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ABSTRACT 

The analytic properties of the scattering amplitude are discussed. And, the representation of the potential by the scatter-
ing amplitude is obtained. 
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1. Introduction 

We consider that the operators  xH q x   , 0 xH    
are defined in the dense set  in the space 

 and that q is a bounded fast-decreasing func- 
tion. The operator 

 2 3
2W R

 3
2L R

H  is called Schrödinger’s operator. 
We consider the three-dimensional inverse scattering 

problem for the Schrödinger’s operator: the scattering 
potential has to be reconstructed from scattering ampli- 
tude. This problem has been studied by a number of re- 
searchers (in [1-3] and references therein). 

2. Results 

We consider Schrödinger’s equation:  
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Let  is a solution of the (1) with the 
following asympotic behavior:  
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where  , ,A k    scattering amplitude, and 
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We also define the solution , for  , ,k x

 Im 0k C k    as .   , , , ,k x k x       
As well known [1]:  
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This equation is the key to solving the inverse 
scattering problem, and was first used by R. G. Newton 
in [2,3] and E. Somersalo et al. in [4].  

Equation (4) is equivalent to the following:  

           (5) 

where  is a scattering operator with the kernel S
 ,S k l ,      , , , d .k x l x x

 3R
Here is a theorem according to [1]: 

S k l     

Theorem 1 (The energy and momentum conserva- 
tion laws) 

Let qR , then SS ,I    where ,S S I  I  is a 
unitary operator.  

Definition 1 The set of measurable functions  with R

the norm, defined as 
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is recognized as Rollnik’ class.  
As shown in [5],  ,k x  is an orthonormal system 

of H  eigenfunctions for the continuous spectrum. In 
addition to the continuous spectrum there are a finite 
number  of N H  negative eigenvalues, designated as 

2
jE  with corresponding normalized eigenfunctions 
   1,2,j jx E j N   , where    2 3

2,j jx E L R   .  
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We present Povzner’s results [5] below: 
Theorem 2 (Completness) Both for arbitrary 

 3
2 f L R  and for H  eigenfunctions Parseval’s 

identity is valid.  
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where jf  and f  are Fourier coefficients for continu- 
ous and dicrete cases.  

Theorem 3 (Birmann-Schwinger estimation). Let 
. Then number of discrete eigenvalues can be 

estimated as:  
q R
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The theorem was proved in [6]. 
Let introduce the following notation: 
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where   
1

N
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j

k iE k iE


    . Define the operators  

T ,  for T  1
2f W R  as follows: 
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We consider the Riemann problem of finding a func- 
tion , which is analytic in the complex plane with cut 
along the real axis.  values on the sides of the cat are 
denoted as , . Below present the results of [7]. 
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Theorem 4 Let , qR g      . Then  

.          (14) T g  

The proof of the above follows from the classic results 
on the Riemann problem. 

Lemma 2 Let ,qR   , , ,g g z x   
 , ,g z   x , then  g
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The proof of the above follows from the definitions of 
, ,g     functions. 
Lemma 3 Let qR ,  

 , , ,A A z x    , , ,A A z x    then 

  , , .A k T A A           (16) 

The proof of the above follows from the definitions of 
, ,g     functions. 

Lemma 4 Let qR , then  

 .NA NT DA      (17) 

The proof of the above follows from the definitions of 
, ,g     functions and Theorem 1. 
Definition 2 Denote by  the set of functions 
 , ,f k     with the norm 

 , ,sup kTA   f Tf f  


  
Definition 3 Denote by I DT 

  the set of functions g 
such that  g I DT f  , for anyf .  

Lemma 5 Suppose 1 
TA

A , 
then the operator  I DT  defined on the set  

has inverse defined on the 


 I DT . 

The proof of the above follows from the definitions of 
, .D T  and conditions Lemma 5 
Lemma 6 Let qR  and  1I T D


  is existing. 

Then  
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The proof of the above follows from the definitions 
of , ,g     functions and Equation (4)  
Lemma 7 Let qR . Then  

 0
0
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z
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The lemma can be proved substituting   in 
Equation (1).  

Lemma 8 Let qR , and  1I T D


  is existing. 
Then  
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The proof of the above follows from the definitions of 
, Lemma 6, Lemma 7. ,N 

3. Conclusion 

This study has shown once again the outstanding pro- 
perties of the scattering operator, which allow, in 
combination with analytical properties of the wave func- 
tion, obtaining the almost explicit formulas for the po- 
tential from the scattering amplitude. Furthermore, this 
approach allows solving the problem of over-determi- 
nation, resulting from the fact that the potential is a 
function of three variables, whereas the amplitude is a 
function of five variables. We have shown that it is suf- 
ficient to average the scattering amplitude to eliminate 
the two extra variables. 
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