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Abstract 
In this paper, a class of discrete vertical and horizontal transmitted disease model 
under constant vaccination is researched. Under the hypothesis of population being 
constant size, the model is transformed into a planar map and its equilibrium points 
and the corresponding eigenvalues are solved out. By discussing the influence of 
coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is 
determined. By getting the equations of flows on center manifold, the direction and 
stability of the transcritical bifurcation and flip bifurcation are discussed. 
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1. Introduction 

The SIR infections disease model is an important model and has been studied by many 
authors [1]-[8]. The basic and important research subjects for these systems are local 
and global stability of the disease-free equilibrium and the endemic equilibrium, exis-
tence of periodic solutions, persistence and extinction of the disease, etc. In recent 
years, the study of vaccination, treatment, and associated behavioral changes related to 
disease transmission has been the subject of intense theoretical analysis [4] [9] [10] [11] 
[12]. In 2008, Meng and Chen [13] considered a class of continuous vertical and hori-
zontal transmitted epidemic model under constant vaccination 
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where S represents the proportion of individuals susceptible to the disease, who are 
born (with b) and die (with d) at the same rate b (b = d) and have mean life expectancy 
1 b . The susceptible become infectious at a bilinear rate Iβ , where I is the proportion 
of infectious individuals and β  is the contact rate. The infectious recover (i.e. acquire 
lifelong immunity) at a rate r, so that 1 r  is the mean infectious period. The constant 
p, q, 0 < p < 1, 0 < q < 1, and p + q = 1, where p is the proportion of the offspring of in-
fective parents that are susceptible individuals, and q is the proportion of the offspring 
of infective parents that are infective individuals. In their work, the basic reproductive 
rate determining the stability of disease-free equilibrium point and endemic equili-
brium point was found out and the local and global stability of the equilibrium points 
have been researched by using Lyapunov function and Dulac function. 

Due to a lot of discrete-time models are not trivial analogues of their continuous 
ones and simple discrete-time models can even exhibit complex behavior (see [14]), in 
this paper, we pay attention to the discrete situation of Equation (1) as follows 
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where nS , nI  and nR  represent susceptible, infective and recovered subgroups, n 
represent a fixed time. Under the hypothesis of population being constant size, the 
model is transformed into a planar map and its equilibrium points and the corres-
ponding eigenvalues are solved out. By discussing the influence of coefficient parame-
ters on the eigenvalues, we determine the hyperbolicity of equilibrium points. Further, 
we get the equations of flows on center manifold and discuss the direction and stability 
of the transcritical bifurcation and flip bifurcation. 

2. Hyperbolic and Non-Hyperbolic Cases 

In this section, we will discuss the hyperbolic and non-hyperbolic cases in a two para-
meters space parameter. In view of assumption that population is a constant size, i.e., 

1n n nS I R+ + =                               (3) 

system Equation (2) can be changed into 
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Rewrite Equation (4) as a planar map F: 
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It is obvious that this map has a disease-free equilibrium point ( )1 ,0P m−  and an 
endemic equilibrium point ( ),Q S I∗ ∗  where 
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Theorem 1. The equilibrium point ( )1 ,0P m−  is non-hyperbolic if and only if 
( )1,k b  lies on the lines: 
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l k b k b
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β
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And 

( ){ }2 1 1: , 1,0 1l k b k b= < < . 

Otherwise, the equilibrium point ( )1 ,0P m−  is an one of the following types: (See 
Table 1). 

Proof. The Jacobian matrix of map (5) at ( )1 ,0P m−  is: 
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From the assumption 0 1b< < , we see that 10 1λ< < . Then non-hyperbolic will be 
happened in the case 2 1λ = ± . From 2 1λ =  and 0 1m< < , we get that 1 1k =  and 
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2λ  satisfies 2 1λ < − , then the equilibrium point P is a saddle. When 
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 (referred to the case 2D ), the eigenvalue 2λ  satisfie 21 1λ− < < ,  

so the equilibrium point P is a stable node and meanwhile when 1 1k >  (referred to 
the case 3D ), the equilibrium point P is a saddle since 2 1λ > . The proof is complete. 

Theorem 2. We select s, r as parameters. There does not exist non-hyperbolic case 
for the equilibrium ( ),Q S I∗ ∗ . But the hyperbolicity can be divided into the following 
cases (I), (II). 

(I) When b β< , there exist six types for hyperbolic equilibrium point Q: (See Table 
2). 
 
Table 1. Types of hyperbolic equilibrium point ( )1 ,0P m− . 

Cases Conditions Eigenvalues Properties 
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β
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3D  1 1k >
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Table 2. Types of hyperbolic equilibrium point ( ),Q S I∗ ∗ . 

Cases Conditions Eigenvalues Properties 
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1

4
,

4
s b msqb

r b s b
s

− +
= ≤ ≤  1 20 1λ λ< = <  stable node 
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respectively. 
(II) When 1b bβ< ≤ , there exist four types for hyperbolic equilibrium point Q: (See 

Table 3). 
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Proof. Performing a coordinate shift as follows: 
*S S S= − , *I I I= −  

and letting F  denote the transformed F, we translate equilibrium ( )* *,Q S I  into 
( )0 0,0Q =  and discuss equilibrium point ( )0 0,0Q =  of the map F . The matrix of 
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Table 3. Types of hyperbolic equilibrium ( ),Q S I∗ ∗ . 

Cases Conditions Eigenvalues Properties 

3C  ( )2 4
,

4
s b msqb

r b s
s

β
− +

= ≤ <  1 20 1λ λ< = <  stable node 

8D  0b s− < <  11 λ< , 
20 1λ< <  saddle 

9D  
30 s s< <  

10 1λ< < , 
20 1λ< <  stable node 

10D  3s s β< <  1,2λ  are complex 1,2 1λ <  stable focus 
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It is known that ( )0,0  is hyperbolic if and only if none of eigenvalues 1λ , 2λ  lies 
on the unit circle 1S . In the following we discuss the eigenvalues in two case, i.e., 
b β<  and 1b bβ< ≤ . 

(I) b β<  
When discriminant ( ) ( ) ( )2 4 4 1 01 a r a s msq aa s∆ = − + − + − ≥+ −    , then 1λ  and 

2λ  are both real . Because non-hyperbolicity happens if and only if 1 1λ =  or 2 1λ = . 
For whether 1 1λ =  or 2 1λ = , we can get ( )1 1a r mq a− + − = . By condition 

( ) ( )1 1 1 1a r mq a b r mqb r mq b− + − = − − + = − + −  and 0 , , , 1b m q r< < , we see that
1 0mq − < . This is a contradiction with ( )1 1 1r mq b− + − <  and ( )1 1a r mq a− + − = , 

so 1 1λ =  and 2 1λ =  are impossible. Next, let’s examine 1 1λ = −  and 2 1λ = − . From 

whether 1 1λ = −  or 2 1λ = − , we can get ( ) ( )21 1 1r a mq a
s

 = + − + − 
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, By condition  
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, ( )1 0mq a− > , This is a contra-  

diction with 1r < , so 1 1λ = −  and 2 1λ = −  are impossible. 
When 0∆ < , 1λ  and 2λ  are a pair of conjugate complex. Since 
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Therefore, 1λ  and 2λ  lie inside of 1S  and the equilibrium point Q is a stable fo-
cus referred to the case ( )6D . 

When 0∆ ≥ , the equilibrium point Q Is hyperbolic. If 0∆ = , i.e. 

( ) ( )24 1 4 1 .rs a s msq a= + − + −  

The matrix has a double real eigenvalue ( )1 2 1 2a sλ λ= = + − . From the constraint 
condition b s β− < < , it is obvious that 1 20 1λ λ< = < . Therefore, equilibrium point 
Q is stable node in the case of 1C  and 2C . 

If 0∆ > , i.e., ( ) ( )24 1 4 1rs a s msq a< + − + −  and b s β− < < , the eigenvalue 1λ
and 2λ  are different real numbers. We first discuss the case that 0b s− < < , i.e., 
( ) 4,s r D∈ , In this case we have 
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We have 1 21,0 1λ λ> < < . Therefore, the equilibrium Q is a stable node as  
( ) 4,s r D∈ . 

For the case 10 s s b< < < , i.e., ( ) 5,s r D∈ , we have 2d
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We assume ( )2 4b s b s mqsb+ ≤ − + , by condition 0 , 1b s< < , we see that 
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( ) ( )2 2 4b s b s msqb+ ≤ − + , i.e., 1mq ≥  and by condition 0 , 1m q< < . This is a con- 

tradiction with 1mq ≤  and 1mq ≥ . So ( )2 4b s b s mqsb+ ≤ − +  are impossible,  

i.e., ( )2 4b s b s mqsb+ > − + . Therefore, we have 2 10 1λ λ< < < . Therefore, the 
equilibrium Q is a stable node as ( ) 5,s r D∈ . 

Finally, we study the case of 2s s< , ( ) 7,s r D∈ . We have 
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Then, we have 10 1λ< <  for ( ) 7,s r D∈ . Moreover, there also has 20 1λ< <  for
( ) 7,s r D∈ . In fact that, 
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We have 2 10 1λ λ< < < . This means that the equilibrium Q is a stable node for
( ) 7,s r D∈ .  

(II) 1b bβ< ≤  
When discriminant 0∆ ≥ , because non-hyperbolicity happens if and only if 1 1λ =  

or 2 1λ = . Similar to the proof in case (I), neither 1 21, 1λ λ= =  nor 1 21, 1λ λ= − = −  
is possible. 

When 0∆ < , 1λ  and 2λ  are a pair of conjugate complex. Since 
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Therefore, 1λ  and 2λ  lie inside of 1S  and the equilibrium point Q is a stable 
node referred to the case ( )10D . 

When 0∆ ≥ , the equilibrium point Q is hyperbolic. If 0∆ = , the matrix has a 

double real eigenvalue 1 2
1

2
a sλ λ + −

= = . From the constraint condition b s β− < < , 

it is obvious that 1 20 1λ λ< = < . Therefore, equilibrium point Q is stable node in the 
case of 3C . If 0∆ > , we first discuss the case that 0b s− < < , i.e., ( ) 8,s r D∈ , In this 
case we have 
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2
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0

d
0,  lim 1.

d rr
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λ
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We have 20 1λ< <  for ( ) 8,s r D∈ , On the other hand, there also exists 1 1λ >  for 

( ) 8,s r D∈ . In fact, since 1
1

0

d
0, lim 1.

d rr
λ

λ
+→

> >  Therefore, we have 1 21,0 1λ λ> < < . 

Therefore, the equilibrium Q is a saddle as ( ) 8,s r D∈ . 
Finally, we study the case of 30 s s< < , i.e. ( ) 9,s r D∈ , We easily prove  

2 10 1λ λ< < <  by same methods as in case (I). This means that the equilibrium Q is a 
stable node for ( ) 9,s r D∈ . The proof is complete. 

3. Transcritical Bifurcation of the Model 

The following lemmas were be derived from reference [15]. 
Lemma 1. ([15], Theorem 2.1.4) The map 

( )
( ) ( )

, ,
    ,

, ,
m nx Ax f x y

x y R R
y By g x y

 + ∈ × +





                  (7) 

satisfies that A is cxc matrix with eigenvalues of modulus one, and B is sxs matrix with 
eigenvalues of modulus less than one, and 
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( ) ( )
0,0 0,0 0,
0,0 0,0 0,

Df f
Dg g

 = =
 = =

 

where f and g are rC  ( 2r ≥ ) in some neighborhood of the origin. Then there exists a 
rC  center manifold for equation (7) which can be locally represented as a graph as 

follows 

( ) ( ) ( ) ( ) ( ){ }0 , , , 0 0, 0 0m m nW x y R R y h x x h Dhδ= ∈ × = < = =  

For δ  sufficiently small. Moreover, the dynamics of equation (4.1) restricted to the 
center manifold is, for µ  sufficiently small, given by the c-dimensional map 

( )( ), , .mu Au f u h u u R+ ∈  

Lemma 2. ([15], in page 365) A one-parameter family of rC  ( 2r ≥ ) one-dimensional  
maps 

( ) 1 1, , , .x f x x R Rµ µ∈ ∈                         (8) 

Having a non-hyperbolic fixed point, i.e., 
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x
∂

= =
∂

 

Undergoes a transcritical bifurcation at ( ) ( ), 0,0x µ =  if  

( ) ( ) ( )
2 2

20,0 0, 0,0 0, 0,0 0f f f
x xµ µ

∂ ∂ ∂
= ≠ ≠

∂ ∂ ∂ ∂
 

Theorem 3. A transcritical bifurcation occurs at the equilibrium ( )0,0P  when 

1 1k = . More concretely, for 1 1k <  slightly there are two equilibriums: a stable point P 
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and an unstable negative equilibrium which coalesce at 1 1k = , for 1 1k >  slightly 
there are also two equilibriums: an unstable equilibrium P and a stable positive equili-
brium Q. Thus an exchange of stability has occurred at 1 1k = . 

Proof. For ( )1 2,k b l∈ , we have 2 1λ =  and 10 1λ< < . Consider 1k  as the bifur-
cation parameter and write F as 

1kF  to emphasize the dependence on ω . Performing 
a coordinate shift as follows ( )1S S m= − − , I I= . One can easily see that the matrix 
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 − − + − − − 

=  + − + 
D  

and it has eigenvectors 

( )T1,0 , 
( ) ( )( )

T

1

1,
1
b

pd r k m b pd
 −
  + + − − 

                (9) 

Corresponding to 1λ  and 2λ  respectively, where T means the transpose of ma-
trices. First, we put the matrix ( )

1
0,0kDF  into a diagonal form. Using the eigenvectors 

(9), we obtain the transformation 

( )( )

1 1

0
1

uS
b

vI m b pdβ

    
    =     −
    − + −     

                (10) 

with inverse 

( )( )

( )( )

1
1

1
0

m b pdu S
b

m b pd
v Ib

β

β

   − + − 
    
    =
    − + −

−    
    

                (11) 

which transform system Equation (5) into 

( )
( )

2

2

1 0
0 1 1

u b u A uv A v B C v
v v uv v m v

β β
β β β

 − + + +     
+        + − −        

           (12) 

where 

( )( )
( )( )

( )
( )

1
, , .

1
b m b pd b b pd

A B pd r b C
m b pd b pd

β
β β

− − + − −
= = + − =

− + − + −
     (13) 

Rewrite system (12) in the suspended form with assumption 1 1kω = − , 
2

11 12 13
2

21 22 23

1 0 0
0 1 0
0 0 1 0

u b u a uv a v a v
v v a uv a v a v

ω
ω

ω ω

−  + +     
       + + +      
             

                (14) 

where 

( )( )
( )( )

( )
11 12 21 22 13 23

1
, , , .

1
B C pb r m

a a A a a a a
b m b pd pb r

β
β β

β β
+ + −

= = = = = = −
− − + − − −

 

Thus, from Lemma 1, the stability of equilibrium ( ) ( ), 0,0 .u v =  near 1 1k =  can be 
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determined by studying an one parameter family of map on a center manifold which 
can be represented as follows, 

( ) ( ) ( ) ( ) ( ){ }3W 0,0 , , , , 0,0 0, 0,0 0 .c u v R u h v h Dhω ω= ∈ = = =  

for sufficiently small v and ω . 
We now want to compute the center manifold and derive the mapping on the center 

manifold. We assume 

( ) ( )2 2, 3h v dv ev f Oω ω ω= + + +                   (15) 

near the origin, where ( )3O  means terms of order 3≥ . By Lemma 1, those coeffi-
cients , ,d e f  can be determined by the equation 

( )( ) ( )( )
( ) ( ) ( )

2
21 22 23

2
11 12 13

, , ,

                    1 , , 0.

N h v h v a h v v a v a v

b h v a h v v a v a v

ω ω ω ω

ω ω ω

= + + +

 − − + + + = 
      (16) 

Substituting (16)into (15) and comparing coefficients of 2 ,v vω  and 2ω  in (15), 
we get 

( )
( )
( )

22

23

1 0
1 0

1 0

d d b a
e e b a
f f b

+ − − =
 + − − =
 + − =

 

from which we solve 

2322 , , 0.
aad e f

b b
= = =  

Therefore, the expression of (15) is approximately determined: 

( ) ( )2 2322, 3 .
aah v v v O

b b
ω ω= + +                   (17) 

Substituting (17) into (14), we obtain a one dimensional map reduced to the center 
manifold 

( ) ( )2 3 221 2321 22
22 23 4 .

a aa av v v a v a v v v O
b bωϕ ω ω= + + + + +       (18) 

It is easy to check that 

( ) ( ) ( )
2 2

20,0 0, 0,0 0, 0,0 0.
v v

ω ω ωϕ ϕ ϕ
ω ω

∂ ∂ ∂
= ≠ ≠

∂ ∂ ∂ ∂
             (19) 

The condition (19) implies that in the study of the orbit structure near the bifurca-
tion point terms of ( )3O  do not qualitatively affect the nature of the bifurcation, 
namely they do not affect the geometry of the curves of equilibriums passing through 
the bifurcation point. Thus, the orbit structure of (18) near ( ) ( ), 0,0u v =  is qualita-
tively the same as the orbit structure near ( ) ( ), 0,0u v =  of the map 

2
22 21 .v v a v a vω+ +                        (20) 

Map (20) can be viewed as truncated normal form for the transcritical bifurcation 
(see Lemma 2). The stability of the two branches of equilibriums lying on both sides of 
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1 1k =  are easily verified. 

4. Degenerate Flip Bifurcation of the Model 

This section is devoted to the analysis for the case ( )1 1,k b l∈ . From section 2, we  

have ( )
( )2 1 1

1
1, 1 ,

1 2
m

b k
m

β
λ λ

β
−

= − = − =
− +

 for ( )1 1,k b l∈ . For this case, degenerate flip  

bifurcation happens at the equilibrium point ( )1 ,0P m− . 
Theorem 4. For map (5) when ( )1 1,k b l∈ , degenerate flip bifurcation happens at the 

equilibrium point ( )1 ,0P m− . 
Proof. Performing a coordinate shift as follows 

( )1S S m= − − , I I= , 

We translate equilibrium ( )1 ,0P m−  into ( )0,0 , and letting F  denote the 
transformed F  

( ) ( )( )
( ) ( )( )

1 1
1 1

SI b S m b pd IS
SI m pd r II

β β
β β

 − + − − − + − 
   + − + − +    

  





 



             (21) 

Therefore, we discuss equilibrium point ( )0,0  of the map F . The matrix of linea-
rization of F  at ( )0,0  is 

( )( ) ( )( )
( ) ( )

1 1
0,0 .

0 1 1
b m b pd

DF
m pd r

β
β

 − − − + − 
=  − + − + 

  

For ( )1 1,k b l∈ , considering 1 1kω = −  as the bifurcation parameter and write F  
as Fω

  to emphasize the dependence on w. Therefore, we have 

( )( ) ( )( )1 1
0,0

0 1
b m b pd

DFω
β− − − + − 

=  − 
               (22) 

The matrix have eigenvectors ( )1,0 Τ  and 
( )( )

21,
1

b
m b pdβ

Τ
 −
  − + − 

 corresponding 

to 1 1 bλ = −  and 2 1λ = − . Therefore, by transformation 

( ) ( ), ,S I H u v
Τ Τ=                          (23) 

where 

( )( )

1 1
20

1
H b

m b pdβ

 
 = − 
 − + −  

. 

Therefore, we obtain the inverse of transformation (23) 

( )( )

( )( )

1
1

2
1

0
2

m b pd Su
b

m b pd Iv
b

β

β

− + −    
    −    
 − + −   −       − 







                (24) 

Therefore Fω
  can be changed into the maps: 2 2: R RωΦ →  



M. S. Li et al. 
 

182 

( )

2

2

1 0
.

0 1 1
u b u Bv A uv A v
v v m v uv v

β β
β β β

 − − +     
= +       − − − + +        

               (25) 

where 

( )( )
21

1
bA

m b pdβ
−

= +
− + −

, ( ) ( )( )
( )
2 b b pd

B pd r b
p b pd

 − −
= + − − 

+ −  
. 

Rewrite system (25) in the suspended form 
2

11 12 13
2

21 22 23

1 0 0
0 1 0
0 0 1 0

u b u e v e uv e v
v v e v e uv e v

ω
ω

ω ω

 − + +     
      = − + + +      
             

                (26) 

where 

( ) ( )11 1 2
Be

m pd rβ
=

− − + +
, ( )

( ) ( )21

1
1 2

m
e

m pd r
β

β
− −

=
− − + +

, 

22 23e e β= = , 12 13e e Aβ= = . 

Equivalently, the suspended system (26) has a two-dimensional center manifold of 
the form  

( ) ( )2 2, 3v h u du eu f Oω ω ω= = + + +                 (27) 

Near the origin, where ( )3O  means terms of order 3≥ . By Lemma 1, those coeffi-
cients , ,d e f  can be determined by the equation 

( )( ) ( )( )
( ) ( ) ( ) ( )( )

2
11 12 13

2
21 22 23

, : 1 ,

                     , , , , 0.

N h u h b u e v e uv e v

h u e h u e uh u e h u

ω ω ω

ω ω ω ω ω

= − + + +

 − − + + + =  

   (28) 

Then 

( )( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2

2 2 2

, : 1 1 3

                 1 1 2 2 3 0

N h u d b u e b u f du eu f O

d b u e b u f O

ω ω ω ω ω

ω ω

= − + − + + + + +

 = − + + − + + = 
   (29) 

Comparing coefficients of 2u , uω  and 2ω  in (27), we get 

( )
( )

21 1 0

2 0
2 0

d b

e b
f

  − + = 
 − =
 =

 

from which we solve 

0, 0, 0,d e f= = =  

Thus, the expression of (27)is determined, i.e., 

( ) ( ), 0 3 .v h u Oω= = +                        (30) 

Substituting (30) into the first equation in (26), we obtain a one-dimensional map 
( )u uωϕ , where 
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( ) ( ) ( ) ( ) ( )( )
( )
( )

2
11 12 13

2
11 12 13

1 , , ,

1 0 0 0

1 .

u b u e h u e uh u e h u

b u e e u e

b u

ωϕ ω ω ω ω

ω

= − + + +

= − + × + × + ×

= −

       (31) 

From (31), we can check that 

( ) ( )

2 2

2
, 0,

2 0,
u

uu
ω ω ω

ω ω

φ φ φ
ω ω

=

 ∂ ∂ ∂
+ = ∂ ∂ ∂∂ 

                   (32) 

( ) ( )

22 3

2 3

, 0,

1 1 0.
4 6

u
u u

ω ω

ω ω

ϕ ϕ

=

  ∂ ∂ + = 
∂ ∂   

                  (33) 

Thus, the conditions ( )1F  and ( )2F  of Theorem 3.5.1 in [16] are not satisfied. 
Therefore, this is a degenerate flip bifurcation. 

5. Conclusion 

Due to a lot of discrete-time models are not trivial analogues of their continuous ones 
and simple discrete-time models can even exhibit complex behavior (see [14]), moti-
vated mainly by Meng and Chen [13] considering a class of continuous vertical and ho-
rizontal transmitted epidemic model (1) under constant vaccination, we study a class of 
discrete vertical and horizontal transmitted disease model (2) under constant vaccina-
tion. By detailed studies, we found discrete model (2) has a flip bifurcation which did 
not occurred for continuous model. However, the result of flip bifurcation in current 
paper is a degenerate situation, for which the more in-depth research needs to be con-
tinued. 
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