line—K = −0.3). 
 

 
Figure 6. Effects of surface curvature on f ′  (red solid line—K = 0.3; blue dashed 
line—K = 0; black solid line—K = −0.3). 
 

 
Figure 7. Effects of surface curvature on f ′′  (red solid line—K = 0.3; blue dashed 
line—K = 0; black solid line—K = −0.3). 
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(a) 

 
(b) 

Figure 8. (a) Effects of surface curvature on g with displacement effect (red solid line—K 
= 0.03; blue dashed line—K = 0; black solid line—K = −0.03); Effects of surface curvature 
on g without displacement effect (red solid line—K = 0.03; blue dashed line—K = 0; black 
solid line—K = −0.03). 
 

(iii) 
( )
( )2

2o y y RV
V R y∞

+
= −

+
 (cylinder) 

where V∞  is the velocity far upstream and , ,p c
o o oV V V  are the velocities along 

the stagnation streamlines for the three cases (i), (ii), (iii) considered, respec-
tively. For very small y, the above relations reduce to 

2 ,
p c

o o oV V V y ay
V V V R V∞ ∞ ∞ ∞

= = = − = −                  (63) 

thus giving, 

2 .Va
R
∞=                           (64) 

Therefore, “a” can be determined from knowledge of the approach flow and 
the nose radius. 
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(a) 

 
(b) 

Figure 9. (a) Effects of surface curvature on g′  with displacement effect (red solid 
line—K = 0.03; blue dashed line—K = 0; black solid line—K = −0.03); (b) Effects of sur-
face curvature on g′  without displacement effect (red solid line—K = 0.03; blue dashed 
line—K = 0; black solid line—K = −0.03). 
 

At this point, it can be concluded that the thermal stagnation-point flow 
problem at the leading edge of axial flow turbine blades has been correctly and 
completely solved. This leads to exact solutions for the governing Navier-Stokes 
equations under the assumption of steady flow, small nose radius, constant ex-
ternal Ω , and any Re. 

7. Extention to Centrifugal Impeller Blades 

The present analysis is formulated for a stationary curved surface with a uniform 
flow having a constant Ω  approaching the surface. Therefore, it is directly ap-
plicable to leading edge problems in axial flow turbines where Coriolis force ef-
fect are absent in the viscous flow and heat transfer around turbine blades. 
However, this is not true for a radial flow machine, and it would seem that the 
present analysis could not be applied to study the leading edge problem of cen- 
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Figure 10. Effects of surface curvature on q (red solid line—K = 0.03; blue dashed 
line—K = 0; black solid line—K = −0.03). 
 

 
Figure 11. Effects of surface curvature on the displacement thickness ratio, * *

oδ δ , for 
the case Ω 0=  (red solid line—without displacement effect; blue dashed line—displace- 
ment effect included). 
 
trifugal impeller blades. Fortunately, there are similarities between a uniform 
shear flow toward a stationary surface and a uniform flow toward a rotating sur-
face that would allow the use of the present results for the study of flows toward 
rotating curved surfaces. 

To appreciate this, consider the steady thermal stagnation-point flow with a 
uniform velocity approaching a two-dimensional curved surface rotating at a 
constant speed of 2Ω . The equations governing the two-dimensional flow can 
be written with respect to a coordinate system attached to the rotating surface 
(Figure 12) and obeying the right-hand rule. If u and v are again used to denote 
the relative velocities along x and y direction, respectively, then the steady state 
equations can be written as 

( ) 0,x yu hv+ =                        (65) 
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Figure 12. Curvilinear co-ordinate system for a rotating surface 
with constant speed of Ω 2 . 

 

( ) 1 * 1 2 1 12 ,x x xx yy y xyuu v hu h v p ν h u hu ku k h u kh vρ− − − − + − Ω = − + + + − +    (66) 

2 1 1 2 1 12 ,*
x y y xx yy y xuv hvv ku h u hp ν h v hv kv k h v kh uρ− − − − + − + Ω = − + + + − −   (67) 

1 ,x y xx yy yuT hvT h T hTv kTα − + = + +                     (68) 

where 
2

* 21 ,
2 2

p p rρ Ω = −  
 

                    (69) 

is the reduced pressure and r is the radial distance from the axis of rotation. As 
before, k is taken to be constant. Since the flow is two-dimensional, there is only 
one component of vorticity and it is normal to the plane of flow. This compo-
nent is given by 

( )1 1 ,x yh v h hu− −− = Ω                    (70) 

in the inviscid flow region. 
With the problem thus formulated, it can be easily seen that the inviscid flow 

is again governed by the Poisson Equation (5) with boundary conditions given 
by (8) and (9). Therefore, the inviscid velocity field is given by (18) and (19) and 
the pressure field is obtained by integrating (66) and (67) with the kinematic 
viscosity 0ν ≡ . The result is 

( )222 2 2 2 2 4

2 2 2 2 2 2

ln1 4 ln 1 1 .
2 4 2

* *
o

a ha x a x h h h hp p
kh h k h k h

ρ
 Ω − + Ω +

− = + − + 
  

   (71) 
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By cross-differentiating Equations (66) and (67) to eliminate *p , it can be 
shown that the resulting vorticity equation is again given by (21) because the 
Coriolis force terms are zero as a result of the continuity equation (65). The 
boundary conditions are the same as (22). In view of this, the velocity field 
around the stagnation point of a rotating curved surface is the same as that 
around the stagnation point of a stationary curved surface with an approach flow 
having a constant Ω  equal to twice the rotational speed. Since the temperature 
field as defined by (68) only depends on the velocity field, the resulting solution 
of (68) would also be the same as that obtained before, provided the thermal 
boundary conditions remain the same. The pressure field will be different and is 
given by the integral of (66) and (67) once the velocity field is known. 

From the above discussion, it can be seen that the present exact analysis can 
also be extended to study the steady heat transfer and viscous flow around the 
stagnation point at the leading edge of centrifugal impeller blades. 

8. Conclusions 

The problem of a steady thermal stagnation-point flow at the leading edge of 
an axial flow turbine under the influence of a constant external Ω  has been 
analyzed. It is shown that exact solutions to the steady governing Navier- 
Stokes equations can be obtained if the nose radius is constant. Heat transfer 
and skin friction results obtained for the curvature parameter K ranging from 

0.3 0.3K− ≤ ≤  show that, within this range, the linear relation between wall 
shear and K given by the approximate analysis of [4] [5] is essentially correct. 
However, the decrease of wall heat flux with K for K > 0 is faster than that pre-
dicted in [4] [5], and the opposite is true for K < 0. Consequently, the exact re-
sults show that the approximate analysis is correct only in the determination of 
the slopes of the variation of wall shear and local heat transfer with K at K = 0. 

External Ω  gives rise to a wall shear stress that is responsible for shifting the 
zero skin friction point away from the stagnation point. Although the wall shear 
is a function of external Ω  and displacement, it is independent of curvature. 
Besides this effect, external Ω  has no other effect on wall shear and local heat 
transfer. This is contrary to the results given in [4] [5], which revealed that ex-
ternal Ω  also has a second-order effect on wall shear and wall heat flux. This 
error in the analysis detailed in [4] [5] could be traced to its incorrect proposed 
expansion for the inviscid surface velocity in the immediate vicinity of the stag-
nation point. If a correct expansion is proposed, the approximate results are 
consistent with the exact solutions, at least to the lowest order. 

Surface curvature also influences the wall static pressure distribution in the 
vicinity of the stagnation point. It is found that convex curvature decreases the 
favorable pressure gradient, but concave curvature increases it. This implies that 
the flow near the leading edge of turbine blades (whose curvature is convex) will 
be more susceptible to laminar separation than the corresponding flow toward a 
plane surface. In addition, surface curvature affects the velocity and temperature 
profiles and the thickness of the viscous layer. All these underline the impor-
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tance of including surface curvature and external Ω  effect in the heat transfer 
calculation around turbine blades. 

Finally, it is shown that the present analysis can also be applied to study the 
steady leading edge stagnation-point flow problem in centrifugal impeller 
blades. With the exception of the pressure field, the solution to the impeller 
blade problem is identical to that of the axial flow turbine blade. 
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a1   Arbitrary constant defined in Equation (13) 
a2   Arbitrary constant defined in Equation (14) 
a   Arbitrary constant defined in Equation (16) 
C, C1  Integration constants defined in Equation (40) and Equation (41) 
Cp   Specific heat of fluid at constant pressure 
f(ζ)   Transformed similar velocity function defined in Equation (32) 
F(η)   Similar velocity function defined in Equations (23) and (24) 
g(ζ)   Transformed similar velocity function defined in Equation (33) 
G(η)  Similar velocity function defined in Equation (23) 
h = 1 + ky  Metric coefficient 
k   Surface curvature 

K k aν=  Normalized surface curvature 
L   Characteristic length 
p   Static pressure 

0p    Static pressure at the stagnation point 
Pr ν α=  Prandtl number 
q    Wall heat flux 

0q    Wall heat flux for the k = 0 case 

rRe U L ν=  Reynolds number 
T   Fluid temperature 
Tw   Wall temperature   
T∞    Fluid temperature far away from the wall 
u   Velocity along x-direction 
Ur   Characteristic velocity 
v   Velocity along y-direction 
x, y   Coordinates measured along the wall and normal to the wall, re-
spectively 
α    Thermal diffusivity of fluid 
δ   Thickness of viscous layer 
δ ∗    Displacement thickness for the 0Ω =  case 

y aη ν=  Similarity variable 

( )ηΘ   Nondimensional temperature function defined in Equation (25) 

( )θ ζ   Transformed nondimensional temperature function defined in 
Equation (34) 
κ    Thermal conductivity of fluid 
μ   Viscosity of fluid 
ν   Fluid kinematic viscosity 
ρ   Fluid density 
τw   Wall shear stress 
τ    Modified wall shear stress 

0τ    Modified wall shear stress for the k = 0 case 
Ψ   Stream function for inviscid flow 
Ω   External vorticity 

( )ln 1 K Kζ η= +  Transformed similarity variable 
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