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Abstract 
In this paper, firstly, some priori estimates are obtained for the existence and uniqueness of solu-
tions of a two dimensional generalized anisotropy Kuramoto-Sivashinsky Equation. Then we prove 
the existence of the global attractor. Finally, we get the upper bound estimation of the Haus-dorff 
and fractal dimension of attractor. 
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1. Introduction 
In recent years, the infinite dimension dynamic system with high dimension has been studied extensively, and 
the studies have obtained many achievements [1]-[8]. The related questions of its existence and uniqueness of 
solutions; the existence and dimension of global attractor; the existence and attraction of inertial manifolds; fi-
nite dimension, approximate inertial manifolds and time-lag inertial manifolds are still important contents that 
are studied. 

The celebrated Kuramoto-Sivashinsky Equation 

21 0,
2t xxxx xx xu u u u+ + + =                                (1.1) 

where ( ),u u x t= , is an Equation that for nearly half a century has attracted the attention of many researchers 
from various areas due to its simple but rich dynamics [9]. It first appeared in the mid-1970s by Kuramoto in the 
study of angularphase turbulence for a system of reaction-diffusion equations modeling the Belousov Zhabo-
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tinskii reaction in three spatial dimensions [10]. 
In a physical context, Equation (1.1) is used to model continuous media that exhibits chaotic behavior such as 

weak turbulence on interfaces among complex flows (quasi-planar flame front and the fluctuation of the posi-
tions of a flame front, fluctuations in thin viscous fluid films flowing over inclined planes or vertical walls, den-
dritic phase change fronts in binary alloy mixtures), small perturbations of a metastable planar front or interface 
(spatially uniform oscillating chemical reaction in a homogeneous medium) and physical systems driven far 
from the equilibrium due to intrinsic instabilities (instabilities of dissipative trapped ion modes in plasmas and 
phase dynamics in reaction-diffusion systems). 

As a dynamical system the KSE is known for its chaotic solutions and complicated behavior due to the terms 
that appear. Namely, the xxu  term acts as an energy source and has a destabilizing effect at a large scale, the 
dissipative xxxxu  term provides dumping in small scales and, finally, the nonlinear term provides stabilization 
by transferring energy between large and small scales. Because of this fact, Equation (1.1) was studied exten-
sively as a paradigm of finite dynamics in a partial differential equation. Its multi-modal, oscillatory and chaotic 
solutions have been investigated; its non-integrability was established via its Painlev analysis and due to its bi-
furcation behavior, a connection to low finite-dimensional dynamical systems is established. 

The generalization of KSE to two dimensions comes naturally, the two-dimensional KuramotoCSivashinsky 
Equation 

( ) ( )4 2 0,tu u u u u+∇ +∇ + ∇ ⋅ ∇ =                               (1.2) 

where now ( ), ,u u x y t=  and ( )2 4, .∇ = ∇⋅∇ ∇ = ∇ ⋅∇ ∇ ⋅∇  Equation (1.2) has equally attracted much atten-
tion because of the same spatiotemporal chaos properties that exhibits and its applications in modeling complex 
dynamics in hydrodynamics [11]. Nevertheless, due to the additional spatial dimension Equation (1.2) is very 
challenging and even its well-posedness is still an open problem. 

One generalization of Equation (1.2) which is of much interest is the anisotropic two-dimensional Kuramo-
toCSivashinsky Equation 

2 2
1 2 ,
2 2t xx yy xxxx xxyy yyyyx y

u u u u u u u uβ α= + − − − − −                       (1.3) 

where the two real parameters ,α β  control the anisotropy of the linear and the nonlinear term, respectively, in 
other words, the stability of the solutions of Equation (1.3). The anisotropic two-dimensional KuramotoCSiva-
shinsky Equation, due to the fact that it describes linearly unstable surface dynamics in the presence of in-plane 
anisotropy, has a wide range of applications, for instance, as a model for the nonlinear evolution of sput-
ter-eroded surfaces and describing the epitaxial growth of a vicinal surface destabilized by step edge barriers; for 
further details, see the references therein, in particular [12]. 

This paper focuses on the following generalization of the anisotropic KSE (1.3) 

( ) ( ) ( ) ( )2 2
1 2 ,
2t xx yy xxxx xxyy yyyyx y

u u h u u r u u g u u u u u f u= + + + − − − +               (1.4) 

where , ,f g h  and r  are considered as smooth functions of ( ), ,u u x y t= , and its study under the prism of 
Lie point symmetries and conservation laws [13]. 

According to the above information, the paper mainly thinks about the following generalization of the aniso-
tropic KSE (1.4) 

( )( ) ( )( ) ( )2 2, , ,t xx yy
u u u u g u f x y Rα γ ϕ+ ∆ + + + = ∈Ω ⊂                   (1.5) 

( ) ( ) ( ) 2
00

, , , , , ,
t

u x y t u x y x y R
=
= ∈Ω ⊂                                 (1.6) 

( ) ( ) ( ) 2
0

, , 0, , , 0, , .u x y t u x y t x y R
∂Ω= ∂Ω

= ∆ = ∈Ω ⊂                       (1.7) 

Here 2RΩ ⊂  is bounded set; ∂Ω  is the bound of Ω ; ( )uϕ  and ( )g u  are considered as smooth functions  
of ( ), ,u x y t . Let ( ) ( )2 ,L L∞Ω ∞ Ω

⋅ = ⋅ ⋅ = ⋅ . 

The following is the rest of this paper. In Section 2, we introduce some basic contents concerning global at-
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tractor. In Section 3, we obtain the existence of the global attractor, then we get the upper bound estimation of 
the Hausdorff and fractal dimension of the global attractor. 

2. The Priori Estimate of Solution of Questions (1.5) - (1.7) 

Lemma 1. Assume ( ) 0 ;uϕ ϕ′ ≤  ( ) 0 ,g u g′ ≤  0 02 1;g γ ϕ≤ − −  0 0 ;
2

gϕ
α

+
>  ( )2 ,f L∈ Ω  ( )2

0 ,u L∈ Ω  so  

the smooth solution u  of Questions (1.5) - (1.7) satisfies 

( )0 0

2
22 2 1

0
0 0

e .
2 1

g t f
u u

g
ϕ γ

ϕ γ
+ − +≤ +

+ − +
                        (2.1) 

Proof. We multiply u  with both sides of Equation (1.5) and obtain 

( )( ) ( )( )( ) ( )2, , ,t xx yy
u u u u u g u u fα γ ϕ+ ∆ + + + =                      (2.2) 

Here 

( ) ( ) ( )2 2 221 d, , , , , ,
2 dtu u u u u u u u u

t
α α γ γ= ∆ = ∆ =  

( )( )( ) ( )( )( ) ( )( ) ( ) 22
0, , , d ,x x x xxx x

u u u u u u u u u uϕ ϕ ϕ ϕ ϕ
Ω

′ ′= − = − = − Ω ≥ − ∇∫  

( )( )( ) ( )( )( ) ( )( ) ( ) 22
0, , , d .y y y yyy y

u g u u g u u g u u g u u g u
Ω

′ ′= − = − = − Ω ≥ − ∇∫  

According to Nirenberg-Gagliardo and Cauchy inequality, we obtain 

( ) ( ) ( )2 2 2 2 21 1, , ,
2 2

u u u u u u f u f∇ ≤ ∆ ≤ ∆ + ≤ +  

From the (2.2) we obtain 

2 2 2 20 0 0 0 11 d 1 .
2 d 2 2 2

g g
u u u f

t
ϕ ϕ

α γ
+ + +   + − ∆ ≤ − +   

   
                (2.3) 

Using the Gronwall inequality, the (2.1) is proved. 
Lemma 2. Under the condition of Lemma 1, and ( ) ,0 < 2;qu A u qϕ′ ≤ ≤  ( ) ,0 < 2;pg u B u p′ ≤ ≤  

( ) ( )2 1
0, ,f L u H−∈ Ω ∈ Ω  so the smooth solution u  of Questions (1.5) - (1.7) satisfies 

22 2 5
0e .t C

u uγ

γ
−∇ ≤ ∇ +                                 (2.4) 

Proof. We multiply u∆  with both sides of Equation (1.5) and obtain 

( )( ) ( )( )( ) ( )2, , .t xx yy
u u u u u g u u fα γ ϕ∆ + ∆ + + + = ∆                     (2.5) 

Here 

( ) ( ) ( )2 2 221 d, , , = , , ,
2 dtu u u u u u u u u

t
α α γ γ∆ = − ∇ ∆ ∆ − ∇∆ ∆ = − ∇  

( )( )( ) ( ) ( )( )( ) ( )( ) ( )( )
( ) ( ) 22

, , ,

3 ,
6 2

xxxx x x
u u u u u u u

u u u u u u

ϕ ϕ ϕ

αϕ ϕ
α

′∆ = ∆ = ∆

′ ′≤ ∇ ∇∆ ≤ ∇∆ + ∇
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( )( )( ) ( )( ) ( )( )( ) ( ) ( )( )
( ) ( ) 22

, , ,

3 .
6 2

yyyy y y
u g u u g u u g u u

g u u u u g u uα
α

′∆ = ∆ = ∆

′ ′≤ ∇ ∇∆ ≤ ∇∆ + ∇
 

According to the hypothetical condition ( ) ( ), ,q pu A u g u B uϕ′ ′≤ ≤  and Sobolev interpolation inequali-
ties 

1 2 1 2
3 3 3 31 1 2 2, ,u C u u C u u C u u C u

∞
′ ′= ∇∆ + ∇ = ∇∆ +  

so 

( ) ( )
2 2 4 42 22 2 2 3 31 2 3 1 2

3 3 , , , ,
2 2 6

q q
qu u A C C u u u C C C q uαϕ

α α

+ +
′ ∇ ≤ ∇∆ ≤ ∇∆ +  

( ) ( )
2 2 4 42 22 2 2 3 31 2 3 1 2

3 3 , , , .
2 2 6

p p
pg u u B C C u u u C C C p uα

α α

+ +
′ ′∇ ≤ ∇∆ ≤ ∇∆ +  

Using the Young inequality obtain 

( ) ( )
1 22 12 4, , .

12
u f u f u C fα− − ∆ ≤ ∇∆ −∆ ≤ ∇∆ + ∆ 

 
 

From the (2.5) we obtain 

2 2 2
5

1 d .
2 d 4

u u u C
t

α γ∇ + ∇∆ ≤ − ∇ +  

Here ( )2
5 4 4 .C C u C E′≥ +  According to the Gronwall inequality,we can get the (2.4). 

Lemma 3. Under the condition of Lemma 2, and ( ) 1 ;qu A uϕ −′′ ≤  ( ) 1 ;pg u B u −′′ ≤  

( ) ( )2 2
0 , ,u H f L∈ Ω ∈ Ω  so the smooth solution u  of Questions (1.5) - (1.7) satisfies 

2
22 2

0

3
e .t f

u uγ

γα
−∆ ≤ ∆ +                              (2.6) 

Proof. We multiply 2u∆  with both sides of Equation (1.5) and obtain 

( )( ) ( )( )( ) ( )2 2 2, , .t xx yy
u u u u u g u u fα γ ϕ∆ + ∆ + + + = ∆                   (2.7) 

Here 

( ) ( ) ( )22 22 2 2 2 21 d, , , , , .
2 dtu u u u u u u u u

t
α α γ γ∆ = ∆ ∆ ∆ = ∆ ∆ = ∆  

By Sobolev interpolation inequality 
21

2 330 0 .u C u u C u′∇∆ ≤ ∇ ∆ +  

Noticing interpolation inequalities 
1 12 3

2 23 43 44 4 6 6, ,u C u u C u u C u u C u
∞ ∞

′ ′∇ = ∆ ∇ + = ∆ +  

1 2
2 3 37 7 ,u C u u C u′∆ = ∆ ∇ +  

so 
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( )( )( ) ( )( ) ( ) ( )( )
( )

2 2 2

3 4 3 1 3 13 2 5
2 1 2 212 124 3 4 36 7 4 6

3 4 3 1 22 2 2 212 12
8 8

, ,

,
6

xx

q q qq
q q

q q

u u u u u u u u u u

AC C u u u AC C u u u u

C u u u u C

ϕ ϕ ϕ ϕ

α

∞∞ ∞

+ + −
−

+ +

′ ′′∆ ≤ ∆ ∆ ≤ ∆ + ∇ ∇ ∆

 
≤ ∆ ∇ + ∆ ∇ ∆ 
 

 
′≤ ∆ + ∆ ∆ ≤ ∆ + 

 

 

( )( )( ) ( )( ) ( ) ( )( )
( )

2 2 2

3 4 3 1 3 13 2 5
2 1 2 212 124 3 4 36 7 4 6

3 4 3 1 22 2 2 212 12
9 9

, ,

.
6

yy

p p pp
p p

p p

u g u u g u g u u g u u u u

BC C u u u BC C u u u u

C u u u u Cα

∞∞ ∞

+ + −
−

+ +

′ ′′∆ ≤ ∆ ∆ ≤ ∆ + ∇ ∇ ∆

 
≤ ∆ ∇ + ∆ ∇ ∆ 
 

 
′≤ ∆ + ∆ ∆ ≤ ∆ + 

 

 

According to the Young inequality,we can obtain 

( ) 2 22 2 3, .
12

u f u fα
α

∆ ≤ ∆ +  

From the (2.7) we obtain 

2 2 2 22 21 d 7 3 .
2 d 12

u u u f
t

α γ
α

∆ + ∆ ≤ − ∆ +  

By the Gronwall inequality we can get the (2.6). 
Lemma 4. Under the condition of Lemma 3, and  

( ) ( ) ( )3 , , 0;u C u u k kϕ ϕ ϕ′′ ′′′∈ + ≤ >  ( ) ( ) ( )3 , , 0;g u C g u g u l l′′ ′′′∈ + ≤ >  ( ) ( )2 1
0 , ,u H f H∈ Ω ∈ Ω  

so the smooth solution u  of Questions (1.5) - (1.7) satisfies 

( )0 , 0 .
E

u t
t

∇∆ ≤ >                                 (2.8) 

Proof. We multiply 2 3t u∆  with both sides of Equation (1.5) and obtain 

( )( ) ( )( )( ) ( )2 3 2 2 3, , ,t xx yy
t u u u u u g u t u fα γ ϕ∆ + ∆ + + + = ∆                  (2.9) 

Here 

( )
21

22 3 21 d, ,
2 dtt u u t u t u

t
∆ = − ∇∆ + ∇∆  

( ) ( )2 22 3 2 2 2 3, , , = .t u u t u t u u t uα α γ γ∆ ∆ = − ∇∆ ∆ − ∇∆  

By using the Sobolev inequality 
11 1 3

2 42 2 42 2 3 3, .u C u u C u C u u C
∞ ∞

′ ′≤ ∆ + ∇ ≤ ∆ ∇∆ +  

So 

( )( )( ) ( )( ) ( ) ( )( )( )( )
( )( )

22 3 2 3 2 2

222 2 2
10

, , ,

,
6

xx
t u u t u u t u u u u u

C t u u u u t u C

ϕ ϕ ϕ ϕ

αϕ
∞∞

′ ′′∆ ≤ ∆ ∆ = ∇ ∆ + ∇ ∇∆

′′≤ ∇ ∇ ∇∆ ≤ ∇∆ +
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( )( )( ) ( )( ) ( ) ( )( )( )( )
( )( )

22 3 2 3 2 2

222 2 2
10

, , ,

.
6

yy
t u g u t u g u t g u u g u u u

C t g u u u u t u Cα
∞∞

′ ′′∆ ≤ ∆ ∆ = ∇ ∆ + ∇ ∇∆

′ ′′ ′≤ ∇ ∇ ∇∆ ≤ ∇∆ +
 

By the Young inequality, we obtain 

( ) ( ) 2 22 3 2 2 2 3, , ,
6 2

t u f t u f t u fα
α

∆ = ∇∆ ∇ ≤ ∇∆ + ∇  

From the (2.9), we obtain 

( )22 2 22
11

1 d 1 .
2 d 2

t u t u C u f
t

α
∇∆ + ∇∆ ≤ ∇∆ + ∇ +  

So we have 

( )0 , 0 .
E

u t
t

∇∆ ≤ >  

3. Global Attractor and Dimension Estimation 
Theorem 1. Assume that ( )1f H∈ Ω  and ( )2

0 ,u H∈ Ω  so Questions (1.5) - (1.7) exist a unique smooth so-  
lution u  and ( )( )20, ; .u L H∞∈ +∞ Ω  

Proof. By the method of Galerkin and Lemma 1-Lemma 3, we can easily obtain the existence of solutions. 
Next, we prove the uniqueness of solutions in detail. 

Amusse vu,  are two solutions of Questions (1.5) - (1.7), so the difference of them w u v= −  satisfies 

( )( ) ( )( )2 ,t xx yy
u u u u g u fα γ ϕ+ ∆ + + + =  

( )( ) ( )( )2 ,t xx yy
v v v v g v fα γ ϕ+ ∆ + + + =  

and 

( ) ( )( )20 0, 0, ; .w w L H∞= ∈ +∞ Ω  

The two above formulae subtract and obtain 

( )( ) ( )( ) ( )( ) ( )( )2 0.t xx yy xx yy
w w w u g u v g vα γ ϕ ϕ+ ∆ + + + − − =                (3.1) 

We multiply w  with both sides of Equation (3.1) and obtain 

( )( ) ( )( ) ( )( ) ( )( )( )2, 0.t xx yy xx yy
w w w w u g u v g vα γ ϕ ϕ+ ∆ + + + − − =              (3.2) 

Here 

( ) ( ) ( )2 2 221 d, , , , , .
2 dtw w w w w w w u w

t
α α γ γ= ∆ = ∆ =  

Since the assume of Lemma 1, we obtain 

( )( ) ( )( )( ) ( ) ( )( )( ) ( )( )( )
( )( ) ( )( )

2 22
0

, , ,

, ,

3 ,
6 2

xx xx xx xx

xx

w u v w u v w u w w

w u w w w u w w

w w

ϕ ϕ ϕ ϕ ϕ θ

ϕ θ ϕ θ

α ϕ
α

′− = − = +

′ ′= + ≤ ∆ +

≤ ∆ +
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( )( ) ( )( )( ) ( ) ( )( )( ) ( )( )( )
( )( ) ( )( )

2 22
0

, , ,

, ,

3 .
6 2

yy yy yy yy

yy

w g u g v w g u g v w g u w w

w g u w w w g u w w

w g w

θ

θ θ

α
α

′− = − = +

′ ′= + ≤ ∆ +

≤ ∆ +

 

From the (3.2) we can obtain 

( )2 2
0 02 2 2 31 d 2 , .

2 d 3 2

g
w w C w C

t

ϕα γ
α

+
+ ∆ ≤ = − +  

According to the Gronwall inequality,we obtain 

( ) 22 20 e 0.Ctw w≤ =  

So we can get 0,w =  the uniqueness is proved. 
Theorem 2. [8]  Let E  be a Banach space, and ( ){ } ( )0S t t ≥  are the semigroup operators on E . 
( ) ( ) ( ) ( ) ( ): , , 0 ,S t E E S t S S t S Iτ τ→ ⋅ = + =  here I  is a unit operator. Set ( )S t  satisfy the follow condi-

tions 
1) ( )S t  is bounded. Namely 0,R u R

∞
∀ > ≤ , it exists a constant ( )C R , so that 

( ) ( ) [ )( )0,
E

S t u C R t≤ ∈ +∞ ; 

2) It exists a bounded absorbing set 0 ,B E⊂  namely ,B E∀ ⊂  it exists a constant 0 ,t  so that 

( ) ( )0 0S t B B t t⊂ > ; 

3) When 0,t >  ( )S t  is a completely continuous operator A . 
Therefor, the semigroup operators ( )S t  exist a compact global attractor. 
Theorem 3. Under the assume of Theorem 1, Questions (1.5) - (1.7) have global attractor  

( ) ( )0 0
0

,
s t s

A w B S t B
≥ ≥

= =


 

0B  is the bounded absorbing set of ( )2H Ω  and satisfies 
1) ( ) , 0;S t A A t= >  
2) ( )( )lim , 0,

t
dist S t B A

→∞
=  here ( )2B H∀ ⊂ Ω  and it is a bounded set, 

( ) ( )2, inf .sup Hy Yx X
dist X Y x y

Ω∈∈
= −  

Proof. Under the conditions of Lemma 1 - Lemma 4, it exists the solution semigroup )(tS  of Questions (1.5)- 
(1.7), ( ) ( ) ( ) ( )2 2 2, : .E H S t H H= Ω Ω → Ω  

From Lemma 1 - Lemma 3, to ( )2B H∀ ⊂ Ω  is a bounded set that includes in the ball { }2 ,Hu R≤  

( ) ( )2 22

2 22 2
0 0 12 12 0, 0, .H HH

S t u u u C R C t u B′= ≤ + ≤ + ≥ ∈  

This shows ( ){ } ( )0S t t ≥  is uniformly bounded in ( )2 .H Ω  
Furthermore, when ( )0 0 , ,t t t R f≥ =  there is ( ) ( )22

2 2
0 1 2 32 ,HH

S t u u E E E= ≤ + +  therefore, 

( ) ( ){ }2
2

0 1 2 3, 2HB u H u E E E≥ ∈ Ω ≤ + +  

is the bounded absorbing set of semigroup ( ).S t  

From Lemma 4, there are ( ) ( ) 20

,
, 0 , H

E R t
u t u R

t
∇∆ ≤ > ≤ . Since ( ) ( )3 2H HΩ → Ω  is tightly em-  
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bedded, which means that the bounded set in ( )3H Ω  is the tight set in ( )2H Ω , the semigroup operator 
( ) ( ) ( )2 2:S t H HΩ → Ω  to 0t >  is completely continuous. Furthermore we can know, the attractor A is  

w-limited set of the absorptive set 0 ,B  ( ) ( )0 0
0

.
s t s

A w B S t B
≥ ≥

= =


 

In order to estimate the Hausdorff and fractal dimension of the global attractor A of Questions (1.5) - (1.7), let 
Questions (1.5) - (1.7) linearize, then we obtain 

( )( ) ( )( )2 0,t xx yy
v v v u v g u vα γ ϕ′ ′+ ∆ + + + =  

( )( ) 0,tv L u t v+ =                                             (3.3) 

( ) 00 ,v v=                                                   (3.4) 

where 

( )( ) ( )( ) ( )( )2 .
xx yy

L u t v v v u v g u vα γ ϕ′ ′= ∆ + + +  

So the solutions of Questions (1.5) - (1.7) are fully smooth. It is easy to prove the initial value, appropriate, 
smooth and linear Questions (3.3) - (3.4) have global and smooth solutions. Let 

( ) ( ) ( ) ( )( ) ( ) ( )( )0 0 0 0 0, , ,u t S t u v t DS t u v w t S t u v= = = +  

1 2,M M∀  and T  are constants, so it exists a constant ( )13 1 2, , ,C C M M T=  and 0 1 0 2, , ,u M v M t T≤ ≤ ≤  
so there is ( ) ( ) ( ) 2 2

13 0 .w t u t v t C v− − ≤  
This suggests that ( )S t  is Frechet differential in ( )2 .L Ω  
Let ( ) ( ) ( )1 2, , , NV t V t V t  be the solutions of the linear Equation (3.3) corresponding to the initial value 
( ) ( ) ( )1 1 2 20 , 0 , , 0 ,N NV V Vξ ξ ξ= = =  so there is 

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )2 2
1 2 1 2

d 2 0.
d N N NV t V t V t tr L u t Q V t V t V t

t
− ⋅ = ∧ ∧ ∧ ∧ ∧ ∧        (3.5) 

( )( ) ( )( )0L u t L S t u=  is linear mapping that is defined in the (3.4); ∧  represents the outer product; tr  
represents the trace; NQ  is the orthogonal projection from )(2 ΩL  to the span ( ) ( ) ( ){ }1 2, , , .NV t V t V t  So 
from (3.5), we can turn N  dimensions volume element 1

N
n nξ=∧  into 

( ) ( ) ( ) ( ) ( )( ) ( )( )( )( )00

2 20 0

inf d2
1 2

, 1
e ,sup sup sup

t
N

N
Ln n

tr L S u Q

N N
u A u AL

w t V t V t V t
τ τ τ

ξ ξ

− ⋅

∈ ∈∈ ≤

∫= ≤

∧
∧ ∧ ∧  

( )Nw t  is secondly exponential, namely 

( ) ( ) ( ) , , 0.N N Nw t t w t w t t t′ ′ ′+ ≤ ⋅ ≥  

So 

( )
1

lim , 1 , e .NqtN n nt
w t n N −

→∞
= Π ≤ ≤ Π ≤  

Here 

( )( ) ( )( )( )
0

00

1limsup inf inf d .
t

N Nt u A
q tr L S u Q

t
τ τ τ

→∞ ∈

 = ⋅ 
 ∫  

Theorem 4. Under the assume of Theorem 3, the global attractor A  of Questions (1.5) - (1.7) has finite 
Hausdorff and fractal dimensin, and 

0 0, 2 .H Fd J d J≤ ≤  

Here 0J  is a minimal positive integer of the following inequality 
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( ) ( )( )
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21 6  2
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C

C u g u
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α γ

ϕ γ

∞ ∞ ∞ ∞

∞ ∞

  ′′′ ′′′ ′′ ′′≥ + + + + +  ′  
′ ′ ′+ + − 


 

Proof. By theorem [8], we need to estimate the lower bound of ( )( )( ).Ntr L u t Q⋅  Let 1 2, , , Nϕ ϕ ϕ  be the 
orthogonal basis of subspace of ( )2 ,NQ L Ω  

( )( )( ) ( )( ) ( )( )( ){ }
( )( ) ( )( ) ( )( ) ( )( ){ }
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2 2
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u g u

α ϕ γϕ ϕ ϕ ϕ ϕ

α ϕ γ ϕ ϕ ϕ ϕ ϕ ϕ

=

=

′ ′⋅ = ∆ + + +

′ ′= ∆ + − −

∑

∑
 

Here 

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( )
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( )( )( ) ( )( ) ( )( )( )
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j j j j

j j jL L L

L

u u C

u u u

u u u

u u u u u

u u u u u

C u u C C u u u

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

Ω Ω Ω

Ω

∞∞ ∞

∞ ∞

′ ′≤ ∇ ∇

′′ ′= ∇ ∇ + ∇ ∇

′′ ′= − ∇ ∇ + ∇ ∇

′′′ ′′ ′= − ∇ − ∆ + ∇ ∇

′′′ ′′ ′≤ ∇ + ∆ + ∇

 ′′′ ′′ ′≤ ∇ + + ∆ + 
 

( ) ( ) ( ) ( )

2

25
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2  2
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j
CC u C E E E u u u

ϕ

ϕ ϕ ϕ ϕ ϕ
γ

∞

∞ ∞ ∞

∇

′′′ ′′ ′′ ′≤ + + + + ∇

 

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( ) ( )( )( )
( ) ( ) ( )
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2 2 2

2 2 22

, ,
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1 , ,
2
1 1, , ,
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j j j jy y

j j j j

j j j

j j j j

j j j

g u g u

g u u g u

g u u g u

g u u g u u g u

g u u g u u g u

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ
∞ ∞∞ ∞ ∞

′ ′≤ ∇ ∇

′′ ′= ∇ ∇ + ∇ ∇

′′ ′= − ∇ ∇ + ∇ ∇

′′′ ′′ ′= − ∇ − ∆ + ∇ ∇

′′′ ′′ ′≤ ∇ + ∆ + ∇

 

Under the bounded condition, ( ) 1 2, eik x ik y
j x yϕ +=  is the standard eigenfunction of ,u uλ−∆ =  and the cor-

responding eigenvalues are ( )1,2, ,j jλ =   and 

( )
21

22 2 22 1
, , 1, 1 .

2j j j j j j

j
C jϕ λ ϕ λ ϕ λ

 − ∇ = ∆ = = ≥ − ⋅ 
  

  

Therefore, we can get 
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′′′ ′′′⋅ ≥ + − +

 
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 

∑

∑
 

By j jC jλ ′≥ ⋅  and 

( ) ( )( ) ( ) ( )( )

( ) ( )( )

5
0 1 2 3

1
2

0

21 6  2
2

3 ,

C
N C u g u E E E u g u

C

C u g u J

ϕ ϕ
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∞ ∞ ∞ ∞

∞ ∞

  ′′′ ′′′ ′′ ′′> + + + + +  ′  
′ ′ ′+ + − =


 

we have 

( )( )( ) 0.Ntr L u t Q⋅ >  

Therefore 

0 0, 2 .H Fd J d J≤ ≤  
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