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ABSTRACT 

In this paper we discuss stability theory of the mass critical, mass-supercritical and energy-subcritical of solution to the 
nonlinear Schrödinger equation. In general, we take care in developing a stability theory for nonlinear Schrödinger 
equation. By stability, we discuss the property: the approximate solution to nonlinear Schrödinger equation  obeying u

   ti u F u      e 0 with  small in a suitable space and e 0u u  small in cs
xH  and then there exists a veritable 

solution  to nonlinear Schrödinger equation which remains very close to  in critical norms. u u
 
Keywords: NLS; Wellposed 

1. Introduction 

In this paper, we study the stability theory of solutions to 
the nonlinear Schrödinger equation (NLS). 

We consider the Cauchy problem for the nonlinear 
Schrödinger equation 

 
   00,

tiu u F u

u x u x

   


  


              (1.1) 

where   p
F u u u , 1    the solution  ,u u t x   

is a complex-valued function in  .d  
The Equation (1.1) is called mass-critical or -  2L

critical if 
4

p
d

 , and it is called mass-supercritical and 

energy-subcritical when
4

2
p

d



. 

The solutions to (1.1) have the invariant scaling  

  
2

2, pu x t u x t ,               (1.2) 

Definition 1.1 (Solution) Let  such that I   0 I . 
A function  is a strong solution to (1.1)  : du I   



d .



if and only if it belongs to , and for all 

 satisfies the integral equation 

  , dC I H 1

t I

      0
0

e e
t

i t ritu t u i F u r r           (1.3) 

A function  is a weak solution to (1.1)  : du I  

if and only if   1, du L I H  , and for all t I   

satisfies the integral Equation (1.3). 
The solutions to (1.1) have the mass  

    0M u t M u  

where 

     2
, d

d

.M u t u x t x 


 

Energy     0E u t E u  where, 

     221
( , ) d , d .

2 2d d

p
E u t u x t x u x t x

p

 
  

 
 

 

Definition 1.2 The problem (1.1) is locally wellposed 
in  1 dH   if for any  1 du H 

B
 there exist a time 

 and an open ball in 0T  1 dH  such that  

0u B , and a subset X of     1, ,T H dC T , such  

that for each 0u B  there exists a unique solution 
u X  to the Equation (1.3), and furthermore, the map 

0  is continuous from . If  can be taken 
arbitrarily large 
u  u to B X T

 T   , the problem is globally 
wellposed. 

Definition 1.3 A global solution  u t  to (1.1) is scat-
tering in  s dH   as  if there exists t  

 s dH     such that  

   lim e 0.s d

it

Ht
u t     



Similarly, we can define scattering in  s dH   for 
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t   . 
For more definition of critical case see [1-3]. 
In this paper we discuss stability theory of the mass 

critical, mass-supercritical and energy-subcritical of so- 
lution to the nonlinear Schrödinger equation. In section 
three we discuss the stability of the mass critical solu-
tions and in section four mass-supercritical and energy- 
sub-critical solutions are discussed.  

Theorem 1.1 Let  2
0

d
xu L 

0t 

 and 0 . Then 
there exists a unique maximal-lifespan solution  

 to (1.1) with  and initial data 
. Moreover: 

t 
:u I

d C 
 0u t 

I

0

1) The interval 
u

I  is an open subset of . 
2) For all , we have t I     0M u t M u  so, we  

define     M u M u t . 

3) If the solution  does not blow up forward in time, 
then , and moreover u  scatters forward in 
time to e  for some . Conversely,  

u
sup

u L 

eit u 

inf

I  
it u 

 2 d
 d

   2
xu L

if  then there exists a unique maximal-  x

lifespan solution u  which scatters forward in time to 
. 

4) If the solution u does not blow up backward in time, 
then I  

eit u 

 d

 and moreover u  scatters backward in 
time to  for some . Conversely, if   d

   2
xu L

2
xu L 

eit u 

 then there exists a unique maximal-  

lifespan solution  which scatters backward in time to 
. 

u

15) If d M u 
d

c  where a constant  depend-
ing only on  then 

0dc 

    2d d

dS u c M u
 . 

In particular, no blowup occurs and we have global 
existence and scattering both ways. 

6) For every  and 0A  0   there exists 0.   
With property: if  is a solution (not nec-
essarily maximal-lifespan) such that 

:u I d C

   ,M u S

M u

u A

  t

 and ,  are such  0t I


2

0
d

xv L  
that 0 0v   , then there exists a solution  

: dv I  C  with  0v t v 0  such that  S u v     

and     M u t v t    for all . t I
For proof: See [4-6]. 
Now in the following we will discuss Standard local 

well-posedness theorem. 
Theorem 1.2 Let ,  and let  1d  0cs 

 .d0
cs

xu H  Assume that 1cs p   if  is not an  p

even integer. Then there exists  0 0 d   such that if 
between 00     and I  there is a compact interval 
containing zero such that 
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2 220ec d p

d dpp d
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then there exists a unique solution u to (1.1) on dI  . 
Furthermore, we have the bounds 

 
   
2 2

2 22
2c d p

d dpp d
xt
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L L I
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            (1.5) 

 0

1
0

c c

d
x

s s
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p

S I L
u u  


 


        (1.6) 

 0 20d
xS I L

u u
                    (1.7) 

where  0 dS I   for the closure of all test functions 
under this norm. 

2. Strichartz Estimate 

In this section we discus some notation and Strichartz 
estimate. 

2.1. Some Notation 

We write X Y  anywhere in this work whenever there 
exists a constant c  in ependent of the parameters, so 
that

d
X cY . The shortcut  O X otes a finite linear 

gathering of terms that “look like” X, but possibly with 
some factors changed by their complex conjugates. 

 den

We start by the definition of space-time norms 

    3

1

, d dq qr r d
x xt t

q q
r r

L L R R L L
u u u x t x



 
  
 
 
  

∶ t  

The inhomogeneous Sobolev norm  s dH  (when s  
is an integer) is defined by: 

   2
0

s d s d

s

xH H L
f f f

 

   
∶  

When s is any real number as 

     
1

2 22ˆ 1 ds d s d

s

H H
f f f       

  
∶  

The homogeneous Sobolev norm  s dH   defines 
as: 

   
1

2 22ˆ ds d s d

s

H H
f f f       

   
∶  

For any space time slab , dK R
We use  q r d

t xL L K R
d

 to denote the Banach space of  

function  whose norm is K R C 

    
1

d .q rr d
xxt

q q
LL L K R K

u u t t


  ∶  

With the usual adjustments when  or  is equal to 
infinity. When 

q r
q r  we abbreviate q r

t xL L  as . ,

A Gagliardo-Nirenberg type inequality for Schrö- 
dinger equation the generator of the pseudo conformal  

q
t xL
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transformation 
def

2J x it    plays the role of partial  
differentiation. 

2.2. Strichartz Estimate 

Definition 2.1 The exponent pair  ,q r  is says the 
Schrödinger-admissible if 

1d  , and  2 ,q r  

  1 1 1
, , , 2, , 2

2 2

d
q r d

q r
     
 

.  

Definition 2.2 The exponent pair  ,q r  is says the 
Schrödinger-acceptable if 

   

1 1 1
1 , 2 ,

2

or , ,2 .

q r d
q r

q r

         
 

 
 

Let  be the free Schrödinger evolution. From the 
explicit formula  

eit

 
 

 
2

4

2

1
e e

4π
d

i x y
it t

d
d ,f x f

it


   y y  

we obtain the standard dispersive inequality  

     12e dd
xx

d
it

LL
f x t f




 ,         (2.1) 

for all . 0t 
In particular, as the free propagator conserves the 2

xL - 
norm,  

     
1 1

2e p dp d
xx

dit P
LL

f x t f 
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For all  0 and 2 ,t p   

1 1
where 1.

p p
 


 

If  solves the inhomogeneous Equa-
tion (1.1) for some  

: du I C 

2
0 0, d

xt I u L     and      2 2 4
,

d d d
t xF L I  

 
in the integral. 

Duhamel (1.3). Then we have 
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for some constant  depending only on the 
dimension . 

0 dC   
d

For some constant d  depending only on  we 
have the Holder inequality 

C d
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We now return to prove Theorem 1.2. 
Proof Theorem 1.2 The theorem follows from a con-

traction mapping argument. More accurate, defined  

       0
0

e e
t

i t situ t u i F u s s    ∶ d ,  

using the Strichartz estimates, we will show that the map 
 Φu  u 2 is a contraction on the set  where 1B B

   
   

1
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under the metric given by 
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2 22, .
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d u v u v


  
  ∶  

Here  ,C d p

2

 denotes a constant that changes from 
line to line. Note that the norm appearing in the metric 
scales like xL . Note also that both 1  and  are 
closed (and hence complete) in this metric. 

B 2B

Using the Strichartz inequality and Sobolev embed-
ding, we find that for  1 2u B B 
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And similarly, 
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Arguing as above and invoking (1.4), we obtain 
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Thus, choosing  0 0 d   suciently small, we see 
that for 00    , the functional  maps the set 

1 2  back to itself. To see that  is a contraction, 
we repeat the above calculations to obtain 
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Therefore, choosing  0 0 d 
Φ

B
0 c

 even smaller (if 
necessary), we can ensure that  is a contraction on the 
set 1 . By the contraction mapping theorem, it fol-
lows that  has a fixed point in 1 2 . Furthermore, 
noting that Φ  maps into 

2B B
Φ B

s
t xC H  (not just cs

xH ). We 
now turn our attention to the uniqueness. Since unique-
ness is a local property, it enough to study a neighbour-
hood of  By Definition of solution (and the Stri-
chartz inequality), any solution to (1.1) belongs to 

1 2  on some such neighbourhood. Uniqueness thus 
follows from uniqueness in the contraction mapping 
theorem.  

0.t 

BB

The claims (1.6) and (1.7) follow from another appli-
cation of the Strichartz inequality. □ 

Remark 2.1 By the Strichartz inequality, we know 
that 
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Thus, (1.4) holds with I    for initial data with 
suciently small norm instead that, by the monotone con-
vergence theorem, (1.4) holds provided I  is chosen 
suciently small. Note that by scaling, the length of the 
interval I  depends on the fine properties of , not 
only on its norm. 

0u

3. Stability of the Mass Critical 

In this section we discuss the stability theory at mass 
critical case. Consider the initial-value problem (1.1)  

with 
4

p
d

  .An important part of the local well-posed-  

ness theory is the study of how the strong solutions built 
in the past subsection depend upon the initial data. More 
accurate, we want to know if the small perturbation of 
the initial data gives small changes in solution. In general, 
we take care in developing a stability theory for nonlin-
ear Schrödinger Equation (1.1). Even though stability is a 
local question, it plays an important role in all existing 
treatments of the global well-posedness problem for 
nonlinear Schrödinger equation at critical case, for more 
see [7]. It has also proved useful in the treatment of local 
and global questions for more exotic nonlinearities [8,9]. 
In this section, we will only discus the stability theory for 
the mass-critical NLS. 

Lemma 3.1 Let I  be a compact interval and let be 
an approximate solution to (1.1) meaning that 

u

    ,ti u F u e       

for some function . Suppose that e

 2 d
t xL L I

u  
M


                (3.1) 

for some positive constant M . Let  and let 0t I
 0u t  be such that 

    20 0
xL

u t u t M             (3.2) 

for some 0M   . Suppose also the smallness conditions 
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e                           (3.5) 

for some 00      where  0 0 ,M M   
u

0  is a 
small constant. Then, there exists a solution  to (1.1) 
on  dI   with initial data  0u t  at time 0t t  
satisfying 
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     0N I
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Proof: By symmetry, we may assume 0 . Let inft  I
:w u u   . Then  satisfies the initial value problem w

   
     0 0 0 .

tiw w F u w F u e

w t u t u t

     


 

 


 

For t I  we define 
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Furthermore, by Strichartz, (3.4), and (3.5), we get 
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Combining (3.10) and (3.11), we obtain 

       
44
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0 .ddA t A t A t  


      

A standard continuity argument then shows that if 0  
is taken sufficiently small, 

  for any ,A t t I   

which implies (3.9). Using (3.9) and (3.11), we obtained 
(3.6). Furthermore, by Strichartz, (3.2), (3.5), and (3.9), 
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which establishes (3.7) for  0 0 M    sufficiently 
small. 

To prove (3.8), we use Strichartz, (3.1), (3.2), (3.9), 
and (3.3): 
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Choosing  0 0 ,M M    sufficiently small, this 
finishes the proof. □ 

Based on the previous result, we are now able to prove 
stability for the mass-critical NLS. 

Theorem 3.2 Let I  be a compact interval and let  
be an approximate solution to (1.1) in the sense that 

u

   ti u F u e       

for some function . Assume that condition (3.1) in 
Lemma 3.1 holds and 

e
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,
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  L             (3.12) 

for some positive constant andM N . Let 0t I  and 
let  0u t  obey (3.2) for some . Furthermore, 
suppose the smallness conditions (3.4), (3.5) in Lemma 
3.1. For some 

0M  

10     where  
 1 1 , , 0LM M    is a small constant. Then, there 

exists a solution u  to (1.1) on  with initial 
data 

 dI  
 0u t t at time 0t  satisfying 
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where  0 0 , 2 0M M     is as in Lemma 3.1. We 
replaced M   by 2M   as the mass of the difference 
u u   might grow slightly in time. By choosing 1  
sufficiently small depending on ,J M and M  , we can 
apply Lemma 3.1 to obtain for each j  and all 
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Provided, we can prove that their counterparts of (3.2) 
and (3.4) hold with replace 0  by t jt . To verify this, we 
use an inductive argument. By Strichartz, (3.2), (3.5), 
and the inductive hypothesis, 
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Similarly, by Strichartz, (3.4), (3.4), and the inductive 
hypothesis, 
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Choosing 1  sufficiently small depending on , ,J M  
and M  , we can ensure that hypotheses of Lemma 3.1 
continue to hold as j varies. □ 

Lemma 3.3 (Stability) Fix u  and . For every 
 and 

d
0A  0   there exists 0   with the property: 

if  is such that :u I d C  S u A  and that  
approximately solves (1.1) in the sense that 

u

       2 2 4
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Then there exists a solution  to (1.1) 
with  such that 

: dv I C 
 0v t v

 S u v   . 

Note that, the masses of u  and 0  do not appear 
immediately in this lemma, although it is necessary that 
these masses are finite. Similar stability results for the 
energy-critical NLS (in ) instead of 

v

1H d  2 d
xL  , of 

course) have appeared in [10-14]. The mass-critical case 
it is actually slightly simpler as one does not need to deal 
with the existence of a derivative in the regularity class. 
For more see [15]. 

Proof: (Sketch) First let prove the claim when A  is 
suciently small depending on . Let  be 
the maximal-lifespan solution with initial data 

d : dv I  C
 0 0v t v . 

Writing  on the interval v u w  I I I  ∶ , we see 
that 
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  as de  To deal with the case when sired. A  is 

large, simply iterate the case when A  is small (shrink-
ing  ,   repeat ly after a subdivision of the time 
interval 

ed ) 
I . 

4. Stability of the Mass-Supercritical and 
Energy-Subcritical 

In this section we discuss the Stability theory of the 
mass-supercritical and energy-subcritical to the nonlinear 
Schrödinger equation. Consider the initial-value pro- 
blem (1.1) with 2p   and  we chose 3d  1   . 

In this case the initial-value problem   0,0u u x u   
is locally well-posed in . Now we rewrite (1.1) as 1H
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We discuss the stability by the following proposition. 
Before beginning we need define the Kato inhomogene-
ous Strichartz estimate. See [16] 
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     (4.1) 

Proposition 4.1 For each  there exists 1N
 0 0 1,N 

 
and   1,c c N  such that the fol-

lowing holds.  
Let   1, for axu u x t H t  ll  and solve  

2
0ti u u u u     . 

Let   1, xu u x t H    for all t  and define  
def 2

.te i u u u u         

If 
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      (4.2) 

Then 

   1 2 .
S H

u c c N     

Proof: Let w be defined by  then  
solves the equation  

.u u w  w
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     (4.3) 
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since  1 2S H
u  N .Can be divided  0 ,t t  into 

 A A N  in intervals  Such that for  1,j j jI t t   
all j , the quantity  1 2 , jS H I

u  , is Appropriate small  

(δ to be selected below). 
Integration (4.3) with initial time jt  is  

         e ej

j

t
i t t i t s

j
t

w t w t i s s
       ., d     (4.4) 

where 

   2 2 22 22 2u w u w u w uw w w e         . 

Applying the Kato Strichartz estimate (4.1) on jI , to 
obtain  
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Note that 
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Similarly, 
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Substituting the above estimates in (4.5), to get, 
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(4.6) 

As long as  

1
min 1,

6c
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We obtain 
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Taken now 1jt t   in (4.4) and apply  1e ji t t  
 to 

both sides to obtain  
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      (4.9) 

Since the Duhamel integral is restricted to 1,j j jI t t    , 

by again applying the Kato estimate, similarly to (4.6) we 
obtain, 
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By (4.8) and (4.9), we bound the Former of expression 
to obtain 
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Start iterates with 0j  , we obtain 
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To absorb the second part of (4.7) for all intervals ,jI  
0 j A 1,    we require 

2
0

1
2 min 1,

2 6
A c

c
 

 
 

.

          (4.10) 

We review that the dependence of parameters δ is an 
absolute constant chosen to meet the first part of (4.7). 
The inequality (4.10) determines how the small 0  
needs to be taken in terms of A (and thus, in terms of 

). We were given  which then determined N N .A  □ 
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