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Abstract 
Navier-Stokes equation has for a long time been considered as one of the greatest unsolved prob-
lems in three and more dimensions. This paper proposes a solution to the aforementioned equa-
tion on R3. It introduces results from the previous literature and it proves the existence and uni-
queness of smooth solution. Firstly, the concept of turbulent solution is defined. It is proved that 
turbulent solutions become strong solutions after some time in Navier-Stokes set of equations. 
However, in order to define the turbulent solution, the decay or blow-up time of solution must be 
examined. Differential inequality is defined and it is proved that solution of Navier-Stokes equa-
tion exists in a finite time although it exhibits blow-up solutions. The equation is introduced that 
establishes the distance between the strong solutions of Navier-Stokes equation and heat equation. 
As it is demonstrated, as the time goes to infinity, the distance decreases to zero and the solution 
of heat equation is identical to the solution of N-S equation. As the solution of heat equation is de-
fined in the heat-sphere, after its analysis, it is proved that as the time goes to infinity, solution 
converges to the stationary state. The solution has a finite τ time and it exists when τ → ∞ that im-
plies that it exists and it is periodic. The aforementioned statement proves the existence and 
smoothness of solution of Navier-Stokes equation on R3 and represents a major breakthrough in 
fluid dynamics and turbulence analysis. 
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1. Introduction 
In this paper, the following form of Navier-Stokes equations in R3 is studied: 
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With initial conditions 

( ) ( ) ( )0,0 nu x u x x R= ∈                                  (3) 

Here 0u x= , C∞  (divergence-free vector field on nR ), ( ),if x t  are the components of a given, externally  

applied force, v is a positive coefficient (the viscosity) and 
2

2
1

n

i ix=

∂
∆ =

∂∑  is the Laplacian in space variables. If  

Euler equations are considered, then the same set of equation must be applied with the condition that viscosity is 
equal to zero. 

The following conditions must be satisfied as it is wanted to make sure that ( ),u x t  does not grow large as 
x →∞ : 

( ) ( )1 on for any and
Ko n

x Ku x C x R Kα
α α

−
∂ ≤ +                        (4) 

And 

( ) ( ) [ [ for, 1 on 0, , , any
Km n

x t mKf x t C x t R x m Kα
α α

−
∂ ∂ ≤ + + ∞                  (5) 

The accepted solution of N-S is physically reasonable if it only satisfies: 

[ [( ), 0,np u C R x∞∈ ∞                                 (6) 

And 

( ) ( )for all bounded e, nd e0 rgy
nR

u x t x C t< ≥∫                        (7) 

At the same time, it is possible to look at spatially periodic solutions. We can assume the following condi-
tions: 

( ) ( ) ( ) ( ), , , for 1o o
j ju x e u x f x e t f x t j n+ = + = ≤ ≤                     (8) 

Under the condition that th
je j=  is unit vector in nR . It must be assumed that ou  is smooth and that 

( ) ( ) [ [3, 1 o for ann 0, , ,yKm
x t mKf x t C t R x m Kα

α α−∂ ∂ ≤ + ∞                   (9) 

The solution is then accepted if it satisfies: 

( ) ( ) [ [3 fo, o 0 1r, n ,ju x t u x e t R x j n= + ∞ ≤ ≤                       (10) 

And 

[ [( ), 0,np u C R x∞∈ ∞
 

The problem is to find and analyze whether a strong, physically reasonable solution exists for the Navier- 
Stokes equation. 

The statement that will be proved is existence and smoothness of Navier-Stokes solutions on R3. Take v > 
0 and n = 3. Let ( )ou x  be any smooth, divergence-free vector field satisfying (1.4). Take ( ),f x t  to be 
identically zero. Then there exist smooth functions ( ),p x t , ( ),iu x t  on R3 x[0, ∞] and the above condi-
tions and equations are satisfied. 

2. Results 
Firstly, the definition of turbulent solutions (Oliver and Titti) [1] is provided. We must define the set of all C∞  
real vector functions ϕ  with compact support in nR  such that 0div ϕ = . We define rLσ  as the closure of 
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0,C σ
∞  with respect to Lr norm . r ; ( ).,.  is the inner product in L2. Lr stands for the usual Lr-space over Rn,  

1 r≤ ≤ ∞. 1
0,H σ  is the closure of 0,C σ

∞  with respect to the norm 1 2 2Hφ φ φ= + ∇  where 
, 1, ,

i

j i j n
x
ϕ

ϕ
=

 ∂
∇ =   ∂ 



.  

When X is a Banach space, . X  denotes the norm on X. [ ]( )1 2, ;mC t t X  and [ ]( )1 2, ;rL t t X  are the Banach 
spaces, where 0,1, ,m =   and 1t  and 2t  are real numbers such that 1 2t t< . C denotes various constants. 

Def 1. (Oliver and Titti) [1] A turbulent solution of Navier-Stokes equation is defined as following: 

1) ( ) ( )2 2 1
0,0, ; 0, ; for all 0u L L L T H Tσ σ

∞∈ ∞ ∩ < < ∞                       (11) 

The relation 

2) ( ) ( ) ( ) ( )( )
0

, , , d , 0
T

u t u u u t aϕ ϕ ϕ ϕ− ∂ ∂ + ∇ ∇ + ⋅∇ =  ∫                    (12) 

Holds for almost all T and all [ [( )1 1
0,0, ; nC T H Lσϕ ∈ ∩  such that ( ), 0Tϕ ⋅ =  

Strong energy inequality 

3) ( ) ( ) ( )2 2 2

2 2 2
2 d

t

s

u t u u sτ τ+ ∇ ≤∫                                    (13) 

Holds for almost all 0s ≥  including 0s = , and all t s> . 
It is necessary to introduce the Stokes operator rA  in rLσ . The following Helmholtz decomposition is ob-

tained: 

, 1r r rL L G rσ= ⊗ < < ∞  

where { };r r r
locG p L p L= ∇ ∈ ∈ . Pσ  denotes the projection from rL  onto rLσ . rA  defines the Stokes oper-

ator with domain ( ) 2,r r
rD A H Lσ= ∩ . A denotes the Stokes operator rA . { } 0Eλ λ

≥  denotes the spectral de-
composition of self-adjoint operator A. 

The existence of turbulent solutions for n = 3 and n = 4 is given by Leray and Kato. In order to derive the next 
results, theorem from Takahiro Okabe will be introduced. 

Theorem 1. Let 2 4n≤ ≤  and let 1r >  and 0m ≥  be 
For 2n = , 

1 4 3, 0 4 3 andr m r< < ≤ < −  

For 3, 4n =  

( )1 , 0 1
1

n nr m n
n r

< < ≤ < − −
−

 

Suppose that ,mK δ
α  for { }2

, ˆ; ( form
mK Lδ
α ϕ ϕ ξ α ξ ξ δ= ∈ ≥ ≤  for , 0α δ >  and 0m ≥ . If 

2
,

r
ma L L K δ

σ σ α∈ ∩ ∩  for some , 0α δ >  then for every turbulent solution ( )u t  there exist 0T >  and 
( ), , , , , 0C n r m aδ α >  such that: 

( )
( )

( )1

2

1 n r n mE u t C t
u t
λ

λ
− − + −− ≤                               (14) 

holds for all λ  and for all t T>  
Def 2. Let n r< < ∞ , na Lσ∈ . A measurable function u defined on ( )0,nR × ∞  is called a global strong so-

lution of Navier-Stokes equation if: 

[ )( ) ( )( )0, ; 0, ;n ru C L C Lσ∈ ∞ ∩ ∞                             (15) 

( )( ), 0, ; nu Au C L
t σ

∂
∈ ∞

∂
 and u satisfies: 
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( ) 0, 0u Au P u u t
t σ

∂
+ + ⋅∇ = >

∂
                             (16) 

where ( )P u uσ ⋅∇  denotes the projection from rL  onto rLσ  of the product of the divergence of solution u and 
the solution itself. 

Takahiro Okabe [2], in his paper named “Asymptotic energy concentration in the phase of the weak solutions 
to the Navier-Stokes equation”, proves that turbulent solutions of Navier-Stokes equation become strong solu-
tions after some definite time. So for the turbulent solution of ( )u t  of Navier-Stokes equation there exists 

* 0T >  such that ( )u t  is a strong solution of Navier-Stokes equation on [ )* ,T ∞ , then the energy identity ex-
ists: 

( ) ( )
22 1/2

2 2

d 2 0
d

u t A u t
t

+ =                               (17) 

For *t T≥ . For any fixed 0λ > , the second term in (16) is estimated from below as: 

( ) ( ) ( )( )2 2 2 2 2 21/2
2 22 2 22

0

d d d
2p p pA u t E u E u E u u t E u tλ

λ λ

λρ ρ λ
∞ ∞ ∞

     = ≥ ≥ ≥ −     ∫ ∫ ∫           (18) 

From (16) to (18), the following is obtained: 

( ) ( ) ( ) 22 2

2 2 2

d
d

u t u t E u t
t χλ λ+ ≤                             (19) 

Afted dividing the both sides of (19) by ( ) 2

2
u tλ , the following is obtained: 

( )

( )
( )

( )

2 2
2 2

2 2

2 2

d
d 1

u t E u tt
u t u t

χ

λ
+ ≤                                (20) 

By (17), the following is obtained ( ) ( ) ( ) ( )
22 21 2

2 22
d d 2 2t u t A u t u t= − = − ∇  it follows from (17) to (20) 

that: 

( )
( )

( )
( )

2 2

2 2
2 2

2 2

21
E u t u t

u t u t

χ

λ

∇
− ≤                                (21) 

By introducing the new theorem that is proved in Takahiro Okabe’s paper [2], the following is obtained. 
Theorem 2. Let 2 4n≤ ≤ . Let r and m be as 
1) 2n =  

4 41 , 0 3
3

r m
r

< < ≤ < −  

2) 3n ≥  

( )1 , 0 1
1

n nr m n
n r

< < ≤ < − −
−  

If 2
0,

ra L L K δ
σ σ σ∈ ∩ ∩ , every turbulent solution of ( )u t  of Navier-Stokes equation satisfies: 

( )
( )

( )( )
2

12
2

2

n r n mu t
O t

u t
− − + −∇

≤                                (22) 

As t →∞ . 
The following theorem can be proved by using well-known Leray’s structure theorem, every turbulent solu-

tion of N-S becomes the strong solution after some time. Although Kato proves that the strong solution decays 
in the same way as the Stokes flow e tA− , we apply different approach by using Oliver and Titti’s paper [1] 
named “Remark on the Rate of Decay of Higher Order Derivatives for solution to the Navier-Stokes equation”. 
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By introducing the above mentioned theorem, the following result is obtained and it proves Theorem 1. 

( )
( )

( )
2

12
2

2

for al1 ln r n mE u t C t t T
u t
λ

λ
− − + −− ≤ ≥  

This result proves that energy of the molecules of fluid moving is smaller than some value determined by C, n, 
r, m and it proves asymptotic energy concentration. In order to prove that turbulent solutions are at the same 
time strong solutions, blow-up time of solutions must be analyzed. 

It is demonstrated that Navier-Stokes equation enter some class as it was already proved ( )e ;A rD Hτ  in ar-
bitrarily short time. Foias and Temam have proved the following solution in the case of periodic boundary con-
dition and for the case of the Navier-Stokes equation on the two-dimensional. Kukavica and Grujic have ob-
tained the given results in pL  spaces. The following lemma must be introduced and it is proved in Oliver and 
Titi’s paper [1]: 

Theorem 3. Let 0τ ≥ , 2r n>  and 2s n< . Then there exists a constant ( ), ,C C n r s=  such that any 
two functions v and w in ( )e ;A rD Hτ  satisfy the inequality: 

( ) ( )( )2 2e , , e e er s r s
r A r A s A r A

L H H L
A vw C n r s A w A v A wτ τ τ τ

− −≤ +               (23) 

The theorem is proved by using Plancherel theorem, the triangle inequality, the inequality 
( ) ( )12r r r rx y x y−+ ≤ +  and the convolution estimate 2 1 2L L Lf g f g∗ ≤ . These are the tools used to prove 
the aforementioned theorem. For further details, look at the aforementioned paper. This theorem demonstrates 
that the blow-up time is infinite so that the solution is existent. In order to find a solution, it must be captured in 
some sort of space where the function oscillates. In order to introduce the following solution, a few more results 
will be introduced. 

Firstly, we assume the existence of solutions [ ] ( )( )0, ; , 2r nu L T H R r n∞∈ >  is known for some T > 0. In 
order to simplify the notation, the following is set: 

2

2r
r L

J A u=                                       (24) 

2

2
er A

r L
G A uτ=                                      (25) 

where ( )tτ τ=  is to be specified later. 
Then the Gevrey norm is used to find the following result: 

( )1 2 1
1 e e d
2 n

r A r A
r r r

R

G G vG A u u A u xτ ττ + += − − ⋅∇∫

                         (26) 

The contribution of pressure term is zero because A commutes with the Leray projection onto divergence free 
vector fields. Note that: 

( )1 2 1 2e r s
s A

r sH
A u c G Gτ

− ≤ +                                 (27) 

By using Theorem 3 and Cauchy-Schwarz inequality, the following result is obtained. 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 !e e d e e

n

r A r A r A r A
s r r r s r r

R

A u u A u x A u u A u c G G G G c G G Gτ τ τ τ
+ + +⋅∇ ≤ ⋅∇ ≤ + + +∫    (28) 

In order to proceed, we introduce the Theorem 4. 
Theorem 4. For all nonnegative p, q and τ we have the following: 

( )
2 2 22e e 2 eqp A p p q AA u A u A uτ ττ +≤ +                            (29) 

The proof is similar to that in Theorem 3, just it should be noted that for every 0x ≥ , 0m >  one has 
e e ex m xx< +  since e ex <  on [ ]0,1  and e ex m xx≤  for 1x ≥ . 

After introducing the theorem and interpolating sG  by using Theorem 3 and Theorem 4 with p s= , 
q r s= − , the similar thing is done with 1sG = . If we apply the Young inequality, the following result is obtained. 
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( ) ( ) ( )1/2 1/2 1/2 1/2 1/2
1 1 3 1 4 1e e d e e 1

n

r A r A r A r A r s
s r r s r r r

R

A u u A u x A u u A c J G G c J G c G Gτ τ τ τ τ −
+ + +⋅∇ ≤ ⋅∇ ≤ + + +∫    (30) 

where 4 2 2n r s n< ≤ < . After setting tτ = , after interpolating the first term on (26) then use the estimate 
on (30), the following equation is obtained: 

( ) ( )1
2, ,r r rHG c u G c r s t G≤ +                               (31) 

This proves that there exists a ( ]0,Tσ ∈  such that ( ) 2
00 rr HG u=  is finite for [ )0,t σ∈ . This proves that 

if space is finite, then Garvey space is finite which demonstrates the existence of stationary solution. 
Now the result of differential inequality for longer time will be derived. The radius of uniform analyticity 

nρ τ=  increases like t  as t →∞  as the solutions for heat equation. First the optimal decay rate for 
Gevrey norm is established, the optimal decay rates for norms of finite order derivatives will be established and 
it will be extended to infinite order. 

If first two terms of Equation (26) are considered and it is assumed that only contribution from linear terms is 
included, interpolation can be used as well as Young inequality while breaking the second term in several frac-
tions. Theorem 3 provides the following: 

12

2
2

r r
r

G J G
τ +

−
≤                                     (32) 

we all together obtain: 

1 2 1 1 1 2

1 12 2 2

21 1
2 2 2 2 2

1 1 1 1 1 3
2 8 2 8 8 2 8

r r
r r r r r

r r r r r

G Jv vG vG G G G

v v v v vG G G J G

ττ ττ
τ τ

τ ττ
τ τ τ τ

+ + + +

+ +

−
− ≤ + − −

   = − + − − + −   
   



 





                (33) 

New theorem is introduced, it is already proved by using Plancherel theorem: 
Theorem 5. Provided that 2 0q p≥ ≥  and 0τ > , the following is obtained: 

( )
2 2, eq p q p AA u c p q u A uττ −≤                            (34) 

Combining Theorem 5 with q r=  and the Young inequality, the following is obtained. 

3 02

1 1
8r rrJ c J G

τ
≤ +                                  (35) 

If we set ( )2
0 tτ τ α= +  where 0 0τ >  and 0 2vα< ≤ . The following is immediately found. 

1
2 4 8

vαττ = ≤                                     (36) 

So that the first two terms on the right of equation (33) are nonpositive and can be neglected. The main task is 
now to analyze the nonlinear terms and if possible prove that these nonlinear solutions do not affect the decay 
properties of the solution to infinite order. Applying the estimate on nonlinear term and by interpolating sJ  by 
using theorem p r= , q s= ; sJ  is interpolated in an analogous manner. By application of Young inequality, 
the following is found. 

( )

( ) ( ) ( )
( ) ( )( )

2 2 11 4 3 4 1 2 1 4 5 4 1 2 2 1 2 3 2
5 0 1 6 0 4 1 7 0

2 1 21 4 5 4 2
6 0 8 1

e e d

1

31
8

n

r A r A

R

r s r s r s r s
r r r r r r

r s r s
r r r

A u u A u x

c J G G c J G c G G c J G

vc J G C G G

τ τ

τ τ τ τ

τ τ

− − − − −
+ +

− − −
+

⋅∇

≤ + + + ≤

+ + + +

∫

        (37) 

3. Theoretical Findings 
The following differential inequality is obtained. 
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( )
( ) ( )( )2 1 22 1 2 3 2 1 4 5 4 2

3 0 7 0 6 0 82 2 1

1 2 2 2 1
8

r s r sr s
r r r r rr

v vG G c J c J G c J G c Gτ τ τ
τ τ

− − −−
+

≤ − + + + + +         (38) 

As we are considering global asymptotics and blow-up profiles, they are only possible in the presence of a 
critical controlled quantity or the combination of a subcritical and a supercritical controlled quantity. It turns out 
that the Navier-Stokes equation according to differential inequality tends to contract these quantities, in that way 
leading to a useful way to force finite time blow-up. The idea of using minimal surface area as controlled quan-
tities originates from Hamilton. In order to discuss the blow-up time, we introduce the following well known 
proposition: 

Assume that ( )2 tMπ  is non-trivial. Let 2: tS Mβ →  be any immersed sphere not homotopic to a point.  

Each such sphere has an energy ( )
2

21, : d
2

tS g

E tβ β= ∫  using the metric tg  at time t. If we define ( )2W t  to be  

the infimum of ( ),E tβ  over all such β . It turns out from standard Sacks-Uhlenbeck minimal surface theory 
that this infimum is actually attained. The differential inequality is obtained using structure of minimal surfaces 
and the Gauss-Bonnet formula [3]: 

( ) ( ) ( )2 min 2
14
2tW t R t W tπ∂ ≤ − −                            (39) 

where minR  is the Ricci scalar. It demonstrates that the change of infimum of energy becomes negative in finite 
which is absurd. Therefore this forces blow-up in finite time. This means that the solution blows up in a finite 
time, which is why the surgery approach will be used. 

If the above mentioned state holds, then the differential inequality, in order to make nonlinear terms of lower 
order, has to satisfy the following form: 

( ) ( )( )2 1 22 1 2 1 2 1 4 1 4
7 0 6 0 82

1 1
32

r s r sr s
r r r

v c J G c J G c Gτ τ τ
τ

− − −−> + + +                (40) 

where ( ) ( )2 , 2 1s r r∈ +    is fixed. First it must be noted that rG  is an increasing function of τ , so that at 
the beginning at the initial time 0t = , rG  is bounded between 

2

0
rA u  when 0 0τ τ= =  and 

2

0er AA uσ  
when 0τ τ σ= = . Thus the left side of equation (39) diverges faster than the right side as 0τ → , so that we 
can satisfy condition at 0t =  by choosing ( ]0 0,τ σ∈  small enough. However, what happens when τ  
doesn’t converge to 0. Imagine τ → ∞ , then the left part of equation is 0 and the right part is higher than zero, 
but that is not possible, because it is proved above that the infimum of energy becomes negative, that is absurd. 
So the solution must blow up in some definite and the equation must hold even for τ  as a solution. This proves 
that the solution is existent and smooth. In order to proceed, we will analyze the nonlinear terms. After having 
proved that the above equation must hold even for some τ  that does not converge to 0, the only equation that 
must be solved is the following: 

( )
4

02 2 1r r r

cG G Jδ
τ τ +

≤ − +                                (41) 

where 16vδ = . According to assumption that there exist positive real numbers 1M  and γ  which may de-  

pend on 0u  such that ( )
( )

2 1

1
Mu t

t γ≤
+

 for all 0t ≥  where ( )u t  is a solution to the Navier-Stokes equa-  

tion ( )2
0 1 0J M γτ τ≤  provided ( )2

0 tτ τ α= +  and 2
2

0 LJ u= , where 0 0τ >  and 0 2vα< ≤ , a final 
form of differential inequality is obtained. 

( )2 2 1r r r

kG G
γ

δ
τ τ + +

≤ − +                                  (42) 

The integrating factor for linear differential inequality is: 

2
0

2 2
0 0 0

1exp d
t t

t
t

δ α
τ α

δ
τ α τ

   +′ =   ′+   
∫                            (43) 
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So the following is obtained. 

( ) ( )2 12d
d

r
rG k

t
δ α γδ ατ τ − − −≤                                (44) 

If we fix α  small enough so that ( )rδ α γ> + , the following is concluded: 

( ) ( ) ( ) ( ) ( ) ( )

2
0
22 2

0

1 10r r r r

k kG t G
r r

δ α

γ γ

τ
δ α γ δ α γττ τ+ +

  
≤ − +   − + − +  

             (45) 

If the condition (39) is satisfied for all t, estimate (44) will be global in time. It is sufficient to show the fol-
lowing: 

( ) ( )( )( ) ( )1 2 1 22 2 1 2 1 2 1 4 1 4
7 0 6 0 8

32 1s r sr s
r r rc J G c J G c G g t

v
τ τ τ τ− − −− + + + ≤               (46) 

for some non-increasing function ( )g t . Estimate (44) shows that this is the case whenever 0γ >  and 

( ) ( ) ( )2
0

10r r

kG
r γδ α γ τ +

>
− +

                            (47) 

which satisfies the above mentioned conditions and it proves the existence of a solution. As τ → ∞ , rG  con-
verges to zero therefore the solution is existent at the beginning, and if the equations exist, then the solution ex-
ists in the time τ . 

It is obtained that: 

( ) ( ) ( )26
2r r

c
G t O δ α

γ
τ

τ
−

+
≤ +                              (48) 

The upper bound of decay is calculated and given below: 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

1 2
2 2 1 2 1 2 2 1 2 20 6

0 2

9 2

, ,

1, 1

m r m r m
r r

r
m

c
A u c m r J G c m r M O

c c m r O

γ
δ α

γ

γ δ α
γ

τ
τ τ τ

τ τ

τ
τ

− − −
+

+ −
+

   ≤ ≤ +   
   

≤ +

            (49) 

where ( ),c m r  is given above according to the following definition and maximum is attained at 
( )2q pζ τ= −  so the following definition demonstrates: 

( ) ( ) ( )2 2, 2 e for 2q p q pc q p q p q p− − −= − >                        (50) 

( ), 1,  for 2c q p q p= =                               (51) 

This proves that solution is existent even when τ  does not converge to 0. 
Now in order to proceed and analyze the blow-up time, v as the solution of the heat equation will be intro-

duced. It should be proved that the solution w u v= −  between Navier-Stokes and heat solution in mA ⋅  can 
be made sufficiently small so that u must decay at the same rate. 

First an estimate on the difference w in ( )e ;A rD Hτ . Clearly, it satisfies the following equation: 

t w v w u u p∂ = ∆ − ∇ −∇                                (52) 

0w∇⋅ =                                     (53) 

As the heat equation preserves the divergence condition, the following equation is obtained 0w∇⋅ =  for all 
0t ≥ . Setting: 

2

2r
r L

A wγ =                                    (54) 

2

2
er A

r L
A wτζ =                                   (55) 
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And repeating the steps, the following result is obtained: 

( ) ( )

( )

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1

3
1 02 2 3 5 2 12 1

1
2

1 1 1 1 1
2 8 2 8 16 2

r r r r s r r r s r r

r r r rr

v c G G G G c G G G

cv v v v O γ

ζ τζ ζ ζ

τ ζ ττ ζ ζ ζ
τ τ τ ττ

+ + + + +

+ + ++

≤ − + + + +

     = − + − − + +     
     









           (56) 

The second of nonlinear terms arises from (47) by using and choosing the smallest possible 2s r= . For 
2r ≤ , the following is obtained: 

( ) ( )

( )

1 2 1 2 1 2 1 2 1 2
1 1 /2 1 1 /2 1

2 1 2

higher _ order _ terms

1 1 higher _ order _ terms

s r r r r r r r

r r

G G G G G G G G

O Oγ γτ τ

+ + + + +

+ + +

+ = + = +

  = +      

              (57) 

The following differential inequality is obtained: 

( ) ( )
8

2 3 5 2 12 1

1
r r rr

c
t O γγ

εδζ ζ
τ ττ + ++ +

 ≤ − + +  
 

                          (58) 

And the following is obtained: 

( )
( )

2 11
2

,
higher _ order _ termsm

m

c m r
A w

γ

ε

τ +
≤ +                         (59) 

After having proved that solution for τ  exists and if we examine the equation, as τ → ∞  the distance be-
tween heat equation solution and Navier-Stokes equation demonstrates convergence and if the following heat 
equation solution is found then the solution for Navier-Stokes equations exist and is in the same range as heat 
equation solution. 

Now the heat solution equation Cannon [4] is analyzed. The solution of heat equation: 

( ) 0t u∂ − ∆ =                                      (60) 

Satisfies a mean-value property 

0,u∆ =                                         (61) 

Precisely if u solves 

( ) 0t u∂ − ∆ =                                       (62) 

And 

( ) ( ), domx t E uλ+ ⊂                                    (63) 

Then 

( ) ( )
2

2, , d d ,
4 E

y
u x t u x y t s s y

sλ

λ
= − −∫                             (64) 

where Eλ  is a heat ball, 

( ) ( ){ }: , : , ,E y s y sλ λ= Φ >                                  (65) 

( ) ( )
2

2, : 4 π exp .
4

n x
x t t

t
−  

 Φ = −
 
 

                               (66) 

Notice that 

( ) ( )diam 1E oλ =                                      (67) 
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So that λ →∞  demonstrates that equation is existent and is captured in the ball if the λ  is finite. 
The previous assumptions and results prove the existence of smooth and strong Navier-Stokes solution of eq-

uation in R3 and represent the solution of millennium problem in R3. 

4. Conclusion 
It is proved that the strong solution of Navier-Stokes equation is smooth, existent and unique. Firstly, turbulent 
solutions are defined and it is proved that they are strong solution, but as the turbulent solutions are only possible 
for small time intervals, it is tried to extend the time interval by using the Equation (39) and it is proved that the 
differential inequality (40) holds at the same time for some τ  that does not converge to 0. Then the result is 
established, it is demonstrated that solutions exhibit possible finite blow-up time, which means that they exist and 
persist in the system. In order to establish if the solution exists for the finite time, the heat equation solution and 
Navier-Stokes solution are compared. It is proved that two solutions converge as τ → ∞  which proves the ex-
istence of solution in infinite time. If a surgery procedure is applied, the solution exists for some time, then blows 
up, then arises again and that process repeats. This statement proves that the solution is either existent or periodic, 
but it exists all the time. It is possible to introduce a stochastic process in order to explain the existence of the 
dynamical periodic solution, but this is left for further research. This paper proves the existence of Navier-Stokes 
solution in R3 and represents a breakthrough in fluid dynamics analysis. 
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