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Abstract 
In this study, we propose a novel discrete-time coupled model to generate oscillatory responses 
via periodic points with a high periodic order. Our coupled system comprises one-dimensional os-
cillators based on the Rulkov map and a single globally coupled oscillator. Because the waveform 
of a one-dimensional oscillator has sharply defined peaks, the coupled system can be applied to 
dynamic image segmentation. Our proposed system iteratively transforms the coupling of each 
oscillator based on an input value that corresponds to the pixel value of an input image. This ap-
proach enables our system to segment image regions in which pixel values gradually change with 
respect to a connected region. We conducted a bifurcation analysis of a single oscillator and a 
three-coupled model. Through simulations, we demonstrated that our system works well for gray- 
level images with three isolated image regions. 
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1. Introduction 
Image segmentation is one of the most important techniques used in image processing. Many studies have ad-
dressed methods of improving the accuracy and effectiveness of image segmentation using various approaches 
[1]-[3]. An approach uses oscillatory responses from numerical models of coupled oscillators. These are dy-
namical systems described by differential or difference equations. This approach has been successfully applied 
to image segmentation. In the locally excitatory globally inhibitory oscillator network model proposed by [4] [5], 
coupled oscillators are represented by ordinary differential equations. This method effectively segments input 
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images into image regions [6] [7]. However, these continuous dynamical systems must be integrated over time 
to produce oscillation, which requires considerable computation time and introduces approximation errors in a 
numerical simulation. 

To address these problems, discrete-time dynamical systems are used as an alternative approach for simulat-
ing coupled oscillators. Zhao et al. proposed a model that used a network of coupled logistic maps to achieve 
multi scale image segmentation [8]. Their model can segment image regions into several clusters based on pixel 
values. However, because their approach was based on pixel clustering, isolated regions with similar pixel val-
ues were assigned to the same cluster. 

In contrast with these methods, we previously proposed a discrete-time coupled model that can generate os-
cillatory responses via periodic points with a high periodic order [9] [10]. This image segmentation system, 
which we named “dynamic image segmentation system”, uses the synchronized phenomena observed in oscilla-
tory responses in the coupled model. The system was able to segment image regions with similar pixel values, 
while generating output images in time series. 

Our system has a network structure in which two-dimensional (2D) oscillators, based on chaotic neurons [11] 
[12], are connected to their four neighboring oscillators and to a global oscillator. The global coupled oscillator 
makes it possible to distinguish isolated regions with similar pixel values. In the coupled model, each 2D oscil-
lator corresponds to a pixel in the input image. Since each 2D oscillator has two internal state variables, the dy-
namic image segmentation system for an input image of N pixels is represented by a ( 2 1N + )-dimensional dis-
crete-time coupled model. The lower-dimensional discrete-time coupled model is expected to handle input im-
ages comprising a large number of pixels with a faster computational speed. Furthermore, a lower-dimensional 
coupled model facilitates the addition of functions for adaptive coupling, which allows the dynamic image seg-
mentation of a gray-level image in which the pixel values change gradually. 

In this study, we investigated a novel discrete-time coupled model comprising one-dimensional oscillators 
based on the Rulkov map [13] and a globally coupled oscillator. The coupled model had 1N +  dimensions and 
a network structure similar to that of the dynamic image segmentation system proposed in our previous studies 
[14]-[16]. The new model used adaptive coupling to extract image regions in which the pixel values change 
gradually. Lower-dimensional oscillators were applied to the coupled model, making coupling adaptive. Simulation 
results demonstrated that our proposed dynamic image segmentation system worked well for gray-level images.  

2. Proposed System 
In this section, we present the architecture of our proposed discrete-time coupled model with adaptive coupling. 

2.1. Discrete-Time Coupled Model 
Figure 1 shows the architecture of the coupled oscillator model for dynamic image segmentation [10]. The me-
chanism of dynamic image segmentation is shown in Figure 2.  

The coupled model comprises a global oscillator and N one-dimensional oscillators, where N denotes the 
number of pixels in an input image. With the exception of the global oscillator, the one-dimensional oscillators 
are arranged on the grid so that each corresponds to a pixel. They are connected to the eight neighboring oscil-
lators with similar pixel values. The global oscillator connects all the other oscillators and acts as a relay be-
tween them. Oscillators with similar pixel values in the eight-neighborhood connection are coupled together. 
Figure 2 shows second and third (seventh and eighth) oscillators have neighboring connections. Although the 
responses of the directly coupled oscillators are synchronized, those of the uncoupled ones are out of phase, be-
ing connected to the global oscillator with a specific coupling strength. By associating the output value of the ith 
oscillator with the ith pixel value at each discrete time, segmented images are output as a time series. The dis-
crete-time coupled models are described as follows:  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

1 1 ,

1 .
i i i ix t a f x t C t ah t

z t h t

φ ε+ = − − + +

+ =
                   (1) 

Here, , 1, 2, ,t i N∈ =  , with   denoting the set of integers, and ix  the internal state variable. 
Functions f and h are described by  
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Figure 1. Architecture of the coupled oscillators model for dynamic image segmentation. 

 

 
Figure 2. Mechanism behind dynamic image segmentation based on oscillatory responses 
observed in one-dimensional discrete-time oscillators.                                     
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∑                           (3) 

where ( ),g ⋅ ⋅  denotes the sigmoid function described by  

( ) ( )( )
1, .

1 exp
g u

u
ω

ω
=

+ − −
                            (4) 

Function f is based on the Rulkov map, where h denotes the effect of the global oscillator on each of the other 
oscillators, and k and d in (2) are tunable system parameters. ( )iC t  in (1) represents the connection between 
each oscillator and its eight neighboring oscillators, described by  

( ) ( )( ) ,
i

i j
j Mi

C t f x t
n
ε

∈

= ∑                               (5) 

where iM  denotes a group of pixels to which the ith pixel connects, in  is the number of elements in iM , and 
ε  and a in (1) represent the coupling coefficients for the eight neighboring oscillators and the global oscillator, 
respectively. Finally, iφ  is defined by  
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0, ,
1, ,

i v
i

i v

v
v

φ
< ∆

=  ≥ ∆
                                 (6) 

where iv  is the pixel value of the ith pixel, and v∆  is an arbitrary threshold. From the function iφ , the 
oscillator is inhibited when the pixel value is less than v∆ . 

The dynamics of an N-coupled system are described by the P-dimensional discrete-time dynamical system 
( 1P N= + ) as  

( ) ( )( )1 ,t t+ =x F x                               (7) 

or, equivalently, by an iterated map defined by  

( ): ; ,P P→F x F x                              (8) 

where   denotes the set of real numbers. The nonlinear function F  describes the dynamical system of the 
P-coupled system and is given by 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
( )

1 1 1
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z

h t

φ

φ

φ

 + +
   
   + +   
  =  
   
   + +
      

 





                    (9) 

where 1p aε= − − . The three-coupled model shown in Figure 3 is analyzed in detail in Section 4. 

2.2. Adaptive Coupled Model 
The coupling of oscillators defined by (5) is uniformly based on the pixel value of the input image. We replaced 
this fixed coupling with an adaptive coupling based on the clustering method proposed in [8]. This adaptive 
coupling was represented as  

( ) ( ) ( )
( ) ( )( ) ,

i
i ij j

j M ti

C t q t f x t
n t
ε

∈

= ∑                          (10) 

( ) ( ) ( ) ( ) ( )( )1 1 e ,j iv t v t
ij ijq t q t H αβ β θ− −

+ = + − −                     (11) 

( )
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0, 0.
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≥

=  <
                               (12) 

 

 
Figure 3. Architecture of the three-coupled model.               
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where ( )iv t  is the pixel value of the ith pixel at iteration t, ( )0iv  represents the initial value of the ith pixel, 
( )iM t  denotes a group of pixels with ( ) 1ijq t =  around the ith pixel at iteration t, ( )in t  is the number of 

elements in ( )iM t , and the new variables ( )ijq t  and ( )iv t  enable each oscillator to adaptively connect to its 
neighbors.  

3. Analysis 
In this section, we describe our analysis, in which we used qualitative bifurcation theory and the order parameter. 
Note that these analyses must be used to determine the optimum system parameters for dynamic image segmen-
tation, but do not need to be applied every time an image is input.  

3.1. Bifurcation Analysis 
In our bifurcation analysis, the point *x  satisfying  

( )* *− =x F x 0                                 (15) 

becomes a fixed point of F  in (9). If *x  is a fixed point of F , the characteristic equation for fixed point 
*x  is  

( ) ( )( )* *, det 0,Dχ = − =x I F xµ µ                         (16) 

where I  is the P P×  identity matrix and DF  denotes the derivative of F . We consider *x  to be 
hyperbolic if none of the absolute eigenvalues of DF  are at unity. Note that an m-periodic point can be 
investigated by replacing F  with mF , i.e., the mth iteration of F , in (15). In the following discussion, we 
consider only the properties of a fixed point of F , though a similar argument can be applied to a periodic point 
of F . 

Next, we considered the topological classification of a hyperbolic fixed point. Let *x  be a hyperbolic fixed 
point and uE  be the intersection of P  and the direct sum of the generalized eigenspaces of ( )*DF x  
corresponding to eigenvalue µ  such that 1iµ > , and let ( )*

u
u D=

E
L F x . Then, the topological type of a 

hyperbolic fixed point is determined by dim uE  and the orientation-preserving or reversing property of uL . 
Bifurcation occurs when the topological type of a fixed point is changed by varying a system parameter. The 
generic co-dimension-one bifurcations are the tangent, period-doubling, and Neimark-Sacker bifurcations. In 
addition, a D-type branching appears in a system that possesses some symmetric properties as a degenerate case 
of the tangent bifurcation. These bifurcations are observed when hyperbolicity is destroyed, which corresponds 
to the critical distribution of the characteristic multiplier µ  such that 1µ = +  for tangent bifurcation and D- 
type branching, 1µ = −  for period-doubling bifurcation, and e jθµ =  for the Neimark-Sacker bifurcation, 
where 1j = − . 

Bifurcation sets of a fixed point were computed by solving the simultaneous Equations (15) and (16). For the 
numerical determination [17], we used Newton’s method. The Jacobian matrix of the set of equations was 
derived from the first and second derivatives of map F. 

3.2. Local Expansion Rates 
To investigate the bifurcation phenomena in (2), we used finite-time Lyapunov exponents in which local expan-
sion rates are defined by  
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( )( )
1

1 log .
T

t
Df x t

T
γ

=

= ∑                                (17) 

Here, ( )( )Df x t  is the derivative of function f in (2).  

3.3. Order Parameter 
To investigate the relationship between the coupling coefficients and the phase difference of oscillators (in- 
phase or out-of-phase), we used the order parameter defined by  

( )1e e ,
e

ij ij

s

t
j j t

ij
t t

R
T

ρΦ

=

= ∑                                (18) 

where st  and et  are arbitrary time steps after sufficient time has passed, T is the time step interval from st  to 
et , and ρ  is described by  

( ) ( )
( )

1tan ,j
ij

i

x t
t

x t
ρ −=                                (19) 

which represents the phase difference between ( )ix t  and ( )jx t . The value of ijR  in (18) becomes one when 
the ith and jth oscillators oscillate in-phase; otherwise, the order parameter converges to a value other than one.  

4. Analysis Results 
We first investigated the bifurcation of the fixed point observed in a single oscillator defined by (2) with no 
connections. Next, we analyzed the coupled model corresponding to the input image shown in Figure 3. When 
the input image comprises a 3 3×  grid of pixels with two isolated image regions, the dynamic image 
segmentation of a nine-coupled model should first be analyzed. However, as the oscillators corresponding to 
black pixels were prevented from oscillating by function iφ  in (6), we used the three-coupled model in Figure 
3 as the model for analysis. We further assumed that each oscillator corresponded to a white pixel when iv  was 
larger than v∆  in (6). In the bifurcation diagrams shown in this section, symbols 1G , 1I , and 1D  represent 
tangent bifurcation, period-doubling bifurcation, and D-type branching of the fixed point, respectively, and a 
stable fixed point is present only in the shaded region.  

4.1. Bifurcation Analysis for a Single Oscillator 
Figure 4 presents the bifurcation sets observed in a single oscillator defined by (2) in the (k, d)-plane. In the 
white region, periodic and non-periodic points can be seen. Figure 5(a) shows the one-dimensional bifurcation 
diagram, while Figure 5(b) shows the local expansion rate calculated by (17) at 18.6513k =  for different 
values of parameter d. Periodic and non-periodic points appear periodically in Figure 5, with the non-periodic 
points considered to be chaotic because the local expansion rates are greater than zero. Figure 6(a) and Figure 
6(b) show waveforms of the stable 56-periodic point and the chaotic behavior at ( ) ( ), 18.6513, 4.98987k d =  
and ( ) ( ), 18.6513, 4.9k d = , respectively. Based on these results, we set the system parameters of our coupled 
model to 18.67k =  and 5.0d = . 

4.2. Bifurcation Analysis of the Three-Coupled Model 
Figure 7 plots the bifurcation sets of the three-coupled model in the (a, ε)-plane. At the right-hand region of 
curve 1G , a high order of periodic and non-periodic points is observed. In the non-shaded left-hand region of 
curve 1G , non-periodic points with small amplitudes can be seen. Bifurcation analysis suggested that oscillatory 
responses appropriate to segmentation of a large image was dependent on the coefficients of coupling. Based on 
these results, we set parameters a and ε to 0.001 and 1.0, respectively. 

4.3. Results of Analysis by Order Parameter for Three-Coupled Model 
Figure 8 shows the relationship between the order parameters calculated by (18) and the coupling coefficients  
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Figure 4. Bifurcation diagram of a fixed point observed in a single oscillator.                              

 

 
Figure 5. (a) One-dimensional bifurcation diagram and (b) local expansion rate where 18.6513k = .         

 

 
Figure 6. (a) Periodic and (b) non-periodic points observed in a one-dimensional discrete-time single 
oscillator with 18.6513k = .                                                                       
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Figure 7. Bifurcation diagram of a fixed point observed in the three-coupled model.                       

 

 
Figure 8. Order parameters calculated by (18) with 3801st = , 4000et = , and 200T = ; (a) and (b) show 
the relationship between order parameters and parameter ε at 0.001a = ; (c) and (d) show the relationship 
between order parameters and parameter a at 0.6ε = .                                              
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Figure 9. Three-phase oscillatory response observed in a 40 40× -coupled model with adaptive coupling 
at 0.001a =  and 1.0ε =  at (a) 0, ,4000t =  , (b) 780, ,1050t =  , (c) 2550, ,2820t =  , and (d) 

3670, ,3940t =  .                                                                              
 
with 3801st = , 4000et = , and 200T = . Figure 8(a) and Figure 8(b) show 12R  and 13R  calculated at 
different values of parameter ε  and 0.001a = . As shown in Figure 8(a), 12R  remained at one in the range 
of ε  approximately from zero to one, and was otherwise less than one. Figure 8(b) shows that 13R  was less 
than one in the range of ε  from −0.2 to 1.2. These results demonstrate that the first and second oscillators 
were in-phase in the range approximately from zero to one of ε , whereas the first and third oscillators were 
out-of-phase under the given parameters. Figure 8(c) and Figure 8(d) show the relationship between the order 
parameters and parameter a at 0.6ε = . Figure 8(c) shows that, whereas parameter a changed, 12R  remained 
at one, suggesting that the first and second oscillators were in-phase, and had no relation to parameter a. Conversely, 
the phase between the first and third oscillators periodically changed in response to parameter a, as shown in Figure 
8(d). These results suggested that the phase difference between the oscillators corresponding to disconnected 
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Figure 10. 40 40× -pixel gray-level image.                                        

 

 
Figure 11. Output images obtained by dynamic image segmentation with adaptive 
coupling. The number below each image represents the time step in Figure 9.               

 
regions could be controlled by adjusting parameter a. 

5. Applying Our Model to Dynamic Image Segmentation 
Simulation were used to demonstrate that dynamic image segmentation could be achieved using our adaptive 
coupled model with appropriate parameter values. The parameter values were set as follows: 0.001a = , 

1.0ε = , 0.1θ = , 0.001η = , 5α = , and 0.5β = . Figure 9 shows the three-phase oscillatory response 
observed in a 40 40× -coupled model with adaptive coupling corresponding to the input image shown in Figure 
10. The image had three isolated regions in which the pixel values changed gradually from white to gray. Our 
simulation produced the output images shown in Figure 11. These results demonstrated the ability of our 
proposed adaptive coupling model to segment gray-level images with gradually changing pixel values. 

6. Conclusion 
In this study, we proposed a novel discrete-time coupled model for use in dynamic image segmentation. The 
mechanisms underlying the generation of oscillatory responses in a single oscillator were revealed by a bifurca-
tion analysis. We also investigated the bifurcation sets for the fixed point observed in a three-coupled model. 
Using order parameters to show the phase differences between the oscillators, we elucidated the relationship 
between the oscillatory responses and the coupling coefficients of oscillators in the three-coupled model. We 
used this bifurcation analysis to set appropriate parameter values and applied our model to dynamic image seg-
mentation. Data from simulations demonstrate that our proposed model is capable of segmenting regions of a 
gray-level image in which the pixel values change gradually. In future work, we will analyze our proposed mod-
el in greater detail, for example, by applying it to input images with more isolated image regions. 
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