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Abstract 
The early Cambrian carbonaceous shale and laminated chert-phosphorite as-
semble (the black rock series) are widespread at the northwest margin of the 
Tarim Basin, Northwest China. In combination with previously reported data, 
we present stable molybdenum isotope (δ98/95Mo), TOC, and redox-sensitive 
trace elements to evaluate the sedimentary conditions in early Cambrian wa-
ter column during the deposition of the black rock series in the Tarim Basin. 
Redox variation was documented based on enrichment factors (MoEF, VEF, and 
UEF) and redox-sensitiv elements ratios (Ni/Co, V/Cr, δU), etc. During the 
early Cambrian, there was transgressive event, and the sea level continues to 
rise. In the basal Cambrian, laminated chert-phosphorite assemble with low 
TOC concentrations suggest the oxic sedimentary condition in a restricted 
basin. Light Mo isotope values and redox sensitive elements enrichment in the 
carbonaceous shale layer indicate lack oxygenic sedimentary condition, and 
was suboxic/anoxic conditions during the transgressive phase. The hydro-
thermal fluids from the open ocean affected the whole deposition process of 
the black rock series. 
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1. Introduction 

The molybdenum (Mo) isotope system, together with trace metal geochemistry 
have been taken as the indicator of the redox conditions in ancient paleo-envi- 
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ronments [1]-[7]. The rate and completeness of removal of Mo to sediment dif-
fers among 1) oxic (O2 concentration in bottom waters, [O2] > 2 mLO2/LH2O), 
2) suboxic to weakly euxinic ([O2] < 0.2 mLO2/LH2O, [H2S] < 11 μm), 3) strong-
ly euxinic ([H2S] > 11 μm) in water-column redox facies [6] [8] [9]. A model for 
interpreting primary redox environments from the δ98/95Mo of organic carbon 
rich mudrock deposit has been defined [10]. In fully oxic conditions, Mo would 
be mainly adsorbed to Mn-oxides, and little Mo enrichment below sediment- 
water interface [10]. In suboxic and weakly euxinic conditions, Mo isotopic frac-
tionation might be between that of oxic and strongly euxinic sediments [2] [11]. 
In anoxic seawater and pore fluids, Mo is converted to the particle reactive thi-
omolybdate anion ( )2

x 4 xMoO S −
−  (x = 0 to 3) [12] [13]. In euxinic sediments 

([H2S] > 11 μm), Mo is turned into tetrathiomolybdate ( )2
4MoS −  and δ98/95Mo 

has heavy isotope value closer to that of modern ocean water (2.3‰) [11] [14].  
Trace elements, such as Mo, U, V, etc., are highly sensitive to redox changes in 

the water column and are highly enriched in the reducing sediment, potentially 
making them and their ratios for important proxies for paleo-redox conditions 
[15] [16] [17]. 

The early Cambrian represents a unique period in Earth history characterized 
by global environment and biological changes [18] [19]. Lower Cambrian or-
ganic-rich black shales have been discovered in North America, southern Aus-
tralia, parts of European, and Asia [7] [20] [21] [22] [23]. A possible global 
ocean anoxia event could be occurred during the early Cambrian period, and 
numerous geochemical proxies (such as C, S isotopes), also support this sugges-
tion.  

In China, the Lower Cambrian sedimentary strata, containing black shales and 
cherts, occur on the Yangtze and Tarim Platforms [7] [23] [24] [25] [26] [27]. 
Previous research has been mainly focused on the Yangtze Platform about the 
paleo-environment during the early Cambrian period [7] [26] [28] [29] [30] 
[31]. However, there is no equivalent research on the sedimentary sequence of 
the Tarim Platform. In this study, we investigated black rock series (containing 
phosphorite, phosphorous chert, chert, and carbonaceous shale) from the Lower 
Cambrian Sugetbrak section, Akesu-Wushi area, Tarim Basin. The joint applica-
tion of δ98/95Mo, TOC concentrations and trace element geochemistry attempts 
to contribute to an understanding of the paleo-environment of Early Cambrian 
seawater on the Northwest China. 

2. Geological Setting and Sampling 

The Tarim Basin, located within the Xinjiang Uygur Autonomous Region of 
northwestern China, is one of the largest hydrocarbon-bearing intracontinental 
basins in the world [23]. The Tarim Basin is surrounded by the orogenic belts of 
Tienshan Mountains to the north, the western Kunlun Mountains to the south, 
and the Central-Southern Altyn Tagh Mountains to the southeast [32]. The 
strata of the Cambrian in the Tarim Basin consist of the Yurtus, Xiaoerblaq and 
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Wusonger Formations in an ascending order [33]. The Yurtus Formation un-
conformably overlies the dolomite of the Ediacaran Qigeblaq Formation, and 
conformably underlies the trilobite-bearing limestone of the Xiaoerblaq Forma-
tion [33]. Lithologically, the Yurtus Formation is composed of basal black rock 
series and limestone above those basal rocks. The black rock series are over- and 
underlain by limestones, suggesting a shallow marine environment [23]. The 
black rock series contain bedded black chert with dark colored phosphatic gra-
nule layers, and carbonaceous shale (Figure 1(c)). 

The Sugetbrak section ,which is one of the well-known sections of the Ake-
su-Wushi area, is located in the northern margin of the Tarim Basin (Figure 
1(a), Figure 1(b)) [23] [34] [35] [36] [37] According to paleontological studies 
in this area, the Asteridium-Heliosphaeridium-Comasphaeridium (AHC) acri-
tarch assemblage zone, which was restricted to the Meishucunian Stage [35], was 
found in the black rock series at the base of the Yurtus Formation.  

The measured thickness of the Sugetbrak section is 2.06 m. This section con-
sists of interbedded chert-phosphorite assemblages (1.04 m) and the carbona-
ceous shale (1.02 m) of the Early Cambrian Yurtus Formation in an ascending 
order (Figure 1(c)). A total of 12 chert-phosphorite samples and 4 carbonaceous 
shale samples were collected from the lower Yurtus Formation in the Sugetbrak  
 

 
Figure 1. (a) Position of the study area. Modified after reference [23]; (b) geological setting of the studied section and the tectonic 
setting. Modified after reference [37]; (c) lithostratigraphy and the sampling horizons of the Sugetbrak section. 
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section (Figure 1(c)). 

3. Samples Preparation and Analytical Methods 

Fresh samples were directly selected indoors. The samples were washed with 
deionized water and ground to 200-mesh using an agate mortar for chemical 
analysis. Trace elements, TOC, and Mo isotope were analyzed in this study. 

3.1. Trace Element and TOC Analysis 

A routine HR/ICP-MS method was used. For each analysis, a 50 mg sample of 
200-mesh powder was accurately weighed and placed into a Teflon dissolving 
can. The sample was leached with 1 mL of HF at 150˚C and boiled to dryness to 
remove carbonate and calcium phosphate minerals. Then, the residues were fully 
dissolved in 1.0 mL of HF and 0.6 mL of HNO3. The mixture was placed into a 
Teflon dissolving can and heated at 190˚C for at least 96 h. The solution was 
evaporated into an emulsion to remove excess HF. The residue was dissolved in 
1 mL of concentrated HNO3 and evaporated to an emulsion (this step was re-
peated twice). The residue was dissolved in 1.6 mL of HNO3 and heated at 140˚C 
for 3 h to 5 h, and then transferred into a 50 mL centrifuge tube. The resultant 
heated residue was mixed with 1 mL of 500 ppb Rb internal standard, diluted to 
50 mL, and analyzed by HR/ICP-MS at the State Key Laboratory for Mineral 
Deposits Research of Nanjing University. The analytical precision of elemental 
concentrations was generally better than 5%.  

The same set of 200-mesh powder samples was analyzed for TOC composi-
tion. The powder samples were reacted with 1mol/L HCl in a water bath at 50˚C 
for at least 48 h (adding 1mol/L HCl twice) until no further reaction was ob-
served. The solutions were washed with deionized water until pH 7, and the re-
sidue was dried and ground to 200-mesh. Samples were analyzed using a FLASH 
EA1112 elemental analytical instrument at the Nanjing Institute of Geography 
and Limnology of the Chinese Academy of Sciences.  

3.2. Mo Isotope Analyses 

A detailed description of the analytical techniques is given in Zhang et al. (2009) 
and Wen et al. (2010, 2011) [38] [39] [40], and only a brief summary is pre-
sented here. Sample powders with an equivalent of >100 ng were oxidized at 
600˚C for 8 h, and then transferred to a Teflon beaker. Samples were digested 
using a mixture of HF and HNO3 (1:2) at 100˚C for at least 16 h until the sam-
ples were completely dissolved. An improved anion/cation exchange resin double- 
column procedure was used to separate Mo from natural samples [38]. 

The Mo isotopic measurements were performed at the State Key Laboratory of 
Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of 
Sciences, using an Isoprobe MC-ICP-MS. To correct isotopic drifts of the in-
strument, a sample-standard bracketing technique was employed [39]. The 
working Mo standard solution was prepared from a newly standard Mo solution 
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(NIST SRM 3134, Merck, JMC, and Aldrich). For data presentation the δ98/95Mo 
ratio is used. The external standard reproducibility is at or below 0.1‰ for the 
δ98/95Mo ratio. The value of δ98/95Mo is defined by the following Equation (1). 

( ) ( ) ( )98/95 98/95 98/95

sample standard
Mo Mo Mo 1 1000δ δ δ = − ×  

‰    (1) 

4. Analytical Results  

The δ98/95Mo values, TOC, and trace element concentrations (such as Mo, U, and 
V, et al.) and their ratios are presented in Table 1. 

4.1. Mo Isotope 

Mo isotopic data are presented in Table 1, and their stratigraphic trend is shown 
in Figure 2. The measured δ98/95Mo values of the samples vary from −0.17‰ to 
1.56‰. We obtained one negative shift at the base of the Yurtus formation (N1, 
sample SG0904-2, 3, 4, 5, 6), one positive shift (P1) immediately with one nega-
tive shift in the carbonaceous shale layer (N2) (Figure 2). 

4.2. Trace Elements and TOC 

The trace element results and their selected ratios are shown in Table 1. 
Enrichment factors are calculated by normalizing each trace element to alumi-
nium (Al) in concentration, which is assumed to represent the detrial influx, and  
 

 
Figure 2. Stratigraphic distribution of elemental ratios and Mo isotopic compositions. 
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Table 1. The δ98/95Mo values, TOC, and redox sensitive element data and ratios of the Sugetbrak section, Tarim Basin. 

Samples Lithology 
Depth δ98/95Mo V Cr Co Ni Mo Th U Al TOC 

(m) (‰) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) % % 

SG0904-1 Phosphorite 0.00 0.61 60.00 178.00 11.60 143.00 60.70 0.44 202.00 0.29 0.32 

SG0904-2 Phosphorite 0.20 1.19 371.00 184.00 5.20 38.30 9.91 2.14 47.00 0.86 0.60 

SG0904-3 
Phosphorous 

chert 
0.30 0.73 409.00 185.00 14.50 45.00 15.00 0.90 24.50 0.57 0.14 

SG0904-4 Chert 0.35 0.03 414.00 100.00 3.74 43.50 21.90 0.34 10.70 0.42 0.10 

SG0904-5 Phosphorite 0.40 0.13 962.00 252.00 2.39 34.50 18.90 2.44 36.30 0.84 0.22 

SG0904-6 
Phosphorous 

chert 
0.46 0.58 686.00 164.00 4.39 47.50 56.00 0.54 8.85 0.43 0.39 

SG0904-7 Phosphorite 0.50 −0.17 710.00 227.00 7.18 58.40 33.70 1.79 26.70 0.48 0.49 

SG0904-9 Phosphorite 0.60 0.03 704.00 167.00 5.77 48.20 25.60 0.61 52.30 0.28 0.94 

SG0904-11 
Phosphorous 

chert 
0.75 0.54 847.00 489.00 5.09 22.20 4.82 1.85 4.44 1.60 0.07 

SG0904-12 Chert 0.80 1.56 292.00 124.00 14.60 39.60 37.30 0.25 7.42 0.32 0.05 

SG0904-14 Phosphorite 0.97 0.66 442.00 92.80 1.59 41.30 99.00 0.79 45.40 0.47 0.68 

SG0904-15 Phosphorite 1.04 0.34 679.00 119.00 1.07 30.90 76.80 0.92 60.60 0.50 0.91 

SG0904-17 
Carbonaceous 

shale 
1.24 0.11 4181.00 589.00 4.08 85.60 68.90 5.68 29.20 5.32 1.15 

SG0904-19 
Carbonaceous 

shale 
1.50 0.77 5571.00 693.00 2.70 36.30 39.60 4.90 89.30 4.41 0.66 

SG0904-20 
Carbonaceous 

shale 
1.51 0.48 2749.00 372.00 2.33 56.00 58.80 5.84 47.70 4.81 2.79 

SG0904-21 
Carbonaceous 

shale 
2.06 / 314.00 143.00 5.07 91.50 20.10 4.34 34.60 6.23 / 

SG0904-1 Phosphorite 0.00 12.33 0.34 0.00 0.30 2.00 430.13 1431.41 12.88 SG0904-1 Phosphorite 

SG0904-2 Phosphorite 0.20 7.37 2.02 0.05 0.21 1.97 23.84 113.07 27.05 SG0904-2 Phosphorite 

SG0904-3 
Phosphorous 

chert 
0.30 3.10 2.21 0.04 0.61 1.98 54.64 89.24 45.14 SG0904-3 

Phosphorous 
chert 

SG0904-4 Chert 0.35 11.63 4.14 0.03 2.05 1.98 108.04 52.79 61.89 SG0904-4 Chert 

SG0904-5 Phosphorite 0.40 14.44 3.82 0.07 0.52 1.96 46.33 88.98 71.46 SG0904-5 Phosphorite 

SG0904-6 
Phosphorous 

chert 
0.46 10.82 4.18 0.06 6.33 1.96 266.16 42.06 98.80 SG0904-6 

Phosphorous 
chert 

SG0904-7 Phosphorite 0.50 8.13 3.13 0.07 1.26 1.96 144.33 114.35 92.15 SG0904-7 Phosphorite 

SG0904-9 Phosphorite 0.60 8.35 4.22 0.01 0.49 1.99 191.87 391.99 159.89 SG0904-9 Phosphorite 

SG0904-11 
Phosphorous 

chert 
0.75 4.36 1.73 0.42 1.09 1.76 6.22 5.73 33.12 SG0904-11 

Phosphorous 
chert 

SG0904-12 Chert 0.80 2.71 2.35 0.03 5.03 1.98 242.29 48.20 57.48 SG0904-12 Chert 

SG0904-14 Phosphorite 0.97 25.97 4.76 0.02 2.18 1.99 438.46 201.07 59.32 SG0904-14 Phosphorite 

SG0904-15 Phosphorite 1.04 28.88 5.71 0.02 1.27 1.99 315.07 248.61 84.41 SG0904-15 Phosphorite 

SG0904-17 
Carbonaceous 

shale 
1.24 20.98 7.10 0.19 2.36 1.88 26.72 11.32 49.13 SG0904-17 

Carbonaceous 
shale 

SG0904-19 
Carbonaceous 

shale 
1.50 13.44 8.04 0.05 0.44 1.96 18.53 41.78 78.99 SG0904-19 

Carbonaceous 
shale 

SG0904-20 
Carbonaceous 

shale 
1.51 24.03 7.39 0.12 1.23 1.92 25.24 20.47 35.76 SG0904-20 

Carbonaceous 
shale 

SG0904-21 
Carbonaceous 

shale 
2.06 18.05 2.20 0.13 0.58 1.92 6.66 11.46 3.15 SG0904-21 

Carbonaceous 
shale 

“/” means not measured. 

https://doi.org/10.4236/ijg.2017.88055


C. Y. Yao et al. 
 

 

DOI: 10.4236/ijg.2017.88055 971 International Journal of Geosciences 
 

then comparing these ratios to the normal shale [15] [41]. The data of standard 
shale are from McLennan et al. (1984) [42]. The EF values of several redox sensi-
tive elements (such as U, Mo, and V) are given in Table 1. The MoEF values are 
from 6.22 to 438.46 (average 146.53), UEF values are from 5.73 to 1431.41 (aver-
age 182.03), and VEF values are from 3.15 to 159.89 (average 60.66). 

The V/Cr ratios range from 0.34 to 5.71 in the chert-phosphorite beds, and 
from 2.20 to 8.04 in the carbonaceous shale layers; Ni/Co ratios are between 2.71 
and 28.9 in the chert-phosphorite assemblages and from 13.4 to 24.0 in the car-
bonaceous shale beds (Table 1). Furthermore, δU (δU = 2U × (U + Th/3)) val-
ues reveal a little more consistency, and are from 1.76 to 2, indicate anoxic sedi-
mentary conditions [43] [44]. 

The TOC concentrations in the laminated chert-phosphorite assemble are 
from 00.7% - 0.94%, and from 0.66% to 2.79% in the carbonaceous shale layer 
(Table 1). 

4.3. Evaluation of Detrital Input 

Detrital, biogenic, and hydrogenous fractions show three independent concen-
trations of sediments [45]. Monitoring of the detrital fraction (i.e., crustal) is 
necessary to assess the enrichment of redox-sensitive elements relative to their 
detrital component. Th is stable in the water column, and occurs permanently in 
the insoluble Th4+ states, and largely independent of factors such as source area 
and grain size [16]. Therefore, it is used in the present study to monitor detrital 
input [46]. The lack of correlation between Th concentrations and U, and V ra-
tios suggests no detrital influence on redox-sensitive elements (Figure 3(a), 
Figure 3(b)). 

5. Discussions  
5.1. Redox Sensitive Elements Geochemistry 

Trace elements (e.g., Mo, U, and, V et al.) and their ratios (including Ni/Co, 
V/Cr, and δU) have been widely used as indicators for paleoredox conditions  
 

 
Figure 3. Cross-plot of various parameters cited from the Yurtus black rock series unit. Th correlates with V (a), and U (b). 
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[15] [41] [47] [48]. In anoxic waters, the Mo, U, and V values of the sediments 
may become highly concentrated, compared to their concentrations in sedi-
ments formed under oxygenated water columns [49] [50] [51]. U enrichment is 
minor in oxic-suboxic environments, where U is present mainly as U (VI) in the 
form of chemically unreactive uranyl carbonate complex [ ( )4

2 3 3
UO CO − ] [52] 

[53]. Under anoxic or euxinic conditions, U (VI) can be reduced to U (IV) as the 
insoluble uranium dioxide(UO2) or less soluble uramium fluoride complexes 
[16] [53] [54]. Just like U, Mo and V is also considered sensitive to conditions 
around the redox boundary during early diagenesis, and is preferentially 
enriched in sediments underlying anoxic or euxinic waters [49] [50] [51]. The 
ratios of MoEF (average 146.53), VEF (average 60.66), and UEF (average 182.03) 
(EF = Enrichment Factor) reveal the relative enrichment than that of average 
shale, which indicate the sedimentary environment may not be oxygenic envi-
ronment (Table 2) [49] [50] [51].  

Wignall (1994a, b) proposed to use the δU (δU = 2U × (U + Th/3)) index to 
distinguish the sedimentary environment of shales, with δU > 1 representing 
anoxic environment and δU < 1 for normal marine sedimentary environment. 
Based on this criterion, all samples fall into the anoxic region (Table 2) [43] 
[44]. Therefore, this criterion is not suitable for environment analysis of our da-
ta. It needs more rigorous criteria to constrain the sedimentary environment of 
the black shale series we studied. 

Previous studies have established standard values for trace element ratios to 
distinguish oxic, suboxic and anoxic conditions (Table 2) [9] [15] [41] [54] [55]. 
Although different redox indicators have diverse threshold to indicate the redox 
conditions, there is general trend that V/Cr and Ni/Co ratios increase with de-
creasing oxygenation levels in water columns [9] [15] [41] [54] [55]. Figure 2 
reveals that the samples in the carbonaceous shale beds fall into the suboxic- 
anoxic sedimentary conditions area, and most of chert-phosphorite samples are 
also deposit in suboxic-anoxic sedimentary conditions. The same patterns could 
also be observed from Ni/Co vs. Mo and V/Cr, δU vs. Ni/Co and V/Cr (Figure 
4). However, the lithology of the basal Yurtus Formation is kinds of phosphatic 
rocks, U enrichment, V enrichment, and V/Cr ratio could not be used as indicators  
 
Table 2. Redox classification of the depositional environment. 

Sedimentary conditions 
 

Indicator 
Oxic Suboxic Anoxic Euxinic 

H2S 
No free H2S in the  

water column 
Free H2S present in 
the water column 

O2 concentration in bottom 
waters [9] (mLO2/LH2O) 

O2 > 2 0.2 < O2 < 2 O2 < 0.2 O2 = 0, [H2S] > 11 μm 

δU [43] [44] <1 <1 / 

V/Cr [55] <2 2 - 4.25 >4.25 

Ni/Co [55] <5 5 - 7 >7 / 
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Figure 4. Crossplots of trace element ratios as paleoredox proxies. (a) Mo vs. Ni/Co; (b) V/Cr vs. δU; (c) V/Cr vs. Ni/Co; (d) 
Ni/Co vs. δU. Ranges for Ni/Co and V/Cr are from Jones et al. (1994) [55]; range for δU is from Wignall (1994a, b) [43] [44]. 

 
of depositional conditions, due to the disturbance of the system by the substitu-
tion of V and U into apatite [11].  

Phosphorite genesis needs a favorable environment in the bottom water. Up-
welling hydrothermal fluid and transgressive events could generate the proper 
conditions for the formation of phosphate nodules [16]. The REE results indi-
cate that the lower Yurtus Formation shales are highly influenced by hydro-
thermal inputs [23] [27]. The phosphatic rocks and cherts of the basal Yurtus 
Formation exhibit oxic conditions with significantly negative Ce anomalies, and 
Ce/Ce* is in the range of 0.37 - 0.48 [27]. These significantly negative Ce anoma-
lies are generally ascribed to organic matter derived from organisms in the eu-
photic zone [26]. However, the TOC concentrations of phosphatic rock and 
cherts are relatively low (Table 1, <0.94 wt %). Therefore, organic matter may 
not be the main trace element source for the phosphorites and cherts. The for-
mation of phosphorite, especially phosphate nodules, in siliciclastic depositional 
systems might be related to high-energy hydrodynamic regimes, reworking and 
redeposition [56] [57] [58]. In addition, no sulfide was found at basal of the 
Yurtus Formation in the studied area. Thus, the bottom water during the early 
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Cambrian could not be anoxic or euxin. Study on the Liuchapo Formation, sou-
theastern Chongqing proposed by Li et al. (2015) further indicates the oxygen 
sedimentary conditions in early Cambrian [56] These consistent results from 
different areas demonstrate that oxic bottom seawater widespread in the whole 
basin around the Ediacaran-Cambrian boundary, and the following transgres-
sive event induced an anoxic basin at the beginning of the early Cambrian. 

5.2. Mo Isotopic Geochemistry 

Mo isotope fractionation patterns have been used to reconstruct the redox state 
of the Earth’s atmosphere and oceans [4] [7]. The δ98/95Mo isotope composition 
of the black rock series from the Sugtebrak section, is from −0.17‰ to 1.56‰, 
and reveal two negative anomalies (N1 and N2) and one positive recovery (P1) 
over a few meters of stratigraphy thickness only (Figure 2, Table 1). Several 
mechanisms could contribute to the variabilities of Mo fraction, including: 1) 
the changes of the redox conditions (such as oxic, anoxic and strongly euxinic 
water-column). In oxygenated seawater, Mo is present as 2

4MoO − , and Mo iso-
tope signature has light Mo isotopic composition (δ98/95Mo = −0.7‰), which 
represent a large (~3‰) negative fractionation relative to the modern seawater 
composition (δ98/95Mosw) of ~+2.3‰ [59] [60] [61]. A growing realization that 
Mo isotopes could also be fractionated during removal in intermediate redox 
environment where O2 is scarce but H2S is not abundant which is so-called sub-
oxic or anoxic setting [14]; 2) low-temperature hydrothermal systems. Mo may 
have been fractionated by precipitation of hydrothermal Fe-Mn oxides [5] [62] 
[63] [64]; and 3) influx of riverine Mo in restricted ocean basins not fully con-
nected to the global ocean circulation. 

In the Sugtbrak section, the δ98/95Mo ratios show lighter than that present-day 
euxinic sediments (2.3‰) [61], and heavier than typical of Mo adsorbed onto 
Mn oxides (−0.7‰) [61] [65], and fall into the range of suboxic sediments 
(Figure 5). The pattern of δ98/95Mo curve has good relationships with trace ele-
ment ratios (V/Cr and Ni/Co) trends (Figure 2). δ98/95Mo negative anomaly (N1 
and N2) could correspond to the suboxic-anxoic conditions which V/Cr and 
Ni/Co ratios indicated, and the δ98/95Mo positive shift (P1, Figure 2) also could 
relative with the oxic-suboxic conditions. Wen et al. (2015) reported δ98/95Mo 
values of early Cambrian black shales, which have a wide range of δ98/95Mo values 
(0.27‰ - 1.79‰) in carbonaceous shales and cherts (interval 1), and are from 
0.11‰ to1.70‰ in black shale layer (interval 2) in the Zunyi section, in South 
China [7]. Combining with Fe abundance in samples, redox elements characters, 
and δ98/95Mo values, the redox conditions changed from anoxic and ferruginous 
in interval 1, and euxinic in interval 2 have been concluded [7]. Comparison 
with Zunyi section, no sulfide layer was occurred in the Sugetbrak section dur-
ing the early Cambrian period. At the same time, the Early Cambrian sediments 
were affected by upwelling oceanic hydrothermal fluids [23] [27]. So the varia-
tion of Mo isotope in this study might not be merely connected with the suboxic 
or anoxic paleo-environment. 
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Figure 5. Mo isotope composition of present-day seawater sources and variations 
of reducing sediment in Earth history [5] [61]. 

 
Overprint by fractioned Mo from low-temperature hydrothermal systems 

onto sediments could also result in the variabilities of Mo isotope composition 
[62] [63]. REE and Os isotope of the black shales give the clues of the hydro-
thermal overprint [23] [27], indicating that the hydrothermal fluid might affect 
the variability of Mo isotope and the Mo enrichment in our study. At the end of 
Neoproterozoic, the southern Tianshan Ocean began to pull-apart because of the 
breakup of the Rodinia suppercontinent [23] [66]. The northern Tarim passive 
continental margin and southern Tianshan Ocean were developed in the Cam-
brian [66]. There are no deep faults developed on the northern Tarim passive 
continental shelf and no possibility to form local hydrothermal activity. The hy-
drothermal fluid in the northern Tarim continental shelf might come from ex-
tensional setting during the pattern of transgression and a rapid regional sea- 
level rise in the early Cambrian [23]. 

Kirschvink et al. (1997) argued that marine circulation was reorganized re-
peatedly during the early Cambrian [67]. Nevertheless, the regional restricted 
basin with occasional seawater replenishment and intermittent dominance by 
continental input into restricted basins via riverine transport was preferred in 
our study. Mo contents of black rock series are generally within dozens of ppm 
range (Table 1), similar to black shales of the Niutitang Formation (a strati-
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graphic equivalent of the Yuetus Formation) from the Dingtai profile investi-
gated by Xu et al. (2012), who argued that the Dingtai profile represents a re-
stricted basinal environment [5]. At the same time, geophysics, geochemistry, 
and stratigraphic characters also support that the Tarim Basin is a kind of re-
gional restricted basin with passive continental margin during the early Cam-
brian period [23] [27] [68]. The remarkable variability of δ98/95Mo composition 
in the black rock series could be the expression the interplay between open sea-
water and continental input into restricted basins via riverine transport [59]. In 
the restricted basin, Mo influx is dominated by continental input, and is reple-
nished by new seawater with heavy Mo restores the normal seawater situation 
[5]. The comparatively large number of samples with δ98/95Mo below average 
present-day dissolved river load (0.7‰) [69], and belong to the characters of 
continental margin suboxic sediments (from −0.7‰ to 1.6‰) [59]. 

5.3. Oceanic Sedimentary Environment during the Early  
Cambrian of the Tarim Basin 

There is a long standing debate about the reason for significant changes in ocea-
nic geochemistry during the Ediacran-Cambrian transition [26] [29] [30] [70] 
[71]. Our study researches the redox sensitive elements, TOC, and Mo isotope 
characters of the black rock series (cherts-phosphorite assemblages and carbo-
naceous shale) to evaluate the changes of sedimentary condition during the early 
Cambrian in the Tarim Basin. A schematic model of the depositional environ-
ment of the black rock series is shown in Figure 6. The sedimentary condition 
where black rock series deposited was the restricted basin and near the conti-
nental margin. And the δ98/95Mo values also reveal the characters of continental  
 

 
Figure 6. The schematic model of deposition environment for the black rock series. 
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margin suboxic sediments (from −0.7‰ to 1.6‰) [59]. 
At the beginning of the early Cambrian (Nemakit-Daldynian age), the black 

rock series was drowned by a transgressive event [33]. And the sea level stayed a 
relative low level with the first episode hydrothermal fluid. Oxic seawater condi-
tions in combination with nutrition provided by upwelling hydrothermal fluids 
induced the formation of phosphorite. Trace element and Mo isotope data sug-
gest that interbedded chert-phosphorite assembles were scavenged from seawa-
ter under restricted conditions. The inferred scavenging process could occurred 
under replenishment of nutrition to the restricted basins by upwelling oxidize 
seawater [25] [72]. High current or wave energy in combination with oxic sea-
water did not favor the preservation of organic matter, thus , the TOC contents 
of the basal Yurtus Formation are quiet low (0.05% - 0.94%) in cherts-phospho- 
rite assemblages layer. When the relatively sea level increase, the early Cambrian 
shallow sea became lack oxygen and become suboxic/anoxic. In the subox-
ic/anoxic conditions of the bottom water, the organic matter that fell from the 
photic zone partly oxidized because the residual oxygen in the seafloor. Thus, 
the TOC concentrations of upper Yurtus Formation carbonaceous shale are low 
(1.15% - 2.79%). In combination with the suboxic/anoxic conditions, another 
episode of hydrothermal activities promoted the enrichment of trace elements.  

6. Conclusions 

Combination with previously report data and the analysis of the geochemical 
redox indicators, TOC concentration, and Mo isotope data from black rock se-
ries at early Cambrian in the Tarim Basin, we conclude the following: 

1) During the early Cambrian period, the transgressive and upwelling hydro-
thermal fluids from the open ocean have taken lots of nutritions into the re-
stricted basin. Oxic conditions and rich nutritious water induced the laminated 
chert-phosphorite sedimentary with low TOC concentrations. When the sea lev-
el continues to rise, the sedimentary conditions of bottom water became relative 
lack oxygen, where were fit for the sedimentary of the carbonaceous shale in the 
restricted basin.  

2) The Mo isotope compositions of black rock series could not only affected 
by hydrothermal events, but also the changes of sea level, and marine conditions. 
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