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Abstract 
In the paper, the Liu system with a feedback controller is discussed. The influence of the feedback 
coefficient of the controlled system is studied through Lyapunov exponents spectrum and bifurca-
tion diagram. Various attractors are demonstrated not only by numerical simulations but also by 
circuit experiments. Only one feedback channel is used in our study, which is useful in communi-
cation. The circuit experiments show that our study has significance in practical applications. 
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1. Introduction 
In 1990, Ott, Grebogi and Yorke presented the OGY method to control chaos [1]. After their pioneering work, 
chaotic control has become a focus in nonlinear problems and a lot of work has been done in the field [2]-[4]. 
Nowadays, many methods have been proposed to control chaos [5] [6]. Generally speaking, there are two kinds 
of control ways: feedback control and nonfeedback control. Feedback methods [7]-[11] are used to stabilize the 
unstable periodic orbit of chaotic systems by feeding back their states. Nonfeedback methods [11]-[14] are 
adopted to change chaotic behaviors by applying perturbations to some parameters or variables. In the paper, we 
use feedback method to control the dynamic behavior of Liu system. By adjusting feedback coefficient, Liu sys-
tem can be stabilized at equilibrium point or limit cycle around its equilibrium. Lyapunov exponents spectrum 
and bifurcation diagram are adopted to analyze the dynamic behavior of the controlled system. Numerical simu-
lations and circuit experiments show the effectiveness of this method. 

2. The Description of Liu System 
Liu system [15] is described as 
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When 10a = , 40b = , 2.5c = , 4h =  and 1k = , system (1) exhibits a chaotic behavior. Its attractor is 
shown in Figure 1. The projections of system (1)’s attractor are shown in Figure 2. System (1) has three equili-
briums: ( )0 0,0,0S , ( )1 5,5, 40S , ( )2 5, 5, 40S − − . 

Considering the voltage restraint of practical electronic components, let 
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Then in the new coordinate system, system (1) will be described as 
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System (3) can be seemed as a reduced Liu system and the equilibriums are ( )0 0,0,0S ′ , ( )1 0.5,0.5 4S ′ ， , 
( )2 0.5, 0.5, 4S ′ − − . The circuit realization of Equation (3) is shown in Figure 3. 

In Figure 3, the voltages of C1, C2, C3 are used as variables. The relevant function can be described as 
 

 
Figure 1. The chaotic attractor of Liu system. 

 

 
                           (a)                                  (b)                                      (c) 

Figure 2. The projections of Liu attractor. 
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When we choose R1 = 10 kΩ, R2 = 20 kΩ, R3 = 10 kΩ, R4 = 100 kΩ, R5 = 10 kΩ, R6 = 20 kΩ, R7 = 10 kΩ, R8 
= 80 kΩ, R9 = 40 kΩ, R10 = 100 kΩ, R11 = 10 kΩ, R12 = 10 kΩ, R13 = 100 kΩ, R14 = 10 kΩ, R15 = 10 kΩ, R16 = 40 
kΩ, C1 = C2 = C3 = 1 μF, the circuit system (4) is equivalent to system (3). The supplies of all active devices are 
±18 V and the initial voltages of C1, C2, C3 are random, we obtain the experiment observations of system (4) as 
Figure 4 (with Multisim 7.0). 
 

 
Figure 3. Circuit diagram for system (3). 

 

   
(a)                                          (b)                      

Figure 4. The experiment observations of system (4). (a) x-y plane; (b) y-z plane. 
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Comparing Figure 2 and Figure 4, we can know that a reduced Liu system has been realized by circuit expe-
riment. Next, we will add a feedback controller to this circuit to control chaos. Various attractors will be demon-
strated not only by numerical simulations but also by the circuit experiment observations. 

3. Feedback Control of Liu System 
Suppose we want to stabilize Liu system at equilibrium 1S  and the limit cycle surrounding 1S  respectively. 
For convenience, choose x as feedback variable, this feedback can be added to any of the three functions of Liu 
system. Applying the controller to the second function, then the controlled Liu system is described as 
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where γ  is feedback coefficient. 
In order to study the relation between γ  and system (5)’s behavior, we make the bifurcation diagram of sys-

tem (5) with 0 20γ≤ ≤  in Figure 5. maxX  stands for the largest x in every unsteady period or steady period. 
When system (5) is stabilized at fixed point or system (5)’s behavior is periodic, maxX  has only one value or 
numbered values with certain γ ; When system (5)’s behavior is chaotic, maxX  will have numberless values 
with certain γ . According to the method presented by Ramasubramanian et al. [16], we obtain the Lyapunov 
exponents spectrum of system (5) with 0 20γ≤ ≤  in Figure 6. When the largest Lyapunov exponent 1 0λ > , 
system (5)’s behavior is chaotic; When 1 0λ = , system (5)’s behavior is periodic; When 1 0λ < , system (5) is 
stabilized at fixed point. From Figure 5 and Figure 6, we have the following conclusions: when 4.9γ < , system 
(5) is chaotic (except a very narrow zone near 4.3γ = , where system (5) may be periodic); when 4.9 16.9γ≤ < , 
system (5) is periodic; when 16.9γ ≥ , system (5) is stabilized at 1S . 

We obtain the above conclusions by numerical calculation. In fact, the accurate range for γ  to stabilize sys-
tem (5) at 1S  can be obtained by theoretical calculation. Substitute the values of parameters and equilibriums, 
we obtain the Jacobian matrix of system (5) at ( )1 5,5, 40S : 

( )1

10 10 0
0 5 .

40 0 2.5
S γ

− 
 = − − 
 − 

J                                 (6) 

Suppose λ  as eigenvalue, then the characteristic equation of Equation (6) is 
3 2

1 2 3 0c c cλ λ λ+ + + =                                  (7) 

 

 
Figure 5. Bifurcation diagram of system (5). 
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Figure 6. Lyapunov exponents spectrum of system (5). 

 
where 1 12.5c = , 2 10 25c γ= + , 3 25 2000c γ= + . 

According to Routh-Hurwitz criterion, when 1 0c > , 2 0c > , 3 0c >  and 1 2 3 0c c c− > , the real parts of all 
the eigenvalues of Equation (6) are negative, then system (5) will be stabilized at ( )1 5,5, 40S . It’s easy to ob-
tain the solution 16.875γ > . 

4. Numerical Simulations and Circuit Realization 
As for the reduced Liu system, it’s easy to obtain the relevant controlled system: 
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Obviously the above conclusions about γ  are still available to system (8). Next we will use system (8) for 
numerical simulations and circuit experiments. The circuit diagram for system (8) is shown in Figure 7. The re-
levant function can be described as 
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When we choose 17 18 10 kΩR R= = , 1 0.5 VV = , all other cognominal electronic components are defined as 
the above, then circuit system (9) is equivalent to system (8) and we can adjust 19R  to obtain proper feedback 
coefficient. 

Substitute the value of 17 18 9 10 2 1, , , , ,R R R R C V , we have 

( )19 400 kΩ .R γ=                                  (10) 

Choose typical value 4,6,16,18γ =  for numerical simulations, the simulation results of system (8) are 
shown in Figure 8. Choose ( )19 100,66.667,25,22.222 kΩR = , we can obtain the equivalent circuit system (9), 
the experiment results are shown in Figure 9 (with Multisim 7.0). 
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Figure 7. Circuit diagram for system (8). 

 

   
(a)                                                (b)                             

   
(c)                                                (d)                             

Figure 8. The simulation results of system (8). (a) 4γ = ; (b) 6γ = ; (c) 16γ = ; (d) 18γ = .  
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(a)                                                  (b)  

  

 

 
(c)                                      (d)  

Figure 9. The experiment observations of system (9). (a) ( )19 100 kΩR = ; (b) ( )19 66.667 kΩR = ; (c) 

( )19 25 kΩR = ; (d) ( )19 22.222 kΩR = .  

 
From Figure 8 and Figure 9, we can know that system (8) is equivalent to system (9) in troth. When 4γ =  

( 19 100 kΩR = ), the reduced Liu system is chaotic; When 6γ =  ( 19 66.667 kΩR = ), the reduced Liu system is 
periodic; When 16γ =  ( 19 25 kΩR = ), the reduced Liu system’s behavior is a limit cycle around the equili-
brium ( )0.5,0.5,4 ; When 18γ =  ( 19 22.222 kΩR = ), the reduced Liu system is stabilized at ( )0.5,0.5,4  
lastly. These results accord with the conclusions in Section 3. 

5. Conclusion 
We study the chaotic control of Liu system with feedback method in the paper. Liu chaotic system and its con-
trol are realized not only by numerical simulations but also by circuit experiments. Computer simulation and 
circuit experiment results show the effectiveness of our method. Moreover, our control needs only one commu-
nication channel, which is significant in practical applications. 
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