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ABSTRACT 

Recent progress in symbolic dynamics of cellular automata (CA) shows that many CA exhibit rich and complicated 
Bernoulli-shift properties, such as positive topological entropy, topological transitivity and even mixing. Noticeably, 
some CA are only transitive, but not mixing on their subsystems. Yet, for one-dimensional CA, this paper proves that 
not only the shift transitivity guarantees the CA transitivity but also the CA with transitive non-trivial Bernoulli subshift 
of finite type have dense periodic points. It is concluded that, for one-dimensional CA, the transitivity implies chaos in 
the sense of Devaney on the non-trivial Bernoulli subshift of finite types. 
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1. Introduction 

1.1. Cellular Automata 

Cellular automata (CA), formally introduced by von Neu- 
mann in the late 1940s and early 1950s, are a class of 
spatially and temporally discrete deterministic systems, 
characterized by local interactions and an inherently pa- 
rallel form of evolution [1]. In the late 1960s, Conway 
proposed his now-famous Game of Life, which shows the 
great potential of CA in simulating complex systems [2]. 
In the 1980s, Wolfram focused on the analysis of dyna- 
mical systems and studied CA in detail [3,4]. In 2002, he 
introduced the monumental work A New Kind of Science 
[5]. In fact, mathematical theory of CA was firstly deve- 
loped by Hedlund about two decades after Neumann’s 
seminal work [6]. Since 2002, Chua et al. provided a ri- 
gorous nonlinear dynamical approach to Wolfram’s em- 
pirical observations [7-10]. All elementary CA (ECA) 
rules are reorganized into four groups in terms of finite 
bit stings. There are 40 topologically-distinct period-  
rules , 30 topologically-distinct Bernoulli 
shift rules, 10 complex Bernoulli shift rules, and 8 hyper 
Bernoulli shift rules. Recently, the dynamical properties 
of Chua’s periodic rules and robust Bernoulli-shift rules 
with distinct parameters have been investigated from the 
viewpoint of symbolic dynamics [11-17]. 

k
 1, 2,3,6k  

By a theorem of Hedlund [6], a map : Z Zf S S  is 
an one-dimensional cellular automata (1-D CA) if and 
only if it is continuous and commutes with the shift map 
 . For any 1-D CA, there exists a radius  and a 

local map 

0r 

2 1ˆ : rf S  

 
i

f x  

S  such that  

  ,
ˆ

i r i rf x   , 

where notetions will be precisely defined below. In par- 
ticular, f  is an ECA global map when  and 1r  S   
 0,1 . Each ECA can be expressed by a 3-bit Boolean 
function and coded by an integer , which is the de- 
cimal notation of the output binary sequence of the Boo- 
lean function [5,7,18].  

N

1.2. Definition of Chaos 

Let X  be a metric space and F : X X  be a conti- 
nuous map. F  is said to be topologically transitive or 
simply transitive if, for any non-empty open subsets  
and  of 

U
V X  there exists a natural number n  such 

that   VnF U   ; F  is topologically mixing or 
simply mixing if there exists a natural number  such 
that 

N
  VnF U    for all ; n  N F  is sensitive to 

initial conditions (or simply sensitive) if there exists a 
0   such that, for x X  and for any neighborhood 

 B x  of x , there exists a  y B x

 


 
 and a natural  

number  such that n  y,x Fn nd F  , where  

is a distance defined on 

d

X . 
Let       0, nP F x X n F x x      be the set of  

periodic points of F .  P F  is said to be a dense sub- 
set of X  if, for any x X  and any constant , 
there exists a 

0
 y P F  such that .   ,d x y  

Definition 1. F  is chaotic on X  in the sense of 
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Devaney if (1) F is transitive, (2)  is a dense sub- 
set of 

 P F
X , (3) F is sensitive [19]. 

It has been proved that additive 1-D CA are chaotic 
[20]. For general dynamical systems, it has been proved 
that (1) and (2) together imply (3) [21], and for 1-D CA, 
(1) implies (3) [22]. In the next section of this paper, it 
will be proved that, for 1-D CA with Bernoulli subshift 
of finite type (BSFT), (1) also implies (2). 

1.3. Symbolic Dynamical Systems and SFT 

For a finite alphabet , a word over  
is a finite sequence  of elements of . 
Denote by  the set of all words of length . If 

0,1,S  

 0 , ,a a 



, 1k

1na 

S
S

nS n x  is 
a finite or infinite word and  ,I i j  is an interval of 
integers on which x  is defined, then denote 

  i ji j , , ,x x  x . Moreover,  is said to be a subword 
of 

a
x , denoted as , if a x Ia x  for some interval 

I Z , where Z  is the set of all integers. The set of 
bi-infinite configurations is denoted by ZS , and a dis- 
tance  ond ZS is defined by  

   
| |

,

2
i i

i
, ,

i

x y
d x y




   

where ,   1 0 1, , , ,x x  x x

1 0 , , , ,1
Zy y y y   S 0, and  if  

i i

 i ix y , 
x y , or  otherwise. It is known that 1 ZS  is a 
compact, perfect and totally disconnected metric space 
[23]. 

For a map : Z Zf S S , a set ZX S  is said to be 
 if -inv ntf aria  f X  X . If X  is closed and  

-inv nt,f aria  then  , X f  is called a subsystem of the  

dynamical system . For example, let  be a 
set of some words of length  over , and 

 ,S f Z 
n S   be 

the set of the bi-infinite configurations consisting of all 
the words in . Then,   ,   is a subsystem of  

 ,ZS  , where   is the left shift   1L ii
x x     (or  

the right shift   1R ii
x x    ) defined on ZS , and  

is called the determinative block system of 


 . The 
subsystem  , 

 0 1a 

, 1,

 ib

, or simply  is called a subshift 
of finite type (SFT) with respect to . 

,


E

 0 1, , nb 

 , ,b

Furthermore,  can be described by a finite 
directed graph, , where each vertex is 
labeled by a word in , and  is the set of edges 
connecting the vertices in . Two vertices  

 and   are connected 
by an edge 0 1n  if and only if 

1k k . One can think of each element 
of  as a bi-infinite path on the graph . Whereas 
a directed graph corresponds to a square transition matrix 

 with  if and only if there is an edge  




, ,a a
2, ,

ijA

 ,G  



b b
 0 1n 

1n 

1

E

, ,a a
 

a b k 


m m


n



 ijA A


b

G

from vertex  to vertex  jb , where 

1

m   is the  

number of elements in , and  (or ) is the code of 

the corresponding vertex in , . Thus, 

 i j

 , 0,1, ,i j m 
  is precisely defined by the transition matrix A . 

Remarkably, a  0,1  square matrix A  is irreducible 
if, for any , there exists an n  such that ; 
aperiodic if there exists an  such that  for all 

, where 

,i j

n
ij

0n
ijA

0n
ijA n

,i j A  is the  i j,  entry of the power matrix  
nA . If   is an SFT of  ,ZS  , then it is transitive if  

and only if A  is irreducible; it is mixing if and only if 
A  is aperiodic. Equivalently, A  is irreducible if and 

only if for every ordered pair of vertices  and  ib  jb  
there is a path in G  starting at  and ending at 

 ib
 jb  [23,24]. 

2. Transitivity and Chaoticity 

In this section, it is proved that, for any 1-D CA res- 
tricted on its Bernoulli-shift subsystem, the shift tran- 
sitivity implies the CA transitivity, and transitive non- 
trivial Bernoulli subshift of finite type (BSFT) has dense 
periodic points. Consequently, for 1-D CA, transitivity 
implies chaos in the sense of Devaney on the non-trivial 
BSFT. 

2.1. Shift Transitivity Implies CA Transitivity 

Definition 2. A closed invariant subset ZS   of a 
1-D CA f  is called a Bernoulli-shift subsystem if there 
exists an integer pair  ,q p  with  such  0,pr q 
that     ,p q x xf x   , where  is the radius of  r

the local map f̂  of the CA f  and   is the left (or 
right) shift map. 

For simplicity, only consider   as the left shift in the 
following discussion. 

Proposition 1. If   is a Bernoulli-shift subsystem of  

a 1-D CA f  with     , ,p q x x pr   0qf x  ,  

then there exists a  12 pr  -sequence set  such that  

  ,  ,
Z

i pr i prx S x      i Z    . 

Proof: If 2 1ˆ : rf S   S  is the local map of f , then one 
can get the  times iteration of p ˆ ,f  2 1ˆ p p: .rf S S   
Thus,     ,p qf x x x  , if and only if  

  ,
ˆ p p

i pr i pr    q
i qi i

f x f x x x  
        , 

for all i Z . Let  

   
  

2 1
0 2 0 2

,

, , , ,

,

pr

, ,

pr p

i pr i pr

a a S a a

x x i Z



   

    r

 

and 

  ,i pr i ,  Z
prx S x i Z        , 

where  is a finite set since  2 .prk  Then, it 
follows that    .  
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Definition 3. The Bernoulli-shift subsystem     
in Proposition 1 is called the Bernoulli subshift of finite 
type (BSFT), and  is called the determinative block 
system of . If BSFT is an infinite set, then it is said to 
be non-trivial. 




Based on Definitions 1, 3 and Proposition 1, an obvi- 
ous result is the following proposition. 

Proposition 2. Consider two BSFTs,  and 
1

 2
 , 

of a 1-D CA  with f

    , , 1, 2, 0
i

p qf x x x i pr q    

.

. 

Then,  if and only if . 
1 2 1 2

Theorem 1. Let  be a BSFT of a 1-D CA  
with  If the shift 

    
  

  ,x x
f

 p qf x  :     is 
transitive, then  is also transitive. :  f

Proof: Since the transitivity of   on  is equiva- 
lent to the existence of a  such that 


x

 Orb x   , 

where 

      2, , ,Orb x x x x        

is the orbit of   starting from x  and  Orb x   is its 
closure [14,15]. It can be verified that for any  

 , there exists at 
least an  such that  
 2 1 -seqpr 

i
uence

Z
 0 1, , ,a a  2 pra

   0 1 2, 2 , , , pri i prx a a a   . 

Conversely, for any , the  
. 

i Z  2 1 -sequencepr 

 , 2i i prx   
For the x  above, consider the orbit  

      2, , ,fOrb x x f x f x      

and let  fOrb x   . It is clear that  is closed and 
. Because  is -invariant and closed, one  



 f    

  

 

f

has  and   ,x xp qf Obviously, f  x   . 

is transitive on 
e determinative block system of 

 . 
Let   denote th  . 

On one and, based on Proposition 2 and    , one 
has   . On the other hand, since x llows  

that ,

 h
, it fo

 , 2i i prx i Z   , but the  2 1 -sequence 

onsisting of  , 2i i pr

pr 

set c  x i Z  is is implies 

    and   




  . Th  

. Thus,    , ., f  is transi-  i.e

rk 1. 
gives a convenient method to check if a 

C

tive on  .  
Rema
1) Theorem 1 

A f  is transitive on a BSFT, since   is transitive 
on SFT if and only if the transition matrix orresponding 
to the SFT is irreducible [23,24]. 

2) Theorem 1 shows that the shift transitivity implies 
the CA transitivity on the BSFT, 

 c

but the inverse im- 

plication may not be correct, with a counter example of 

ECA 39f . One has 2
39f   , where  0 ,1     

and  0 ,0,0,0,    ,  1 ,1,1,1,    , s  o   on- 
tains two points. It 

c
is clear that 39f  is transitive but 

   is not. In case BSFT is an infinite
ansitiv

 se

is sti

t, whether the 
CA transitivity implies the shift tr ity on the BSFT 

ll an open problem. 
3) When a BSFT   is a finite set on which f  is 

transitive, then it is a set of  points,  -periodicf
    1, , , kx f x f   for some x Zx S  and  

1 0k  , it is said that   is 

all two claims proved in [22]: 1

trivial.  
Remark 2. 
Rec ) transitive 1-D CA 

is tive; 2) a 1-D CA is transitive but not 
se

 always sensi f  
nsitive on a SFT   if and only if  

    2, , , kx x x     for some Zx S  and 2 0k  . 
It is easy to be ver d that 1 2k k  and t

 q . 

2.2. Transitivity Implies De

ifie
p  a

hey are

 nsity of Periodic 
Points 

 com- 
mon multiples of nd

Theorem 2 Let     be a BSFT of a 1-D C A 
with 

f  
    ,q x xpf x   . If the shift :     is 

transitive, then th eriodic points of ,f   

   
e set of p

 0, ,P f y n f y y      is den  n se in  . 

Proof: Let   
 sy

be the BSFT, a  ter- 
minative block stem. For any , there 
ex

nd   be its de
  and > 0x

ists a positive integer   M pr  such at   th

1

1
< 2

i



 , 
2iM 



and for  

   0 2 ,, , M M Ma a x x   , 

it follows that  

   2 2 0 2, , , , ,pr M pra a a    . 2Ma 

  is transitive on there exists a path from  ,  Since 

 , ,a a2 2 2M pr M  to  0 2, , pra a  in the graph  

  . Let  ,G  E

 2 0 0 20
, , , , , ,2 2 , ,M pr M k prb a a b b a a     

be the sequence corresponding to this path. Then, ny  its a
 2 1pr  -subsequences belong to  . 

Now, construct a cyclic configuration  

 , , , ,y b b b b    , 

where 

 00 2 0, , , , ,M kb a a b b   . 

 and , where  m y y  m by   Obviously, 
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is the length of . Thus, y  and b



   mpf y y mq

  , ,M M M M  e . ,  y x ,  i .  y P f  and   y,d x   .  

Therefore, the sets of periodic se in 
 

d som n [21], th g 

 points  is den

By Theorem 2 an e results i e followin

he rem 3. If 

 P f
.  

two theorems are obtained.  
T o   is transitive on a non-trivial BSFT 

of
is chaotic in the sense of 

D ns

2. s

 and Chua’s 
ny sub- 
is rule’s 

 a 1-D CA f , then f  is sensitive on the BSFT.  
Theorem 4. A 1-D CA f  

evaney on its tra itive non-trivial BSFT.  

3. An Example of Tran itive ECA Rule 

Rule 26 is a member of Wolfram’s class IV
hyper Bernoulli-shift rules, which defines ma
systems with rich and complex dynamics. Th
local map is      ˆ ˆ ˆ0,0,1 0,1,1 1,0,0 1f f f    and  

 ˆ , , 0f a b c   for all other triples    3
, , 0,1a b c  , and  

the corresponding
Proposition 3 

 global map is denoted by 
There exists a BSFT of 

26 .f  
,  26f

  2, 2 ,Z
i ix S x          

su  and ch that    2 2f x x x  , where 26 , 0,1S 

     
   

       

0,0,0,1,0 , 0,0,1,0,1 , 0,1,0,0,1 , 

0,1,1 , 0,1,1,0,0 , 0,1

1,0,0,1,0 , 1,0,1,1,0 , 1,1,0,0,1 , 1,1,0,1,1 .



 0,1, ,1,0,1 ,  


Proof: Firstly, is a closed set because   ZS 

at  

2

 is 
an open set. Th n be easily verified th

 for  and 
en, it ca

any  26f x  ,x  2
26

ˆ
if a a   for an

at  
y 

 2 1 1 2, , , ,i i i i ia a a a a     . This implies th

   2 2

a

26f x x  for x .  
It is clear that the transition matrix corresponding to 
 is 

Proposition 4. The transition matrix 



0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0


 

0 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

A



 














 















A  is irreduci- 
ble, so 26f  

: Le
is transitive on  

Proof t 
 . 

, where C A I  I  
denote the 

is the identity matrix
and let  elements of the

po  t
o  is aperiodic. 

, 
   1 , 1C i j  0n

ij

wer matrix nC . It can be easily verified hat  
0, 10,n

ijC i j    for all 7 , s 1 ,
Recall that a m trix 

n   C
a A  is irreducible if and only if 

A I  is a . Hence, per [2iodic 3,24] A  is irreducible and 
so 26f  is transitive on  .  

Theorem 5 26f  is chaotic in the sense of Devaney on 
 . 

3. Conclusion 

As
been widely  f

na
ay

ta,” Universi  
1966. 

[2] M. Gardner

 a particula ass of dynamical systems, CA have r cl
used

ty

, “

or m
Des

 rich

he
of Illino

od
pi
 a

or

eling an
te their appa
nd com

ant No.
hin

y 
i

d sim
re

lex e

 CityU1

tions

ulating many 
. nt simplicity, 

volutions, but 

g Kong Re- 
117/10) and 

dical University 

 Automa- 
London, 

 of John Con- 

physical phenome
1-D CA can displ p

ese Me

of Self-Reproducing
s Press, Urbana and 

many properties of their temporal evolutions are unde- 
cidable [25,26]. Although checking the transitivity based 
on its definition is very difficult [27], and it alone is not 
sufficient for chaos to exist in general dynamical systems, 
this work has rigorously proved that the shift transitivity 
implies the CA transitivity, and the CA with transitive 
non-trivial BSFT are chaotic in the sense of Devaney, 
partly answer the open question whether Devaney chaos 
in 1-D CA is equivalent to transitivity [28]. 
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