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Abstract 
In this paper we report on the foF2 variabilities for two equatorial regions 
(Ouagadougou: Lat. 12.4˚N; Long. 358.5˚E, Dip. 1.43˚S; and Manila: Lat.  
14˚36'15.12''N; Long. 120˚58'55.92''E; Dip. 0.6˚S) during solar cycles 20 and 
21 minima and maxima phases. Many previous works have argued on the di-
urnal and seasonal variation of foF2 for different solar events conditions for 
latitudinal position. But there are few investigations for Africa equatorial re-
gion longitudinal variation. The present paper’s goal is to outline possible si-
milarity in foF2 behavior between variations for better understanding of 
physical process lead to some observed phenomenon in Asia-Africa equatori-
al sector. The F-layer critical frequency (foF2) data observed from the two 
equatorial ionosonde stations have been used for the present comparative 
study. The results show significant similarity between the critical frequency 
(foF2) seasonal variations over the time intervals 1976-1996. During day-time 
measured data from Manila station are higher than those from Ouagadougou 
station. That may lie in that Manila is closer to equatorial ionization crest re-
gion. During solar minimum phase, the longitudinal variation of foF2 shows 
two crossing points (11:00 UT and 22:00 UT) between the foF2 profiles form 
the two stations for all seasons regardless of the solar cycle. However during 
intense solar activity condition, the number of crossing-point between meas-
ured data from Manila and Ouagadougou stations varies by seasons and solar 
cycle. This phenomenon may be due to the compilations of severe activities 
(storms, coronal mass ejection, heliosheet fluctuations) during the solar maxi-
mum phases. 
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1. Introduction 

The ionosphere is one of the most important layers of the Earth atmosphere. 
This layer ionized by solar and cosmic radiation is very important for waves and 
their propagations. Understand the behavior of this region’s parameters during 
solar activity and solar cycle phases may be useful for investigations on solar va-
riability and its terrestrial impacts. To better seize the behavior of the ionosphere 
many reports have highlighted the variability of its critical frequency foF2 pro-
files during various seasons, day, time, solar events, and latitude [1]-[11]. [12] 
had reported on the variation of this ionospheric parameter through its in situ 
measurements in Africa equatorial region and classified foF2 diurnal profiles as 
follow: 1) morning peak profile characterized by a predominance morning peak; 
2) plateau profile; 3) dome profile; 4) reverse profile characterized by predomi-
nant afternoon peak; and 5) noon bite out profile due to the presence of double 
peaks (morning and afternoon peaks) with trough around midday. All these 
previous studies had provided suggestions and help on the improvement of the 
prediction of the equatorial ionosphere behavior for human well-being. Few in-
vestigations have reported on a comparison between in situ measurements from 
Africa regions and Asia or America one in order to address the lack of data in 
most Africa regions. Comparative investigations can help to predict solar events 
when similarities in ionospheric parameters behavior are stronger.  

Our present investigation fits into this overall objective and constitutes a con-
tribution to better understand the dynamic of ionosphere in two equatorial re-
gions (Ouagadougou: Lat. 12.4˚N; Long. 358.5˚E, Dip. 1.43˚ in Africa and Ma-
nila: Lat. 14˚36'15.12''N; Long. 120˚58'55.92''E; Dip. 0.6˚S in Asia). 

In the current study, foF2 data from Ouagadougou and Manila ionosonde sta-
tions are used to illustrate the various characteristics of F-Layer of the ionos-
phere through is critical frequency foF2. Seasonal and solar activity effects on 
ionosphere are performed during solar cycles 21 and 21 minima and maxima for 
Ouagadougou and Manila. In Section 2, data and investigation methodology are 
outlined. Results and physical phenomena are discussed in Section 3. The Final 
Section presents our findings and summarizes the paper. 

2. Data and Methodology 
2.1. Data 

1) The ionospheric parameter studied is the critical frequency of the F2 layer 
(foF2) obtained from the SPIDR database (URL: http://spidr.ionosonde.net/spidr/; 
2) The values of sunspots Rz taken from http://sidc.oma.be/sunspot-data/; 3) The 
geomagnetic index aa used to selected quiet days conditions are from  

https://doi.org/10.4236/ijg.2019.1010047
http://spidr.ionosonde.net/spidr/
http://sidc.oma.be/sunspot-data/


K. M’Bi et al. 
 

 

DOI: 10.4236/ijg.2019.1010047 835 International Journal of Geosciences 
 

http://isgi.unistra.fr/data_download.php. Figure 1 is an example of pixel diagram 
displaying aa index as a table and showing quiet activity [13] [14]. 

2.2. Methodology 

The Solar cycle phases are determined using sunspot number Rz [15] and crite-
ria fully described in many works [16] [17]: 1) the minimum phase: Rz < 20; 2) 
the ascending phase: 20 ≤ Rz ≤ 100 and Rz greater than the previous year’s value; 
3) the maximum phase: Rz > 100; 4) the decreasing phase: 100 ≥ Rz ≥ 20 and Rz 
less than the previous year values. 

Local (north hemispheric) seasons are classified as followed: winter (Decem-
ber, January, and February); spring (March, April, May); summer (June, July, 
August) and autumn (September, October and November). 

To perform our study, we proceed as follow:  
1) At solar maximum and solar minimum: select days with highest Rz and the 

lowest Rz respectively; 
2) Choose five days the most disturbed (highest aa index) and five quietest (aa 

lowest index); 
3) Monthly and seasonal average (hourly) of foF2 per cycle and solar activity. 

3. Results and Discussion 

This section presents and analyzes the results of our investigations in other to 
allow comparison between measurements from the Africa and Asia equatorial 
regions. 

3.1. The foF2 Diurnal Profiles 

Figures 2-5 present the diurnal variation of foF2 during geomagnetic quiet ac-
tivity for solar minima and disturbed geomagnetic activity for solar maxima at 
Ouagadougou and Manila stations over the solar cycle 21 (1976-1986) and the 
solar cycle 22 (1986-1996). Each figure show the seasonal ((a) winter; (b) spring; 
(c) summer; (d) autumn) behavior of foF2. 
 

 
Figure 1. Pixel diagram of year 1976 illustrating geomagnetic activity classes. Each line shows solar rotation, successive lines solar 
rotations, and each number the daily average of solar wind speed. Circle indicates the date of storm/coronal mass ejection (CME). 
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(a)                                       (b) 

  
(c)                                       (d) 

Figure 2. Diurnal variations of foF2 during cycle 20 maximum phase: (a) winter; (b) 
spring; (c) summer; (d) autumn. 
 

  
(a)                                       (b) 

  
(c)                                       (d) 

Figure 3. Diurnal variations of foF2 during cycle 20 minimum phase: (a) winter; (b) 
spring; (c) summer; (d) autumn. 
 

All the profiles show that the highest values of foF2 are recorded during sunspot 
cycle maximum phase for all the seasons testifying to the linear dependence be-
tween sunspot number and the critical frequency foF2 as reviewed in many pre-
vious works [18]-[23]. 

From these figures it also appears that the gap (∆foF2) between profiles from  
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(a)                                       (b) 

  
(c)                                       (d) 

Figure 4. Diurnal variations of foF2 during cycle 21 maximum phase: (a) winter; (b) 
spring; (c) summer; (d) autumn. 
 

  
(a)                                      (b) 

  
(c)                                       (d) 

Figure 5. Diurnal variations of foF2 during cycle 21 minimum phase: (a) winter; (b) 
spring; (c) summer; (d) autumn. 
 
Manila and Ouagadougou stations measurements are not significant for all sea-
sons except on Figure 2(b) at 00:00 LT where ∆foF2 = 5.26 Mhz (12.76 MHz for 
Manila and 7.50 MHz for Ouagadougou). This gap may be a manifestation of 
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local disturbance. The profiles of foF2 at the two stations are similar most of the 
time and present peaks or troughs very or fairly pronounced. During daytime, 
the two profiles are superimposable with perturbations on the evolutions of 
some profiles due to longitudinal irregularities of the F-layer parameters has re-
viewed in [24] [25]. The most important differences between the foF2 values at 
the two stations occur tonight. During this period, the electric dynamo process is 
predominant, and foF2 profiles differ greatly at Ouagadougou and Manila sta-
tions because of ionospheric plasma irregularities and instability [26]. The local 
effects on equatorial electrojet process [27] may induce differences between the 
two stations’ measurements. The dynamics of the migratory tides, the diurnal 
propagation of the tides and the meridional winds lead to longitudinal variations 
of the electrojet [28] [29] [30]. A qualitative analysis of foF2 profiles for the two 
stations shows the diurnal profiles reported by [12]: “Noon bite out” or “B” pro-
file characterized morning; “Reversed” or “R” profile characterized by a single 
peak at evening; “Dome” or “D” profile characterized by a double peak (morn-
ing and evening); “Morning Peak” or “M” profile defined by a single peak at by a 
single maximum around noon; “plateau” or “P” profile characterized by an io-
nization plateau during daytime.  

In general, the recorded values of foF2 at Manila station are higher than those 
from Ouagadougou station. The Table summarizes the most important seasonal 
values of foF2 during solar cycle and solar activity. The gap between the data 
from these two equatorial regions may be due to the fact that Manila is closer to 
the crest of ionization during daytime. Tonight, ionization is largely due to cos-
mic radiation and that could explain the variation in the relative position of the 
two profiles during that time since the two stations are not at a same geographic 
position. Except that, equinoctial asymmetry is observed during all the sunspot 
cycle phases over the two solar cycles (Figure 2(b) and Figure 2(d); Figure 3(b) 
and Figure 3(d); Figure 4(b) and Figure 4(d); Figure 5(b) and Figure 5(d)). 
Solstice’ anomalies [31] are observed in the profiles during the maximum and 
the minimum phases for solar cycle 21 (Figure 4(a) and Figure 4(c), Figure 5(a) 
and Figure 5(c)) and only during the maximum phase of cycle 20. 

3.2. foF2 Seasonal Variations Comparison 

Figures 6-9 give an overview of a comparative between the two stations mea-
surements during the period 1976-1996 for different seasons ((a) winter; (b) 
spring; (c) summer; (d) autumn). 

During solar minimum phases the foF2 profiles show two crossing points for 
all the seasons. These crosses occur around 11:00 UT and 22:00 UT (Figure 7 
and Figure 9). During these times intervals we can assume that there is no lon-
gitudinal effect on the critical frequency evolution. In addition the two points do 
not change from one cycle to another. Unlike minimum phase, there are several 
intersection points during maximum phase especially for spring and autumn 
(Figure 6 and Figure 8). During that solar cycle phase (Solar maximum), many 
various solar events (high stream solar wind, coronal mass ejection, storm, etc.).  
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(a)                                      (b) 

   
(c)                                      (d) 

Figure 6. Seasonal variations of foF2 during cycle 20 maximum phase: (a) winter; (b) 
spring; (c) summer; (d) autumn. 
 

   
(a)                                      (b) 

   
(c)                                      (d) 

Figure 7. Seasonal variations of foF2 during cycle 20 minimum phase: (a) winter; (b) 
spring; (c) summer; (d) autumn. 
 
These associated events may explain the various number of intersection points 
between measurements from Manila and Ouagadougou stations shown in Fig-
ure 6 and Figure 8. 
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(a)                                       (b) 

  
(c)                                       (d) 

Figure 8. Seasonal variations of foF2 during cycle 21 maximum phase: (a) winter; (b) 
spring; (c) summer; (d) autumn. 
 

  
(a)                                       (b) 

  
(c)                                       (d) 

Figure 9. Seasonal variations of foF2 during cycle 21 minimum phase: (a) winter; (b) 
spring; (c) summer; (d) autumn. 
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Table 1. foF2 most significant values maximum and during solar minimum for cycles 20 and 21 (W: winter; Sg: spring; S: summer; 
Au: autumn). 

 
Solar Cycle 20 Solar Cycle 21 

Maximum du cycle Minimum du cycle Maximum du cycle Minimum du cycle 

Seasons W Sg S Au W Sg S Au W Sg S Au W Sg S Au 

Ouagadougou 
foF2 (MHz) 

12.36 12.27 11.01 12.42 8.83 8.94 8.02 8.62 13.68 13.83 11.59 14.02 8.13 9.56 7.52 8.94 

Manila 
foF2 (MHz) 

12.88 12.51 11.42 13.13 8.83 10.30 8.81 9.88 14.02 13.54 12.20 14.40 8.76 8.68 8.97 9.59 

4. Conclusions 

The results of our morphological investigations outlining the dependence of the 
foF2 variability on solar activity over different latitudes, different local times, 
and different seasons may be noted as follows: 

1) Seasonally, the profiles of foF2 values measured at Manila and Ouagadou-
gou stations are similar; 

2) The magnitude of foF2 increases during high solar activity period (maxi-
mum) and decreases during low solar activity period (minimum); 

3) During daytime measured data from Manila station are greater than those 
from Ouagadougou most of the time. That may lie in that Manila is closer to 
equatorial ionization crest region; 

4) For these two stations solstice anomaly is observed and it is most pronounced 
during the intense geomagnetic activity (solar maximum) as summarized in Table 
1; 

5) During daytime, two remarkable intersection points (11:00 UT and 22:00 
UT) are observed between the foF2 profiles from the two equatorial stations 
during solar minimum phase testifying to that there is a longitudinal effect on 
that F-layer parameter foF2. These crossing-points are independent of seasons 
and sunspot cycle phase; 

6) Unlike minimum phase, there are several intersection points during maxi-
mum phase especially for spring and autumn. This may lie in the occurrences of 
several intense events (storms, CME, heliosheet fluctuations) during solar max-
imum phase.  
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