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Abstract 
The accuracy of conventional superposition or convolution methods for scat-
ter correction in kV-CBCT is usually compromised by the spatial variation of 
pencil-beam scatter kernel (PBSK) due to finite size, irregular external con-
tour and heterogeneity of the imaged object. This study aims to propose an 
analytical method to quantify the Compton single scatter (CSS) component of 
the PBSK, which dominates the spatial distribution of total scatter assuming 
that multiple scatter can be estimated as a constant background and Rayleigh 
scatter is the secondary source of scatter. The CSS component of PBSK is the 
line integration of scatter production by incident primary photons along the 
beam line followed by the post-scattering attenuation as the scattered photons 
traverse the object. We propose to separate the object-specific attenuation 
term from the line integration and equivalently replace it with an average val-
ue such that the line integration of scatter production is object independent 
but only beam specific. We derived a quartic function formula as an approx-
imate solution to the spatial distribution of the unattenuated CSS component 
of PBSK. The “effective scattering center” is introduced to calculate the aver-
age attenuation. The proposed analytical framework to calculate the CSS was 
evaluated using parameter settings of the On-Board Imager kV-CBCT system 
and was found to be in high agreement with the reference results. The pro-
posed method shows highly increased computational efficiency compared to 
conventional analytical calculation methods based on point scattering model. 
It is also potentially useful for correcting the spatial variant PBSK in adaptive 
superposition method. 
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1. Introduction 

In kV cone beam CT, the 2D projection on the planar detector is contaminated 
by significantly increased scatter due to the large irradiated object volume com-
pared to conventional CT modalities with fan-beam geometry. The increased 
scatter can be comparable to the primary X-ray transmission in magnitude and 
thus severely degrades image quality by introducing quantification errors and 
image artifacts [1] [2] [3].  

The X-ray scatter consists of any secondary photons other than the incident 
primary photons and is mainly produced by direct photon interactions with 
medium, including Compton (incoherent) and Rayleigh (coherent) scattering. 
In Compton scattering, an incident photon transfers part of its energy to an 
outer shell atomic electron and is deflected from its incident direction. In Ray-
leigh scattering, the incident photon only changes its direction with no energy 
transferred. Analytic formulas have been discovered to calculate the distribu-
tion of the first-order Compton scatter using the Klein-Nishina formula and 
Rayleigh scatter using the Thomson formula [4]. Besides, the scattered photon 
may experience multiple successive interactions with medium before arriving 
at the detector, which is referred as multiple scatter. In kV-CBCT, the distri-
bution of multiple scatter is generally smooth and can be approximately calcu-
lated as a constant background [2] [5] [6] [7] [8]. As Compton scattering do-
minates photon interactions in kV-CBCT, in general the spatial distribution of 
scatter is mainly determined by the Compton single scatter (CSS) component 
[2] [6].  

Many methods have been proposed and developed for determining the spatial 
distribution of scatter in CBCT including: measurements using beam-stopper-array 
[9], moving blocker [10] or primary modulator [11]; Monte Carlo simulations 
with optimized code package [12] [13], or GPU-based high computational effi-
ciency platform [14] [15]; and analytical calculations with projection-based pen-
cil-beam-scatter-kernel (PBSK) models [16] [17], or image-based single scatter 
calculation combined with multiple scatter estimation [5] [6] [7] [18] [19]. For 
the mathematical model based approaches for scatter correction (Monte Carlo 
simulations and analytical calculations), computational cost and quantification 
accuracy are the two primary competing factors under consideration for per-
formance evaluation. In general, PBSK based superposition or convolution me-
thods have the highest computational efficiency but lowest accuracy for scatter 
correction, while Monte Carlo simulations and analytical single scatter calcula-
tions are on the other end of the spectrum.  
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In this study, we propose an analytical model to calculate the spatial distribu-
tion dominant CSS component of the PBSK aiming to improve the computa-
tional accuracy of the PBSK based superposition method for scatter correction. 
The CSS component of the PBSK can be analytically formulated as line integra-
tion over the pencil-beam range. In the proposed method, the attenuation term 
is separated from the line integration and approximated by using an average at-
tenuation path length and an effective attenuation coefficient. For the line inte-
gration of the unattenuated CSS, we derived a compact formula for easy imple-
mentation (Section 2.1). We also introduced the effective scattering center on 
the PBSK beam line as the point source of the unattenuated CSS so that the av-
erage attenuation could be efficiently calculated (Section 2.2). Exact calculations 
of the CSS of the PBSK with varying parameter settings and the integrated CSS 
from point scattering targets in a slab phantom were benchmarked to evaluate 
the performance of the proposed model (Section 2.3).  

2. Methods and Materials 

Figure 1 shows the schematic of calculating the scatter kernel from a pencil-beam. 
The distance from the X-ray source to the isocenter of the imaging system is s 
and the height from isocenter to the detector plane is h. The range of the pen-
cil-beam is from x− to x+ with the origin defined at the isocenter. The pen-
cil-beam has a finite size of cross section area Apb when projected at the detector 
plane. Denoting ( )d ,S x rΦ  as the differential fluence of the CSS produced 
from a beam segment at x to point P with off-axis distance r on the detector 
plane, the spatial distribution of the CSS can be written as a line integration as 
Equation (1).  

( ) ( ) ( ) ( ), ,d e, S
x x r x r

S Sx
r x r µ+

−

− ⋅Φ = Φ ⋅∫                   (1) 

The attenuation path length ( ),x r  and attenuation coefficient ( ),S x rµ  of 
the scattered photons when traversing the object are dependent of the external 
contour and heterogeneity of the object, which makes the scatter kernel ob-
ject-dependent and spatially variant.  

We assume that for a particular PBSK, the variations of the attenuation path 
length and attenuation coefficient of the CSS are smooth with respect to the 
beam segment x and the differential attenuation term can be equivalently re-
placed by an average value that is independent of the integration variable x. Ma-
thematically, the above line integration is approximately calculated using Equa-
tion (2). 

 ( ) ( ) ( ) ( )( ) ( ) ( ), ,d e d e, ,S S
x xx r x r r r

S Sx x
x r x rµ µ+ +

− −

− ⋅ − ⋅Φ ⋅ ≈ Φ ⋅∫ ∫ 

         
 (2) 

Hereinafter, we denote the first part in the bracket, on the right side of Equa-
tion (2), as the “unattenuated CSS component of PBSK” and the second term as 
the “post-scattering attenuation of CSS”. In the following, we will derive analyt-
ical formulas as approximate solutions for the two parts.  
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Figure 1. The schematic diagram for calculating the Compton single scatter (CSS) com-
ponent of the pencil-beam scatter kernel (PBSK). The scatter kernel represents the scatter 
distribution on the detector plane from the line integration of scatter production along 
the beam line (range (x−,x+) as shown in the diagram).  

2.1. The Unattenuated CSS Component of PBSK 

Considering the beam segment as a point target, the number of Compton pho-
tons produced from segment B to pixel P, as shown in Figure 1, can be given by: 

( ) ( ) ( ) ( )dd , d d
dS pri x e xN x r x x xσ θ λ= Φ ⋅ ⋅ ⋅ ⋅ Ω
Ω

            (3) 

The parameter ( )pri xΦ  is the fluence of incident primary photons at the 

segment x, ( )d
d x
σ θ
Ω

 is the Compton interaction cross section (given by the  

Klein-Nishina formula [4]), ( )e xλ  is the linear electron density and d xΩ  is 
the solid angle subtended by the pixel area (Apxl) with respect to segment B. They 
are given by the following equations.  

( ) ( )
2

e x x
pri P

s hx
s x

µ −− + Φ = Φ ⋅ ⋅ − 
                  (4) 

P area Apxl

area Apb

s

r

x=0

Detector

X-ray
source

h

θx

x-

x+

B

O

S

https://doi.org/10.4236/ijmpcero.2018.72019


J. Liu, J. D.Bourland 
 

 

DOI: 10.4236/ijmpcero.2018.72019 218 Int. J. Medical Physics, Clinical Engineering and Radiation Oncology 

 

( )
2

e e pb
s xx A
s h

λ ρ
− = ⋅ ⋅  + 

                    (5) 

( )
( )22

cos
d pxl x

x

A

r h x

θ⋅
Ω =

+ +
                      (6) 

( ) ( )
22

20d sin
d 2x x

r h h h
h h h

σ ν ν ν
θ θ

ν ν ν
′ ′   = + −   ′Ω    

             (7) 

In above, PΦ  is the projection fluence of the primary beam at the detector 
plane, µ is the linear attenuation coefficient of the primary photons, ρe is the vo-
lumetric electron density, r0 is the classic electron radius, hν and hv' are the 
energies of incident and scattered photons, respectively. The relation between hν 
and hv' is [4]: 

( )( )2
0

1

1 1 cos x

h
hh

m c

ν
νν θ

′
=

+ −
                   (8) 

where 2
0m c  is the electron rest energy (~511 keV).  

We define short denotations for the relative photon energy and the cosine of 
scattering angle as following: 

( )2
0

, cos x
hE p

m c
ν

θ= =
                    

 (9) 

Substituting Equations (4)-(9) into Equation (3), the differential fluence of 
CSS can be given by Equation (10). 

( ) ( ) ( )

( )
( )

2
0

22

d , ed , d
2

x x
S

S e pb P
pxl

N x r rx r A g p x
A r h x

µ

ρ
−− 

Φ = = ⋅ ⋅ ⋅Φ ⋅ ⋅ ⋅ 
+ +     

 (10) 

The term g(p) is a function of p and relative photon energy E, given by Equa-
tion (11).  

( ) ( )
2

31 1
1 1

pg p p Ep p
E Ep E Ep

   
= + − +   + − + −   

         (11) 

We derived that under the conditions of ( )1 1E p− <  and 1r
h x

<
+

, the in-

tegration of ( )d ,S x rΦ  as in Equation (10) over ( ),x x x− +∈  can be approx-
imated to be a compact form (Equation (12)) as a quartic function of off-axis 
distance r (see the details in the Appendix).  

( ) ( ) ( )
2

2 40
0 2 4d ,

2
x

S S e pb Px

rr x r A C C r C rρ+

−

 
Φ = Φ ≈ ⋅ ⋅ ⋅Φ ⋅ − ⋅ + ⋅ 

 
∫    (12) 

The coefficients Ck (k = 0, 2, 4) are independent of off-axis distance r and 
given by the following:  

( )

( )

( )
( )

( )

0 2

2 4

e2 d

e2 2 d

x x
x

x

x x
x

x

C x
h x

C E x
h x

µ

µ

−
+

−

−
+

−

−

−

= ⋅
+

= + ⋅
+

∫

∫
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( )

( )
2

4 6

7 11 25 e d
4 2 4

x x
x

x
C E E x

h x

µ −
+

−

− = + + ⋅ 
  +

∫               (13) 

Upon given incident photon energy and imaging system geometry, these coef-
ficients are specified by the pencil-beam range and can be pre-calculated as a 
lookup table with varying pencil-beam lengths.  

In the coordinate system of the detector plane, we define u  as the calculating 
point of a detector pixel and u′  as the projection position of a pencil-beam. The 
general formula to calculate the unattenuated CSS at u  contributed by pen-
cil-beam at u′  is:  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

2 40
0 2 4,

2S e pb P
ru u A u C u C u u u C u u uρ

 
′ ′ ′ ′ ′ ′ ′Φ = ⋅ ⋅ ⋅Φ ⋅ − ⋅ − + ⋅ − 

 

            

(14) 

2.2. The Post-Scattering Attenuation of CSS 

We assume the average post-scattering attenuation term (as in Equation (2)) can 
be equivalently calculated using the attenuation path length from a specific point 
on the beam line to the calculating point r and the corresponding attenuation 
coefficient determined by the scattering angle formed between them. We define 
this specific point as the “effective scattering center” of the integrated unatte-
nuated CSS. The position of the effective scattering center on the beam line can 
be solved from Equation (15) as an approximate solution (see the details in the 
Appendix): 

( )

( )
( )
( )

( )

( ) ( )
( )

2 2 2

2 2

2

, e
d

e ,  with  ,
,

d

x
x

x
x r

x

x

w x r
x

h x h x r
w x r

w x r h x rx
h x

µ

µ

+

−

+

−

⋅

⋅

⋅

+ + −
= =

+ +
+

∫

∫
       (15) 

Similar to the quartic formula coefficients Ck (k = 0, 2, 4) (Equation (13)), the 
position of effective scattering center as a function of r can be pre-calculated as a 
lookup table with varying pencil-beam lengths for given incident photon energy 
and imaging system geometry. 

2.3. Model Evaluation 

To evaluate the performance of the derived analytical solutions as described in 
the preceding sections, we used the specifications of the Varian On-Board Im-
ager (OBI) system (Varian Medical Systems, Palo Alto, CA) [20] in the following 
calculations. For the OBI kV-CBCT system, the X-ray tube is capable of gene-
rating spectra in the range of 40 - 130 kVp and the most often used voltages in 
clinical protocols are 100 kVp and 125 kVp with the effective mean energies 51 
keV and 58 keV, respectively. The isocenter-to-detector height (h) is in the range 
of 40 - 70 cm with the standard h being 50 cm. In addition, the source-to-isocenter 
distance (s) is 100 cm and the active detector area is 40 × 30 cm2. 
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2.3.1. The Quartic Formula 
The accuracy of using the quartic formula (Equation (12)) to approximate the 
exact line integration of the unattenuated CSS is dependent of three parameters 
including the primary photon energy (hν), the isocenter-to-detector height (h) 
and the size of the object (x−, x+). The profiles of the unattenuated CSS were cal-
culated and compared between the quartic formula solutions and the exact line 
integrations with varying hν (40 keV, 60 keV, 100 keV and 130 keV), h (40 cm, 
50 cm, 60 cm and 70 cm) and (x−, x+) ((−5, 5) cm, (−10, 10) cm, (−15, 15) cm 
and (−20, 20) cm).  

2.3.2. The Effective Scattering Center  
As the object external contour plays a major role in determining the 
post-scattering attenuation of the CSS, we select two representative types of ex-
ternal contour—round and flat—for evaluating the performance of the effective 
scattering center method for calculating the average post-scattering attenuation. 
The profiles of CSS as a function of off-axis distance r along the radial and axial 
cross sections of a cylinder (corresponding to circular and flat contours, respec-
tively) with three different sizes (10, 20 and 40 cm in diameter) are calculated 
using the exact differential attenuation term and the effective scattering center 
method, with comparisons made.  

2.3.3. Phantom Experiment 
A preliminary evaluation of applying the proposed model as an analytical solu-
tion for the CSS distribution from a volumetric object was performed on a slab 
water phantom (30 cm in thickness) with an incident cone beam X-rays (26 × 20 
cm2 at the isocenter plane and ~40 × 30 cm2 at the detector plane). The primary 
photon energy is 58keV, which is the mean energy of the 125 kVp X-ray tube voltage 
used in the Varian OBI system. The SAD is 100 cm and the isocenter-to-detector 
height is 50 cm.  

The benchmarked CSS distribution was calculated by conventional analytical 
method using point scattering target, in which the irradiation volume is discre-
tized as voxels and the CSS contribution from each voxel to each detector pixel is 
calculated analytically with exact implementation of the Klein-Nishina formula 
followed by exact calculation for the attenuation term [7].  

The relative root-mean-square-error (RMSE) in the CSS distribution is used 
as the metric to assess the accuracy of the proposed model. The RMSE is calcu-
lated using Equation (16), with ,model ref

S SΦ Φ  the CSS distribution on the detec-
tor (pixel dimension is jin n× ) calculated by the proposed model and the ben-
chmarked method, respectively.  

( ) ( )
( )

2

,

, ,1RMSE 100%
,

model ref
S S

ref
i ji j S

i j i j
n n i j

 Φ −Φ
= ⋅  ⋅ Φ 

∑
       

 (16) 

The computations were performed in MATLAB (MathWorks, Inc., Natick, 
MA) with a single processor (Intel® i5, 2.4 GHz, 4 GB RAM).  
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3. Results 
3.1. Evaluation of the Quartic Formula 
3.1.1. Dependence of Photon Energy 
The profiles of CSS calculated by the quartic formula (Equation (12)) and the ex-
act line integration for photon energies 40 keV, 60 keV, 100 keV and 130 keV are 
shown in Figure 2. The other parameter settings are s = 100 cm, h = 50 cm and 
(x−, x+) = (−10, 10) cm. The deviation of the quartic formula compared to the ex-
act line integration increases with the off-axis radius and slightly increases with 
photon energy. The maximum differences at r = 20 cm are +1.3%, +1.6%, +1.9% 
and +2.2% for hν =40 keV, 60 keV, 100 keV and 130 keV, respectively.  

3.1.2. Dependence of Isocenter-to-Detector Height 
Figure 3 shows the CSS profiles calculated by the quartic formula and the exact 
line integration for four different h values (40 cm, 50 cm, 60 cm and 70 cm), with 
the same primary photon energy 58 keV and beam range (−10, 10) cm. The devi-
ation between the quartic formula and the exact line integration rapidly decreases 
with h. The maximum differences at r = 20 cm are +6.1%, +1.5%, +0.5% and 
+0.2% for h = 40 cm, 50 cm, 60 cm and 70 cm, respectively.  

3.1.3. Dependence of the Length of Pencil-Beam 
Figure 4 shows the CSS profiles calculated by the quartic formula and the exact 
line integration for four different pencil-beam ranges (−5, 5) cm, (−10, 10) cm, 

 

 
Figure 2. The profiles of the unattenuated CSS component of PBSK calculated by exact 
line integration (solid) and the quartic formula (dashed) for incident primary photon 
energy at 40 keV, 60 keV, 100 keV and 130 keV, with h = 50 cm and beam length 20 cm. 
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Figure 3. The profiles of the unattenuated CSS component of PBSK calculated by exact 
line integration (solid) and the quartic formula (dashed) for h = 40 cm, 50 cm, 60 cm and 
70 cm, with incident primary photon energy 58 keV and beam length 20 cm. 

 

 
Figure 4. The profiles of the unattenuated CSS component of PBSK calculated by exact 
line integration (solid) and the quartic formula (dashed) for pencil-beam ranges of (−5, 5) 
cm, (−10, 10) cm, (−15, 15) cm and (−20, 20) cm, with incident primary photon energy 58 
keV and h = 50 cm. 
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(−15, 15) cm and (−20, 20) cm with the same hν = 58 keV and h = 50 cm. The 
ranges of pencil-beam correspond to nominal object diameters 10 cm, 20 cm, 30 
cm and 40 cm, respectively. With larger pencil-beam range, the quartic formula 
increasingly matches the exact line integration. The maximum differences at r = 
20 cm are +2.1%, +1.5%, +1.0% and +0.7% for beam length = 10 cm, 20 cm, 30 
cm and 40 cm, respectively. 

3.2. Evaluation of the Model of Effective Scattering Center 

The effective scattering center position on the pencil-beam as a function of 
off-axis distance was determined using Equation (15) for three different pen-
cil-beam ranges (−5, 5) cm, (−10, 10) cm and (−20, 20) cm, with the correspond-
ing cylinder radius (R) of 5 cm, 10 cm and 20 cm, respectively. Figure 5 shows 
the attenuated CSS profiles calculated using the exact attenuation term and the 
average attenuation based on the effective scattering center model. The primary 
photon energy is 58 keV and h = 50 cm. The differences are in the ranges of 
[−0.5%, 0.5%], [+0.9%, +1.6%] and [+1.5%, +9.3%] along the radial cross section 
and [−1.4%, +0.5%], [−5.0%, +0.9%], [−11.3%, +1.5%] along the axial cross sec-
tion for cylinder radius of 5 cm, 10 cm and 20 cm, respectively. The deviation of 
using the effective scattering center for average attenuation increases with the cy-
linder size.  

 

 
Figure 5. The profiles of attenuated CSS component of PBSK along the radial and axial directions of long 
cylinders with different radius of 5 cm, 10 cm and 20 cm, calculated by exact attenuation term (solid) and 
using the effective scattering center model (dashed). 
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3.3. Total CSS Distribution of Incident Cone  
Beam on the Slab Phantom 

In the benchmarked calculations, the phantom volume within the X-ray field 
consists of [26, 20, 30] voxels with voxel size 1 × 1 × 1 cm3 and in the model cal-
culations, the irradiated phantom volume consists of [26, 20] pencil-beams with 
beam size 1 × 1 cm2. The CSS distribution on the detector plane consists of [80, 
60] pixels with pixel size 0.5 × 0.5 cm2. Figure 6 shows the CSS distributions by 
the benchmarked calculation and the proposed model, respectively. The RMSE is 
3.8%, indicating high agreement achieved. The computational time by the model 
was about 30 times less than the benchmarked method.  

 

 
(a) 

 
(b) 

Figure 6. The CSS distribution on the projection plane (40 × 30 cm2, pixel size 0.5 × 0.5 
cm2) with cone beam field (26 × 20 cm2 at SAD = 100 cm) incident on the slab phantom 
(thickness 30 cm) calculated by (a) the point target method as the benchmarked result and 
(b) the proposed analytical framework. The pixel value represents the scatter-to-primary ra-
tio. And the RMSE is 3.8%. 
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4. Discussions 

The general form of PBSK applied by superposition or convolution methods for 
scatter calculation is usually obtained by measurements or Monte Carlo simula-
tions using large slabs or disks and has symmetric, spatially invariant formula-
tion [16] [17]. However, the realistic objects in question for scatter correction 
usually deviate from slabs or disks in contours, size and medium homogeneity, 
causing asymmetric deformation of the PBSK. The method proposed in this 
study explores an analytical approach for correcting the spatial variation of the 
PBSK, yet only focusing on the CSS component which is generally dominant in 
spatial distribution over the other components of the PBSK.  

The quartic formula as an approximation of the line integration of unatte-

nuated CSS was derived under the conditions of ( )1 1E p− <  and 1r
h x

<
+

. In  

kV-CBCT, the maximum photon energy is 130keV and the maximum value of E 
is 130/511 = 0.25. As shown in Figure 2, the accuracy of the quartic formula va-
ries slightly with different photon energies. Because the high order terms of  

r
h x+

 are truncated in the approximation, the error of the quartic formula in-

creases with the off-axis distance r. Assuming h = 50 cm and the object size less 

than 40 cm in diameter, the condition of 1r
h x

<
+

 may be violated at off-axis  

distance r beyond 30 cm for beam segment (x) at the lower end of the pen-
cil-beam and increased error can be caused by using the quartic formula. How-
ever, as the detector active area has a maximum size of 40 × 30 cm2, such in-
creased error only happens at the periphery of the detection area. Using larger 
isocenter-to-detector height (h) can increase the accuracy of the quartic formula, 
as shown in Figure 3. Also the quartic formula matches the exact line integra-
tion better for larger beam length, as shown in Figure 4. With increasing beam  

length, the value of r
h x+

 is reduced for beam segments at the upper end  

which have more contribution to scatter due to larger incident primary photon 
fluence, and thus the truncation error is reduced as well.  

We introduced the concept of effective scattering center as the equivalent 
scatter point source of the PBSK for calculating the average post-scattering at-
tenuation. An analytical equation (Equation (15)) was obtained to determine the 
position of the effective scattering center with a first-order approximation made. 
Figure 5 shows that the deviation of such method from the exact results in-
creases with the size of the object. The subtle inaccuracy in determining the lo-
cation of the effective scattering center introduces increased error in larger ob-
ject because the attenuation path length is increased and plays an increasing role 
in modulating the magnitude of the scatter. By comparing the two different 
types of object contours (round and flat), the performance of the effective scat-
tering center model has insignificant variations, as shown in Figure 5. It indi-
cates that this model may be applied as a general solution with negligible de-
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pendence on the object contour.  
The scope of the current study has not considered medium heterogeneity in 

analytical calculation of the CSS component of PBSK. However, as the ob-
ject-specific variance of the PBSK is determined by the post-scattering attenua-
tion term, the impact of medium heterogeneity may be accounted for by ray 
tracing the attenuation path length from the effective scattering center. In addi-
tion, the electron binding effect in Compton interaction was considered as a 
secondary effect to the distribution of CSS and a correction factor may be in-
cluded in future work.  

5. Conclusion 

The method proposed in this study shows highly increased computational effi-
ciency compared to the conventional analytical calculation method based on 
point scattering model. It is also potentially useful for correcting the spatial va-
riant PBSK in adaptive superposition calculation for the purpose of scatter cor-
rection in kV-CBCT. 
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Appendix 
1.1. Derivation of the Quartic Formula of φS(r) (Equation (12)) 

From Equation (11), g(p) can be rewritten as:  

( ) ( )1 2 3 4 52 3

1 1 11 1 1 11 1 1
g p f p f f f f

p p pE E E

= − + + + +
   − − − − − −   
   

 (A1) 

The coefficients fj (j = 1, 2, 3, 4, 5) are 

1 2 32 3 2 4 3 2

4 55 4 3 4 3

1 2 3 1 3 6 1 1, , ,

1 3 1 1 1,

f f f
E EE E E E E E

f f
E E E E E

= = + − = + + −

= + + = − −
        (A2) 

Applying Taylor series expansion for the last three terms in Equation (A1): 

( ) ( )( )

( ) ( ) ( )( )

( ) ( )( ) ( )( )

0

2
2

0

3
3

0

1 1 111

1 1 1 1
11

1 21 1 1
211

nn

n

nn

n

nn

n

E E p
p

E

E n E p
p

E
n n

E E p
p

E

∞

=

∞

=

∞

=

= − ⋅ − −
− −

= ⋅ − + −
 − − 
 

+ +
= − ⋅ − −

 − − 
 

∑

∑

∑

       (A3) 

By substituting Equations (A2) and (A3) into Equation (A1), g(p) then be-
comes: 

( ) ( ) ( ) ( )( )0 1
2

1 1 1
nn

n
n

g p p E pβ β β
∞

=

= + ⋅ − + − −∑           (A4) 

The coefficients are given as following:  

( )

0 1 2 2

2
3 2 3 2

3 82, 4 4, 7,

1 1 1 3 5 3 2 3 1 2 for 2 .
2 2 2 2n

E
EE

n n n
E E EE E E E

β β β

β

= = + = + +

     = + + + + + + − − + + ≥     
     

(A5) 

Because of 1lim 1n n nβ β→∞ + =  , the series in Equation (A4) is convergent 
when ( )1 1E p− <  and the high order terms (n > 2) are truncated hereinafter.  

The Taylor series expansion for p (the cosine of the scattering angle, as in Eq-
uation (9)) is:  

( )

2 4 6

22

1 31
2 8

h x r r rp o
h x h x h xr h x

 +      = = − + +        + + +     + +  
    (A6) 

Then g(p) can be written in the form of ( )r h x+  as following: 

( ) ( )
2 4 6

27 7 92 2 2
4 2 4

r r rg p E E E o
h x h x h x

       = − + + + + +         + + +       
 (A7) 
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Also, 

( ) ( )

2 4 6

2 22

1 1 1 r r ro
h x h x h xr h x h x

       = − + +        + + +     + + +    
   (A8) 

Thus, 

( )
( )

( )
( )

22

2 4 6
2

2

1 7 11 252 2 4
4 2 4

g p

r h x

r r rE E E o
h x h x h xh x

+ +

        = − + + + + +         + + +      +    

(A9) 

Under the condition of ( ) 1r h x+ <  and neglecting the high order terms (≥6) 
in Equation (A9), the differential form of Compton single scatter ( )d ,S x rΦ  as 
in Equation (10) is given as a quartic function of r as following: 

( ) ( ) ( ) ( )
2

2 40
0 2 4d , d

2S e pb P
rx r A c x c x r c x r xρ

 
 Φ ≈ ⋅ ⋅ ⋅Φ ⋅ − ⋅ + ⋅   

 
  (A10) 

The coefficients ck(x) with k = 0, 2, 4 are given as following: 

( )
( )

( )
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2 4
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4 6
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c x
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c x E E
h x

µ

µ

µ

−

−

−

−

−

−

= ⋅
+

= + ⋅
+

 = + + ⋅ 
  +

             (A11) 

1.2. Derivation of the Position of the Effective Scattering Center 
(Equation (15)) 

First consider the scatter reaching the detector point on the pencil-beam’s axis 
(i.e. r = 0). The scatter produced from segment x is  

( )
( )2

ed , 0 d
x

S x r x
h x

µ

Φ = ∝
+

. The attenuation path length is given by 

( ), 0x r x x−= = −  and the scattering angle is 0 such that the attenuation coeffi-
cient is µ. The effective scattering center position x  can be accurately deter-
mined by:  

( )

( )

2

2

e d

e 1 d

xx

x
x

x

x

x
h x

x
h x

µ

µ

+

−

+

−

⋅

⋅ +
=

+

∫

∫
                   (A12) 

For r ≠ 0, the general form of ( )d ,S x rΦ  is given by Equation (10) and the 
attenuation path length is determined by intersection of the ray with the object 
contour. It becomes complicated to accurately calculate the effective scattering 
center position using Equation (2). However, we can approximate the effective 
scattering center position for r ≠ 0 by introducing a correction factor based on 
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the above equation for r = 0. Assume the attenuation path length is linear with x 
and change in the attenuation coefficient is negligible (for small scattering angle, 
the scatter photon energy by Equation (8) is very close to the primary photon 
energy). Meanwhile, approximate the term g(p) to the first order. Then the ef-
fective scattering center position can be approximately determined by Equation 
(15). 
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