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Abstract 
 
Agriculture in arid and semi-arid lands of Kenya is depends on seasonal characteristics of rainfall. This study 
seeks to distinguish components of regional climate variability, especially El Niño Southern Oscillation 
events and their impact on the growing season normalized difference vegetation index (NDVI). Datasets 
used were: 1) rainfall (1961-2003) and 2) NDVI (1981-2003). Results indicate that climate variability is per-
sistent in the arid and semi-arid lands of Kenya and continues to affect vegetation condition and conse-
quently crop production. Correlation calculations between seasonal NDVI and rainfall shows that the Octo-
ber-December (OND) growing season is more reliable than March-May (MAM) season. Results show that 
observed biomass trends are not solely explained by rainfall variability but also changes in land cover and 
land use. Results show that El Niño and La Niña events in southeast Kenya vary in magnitude, both in time 
and space as is their impact on vegetation; and that variation in El Niño intensity is higher than during La 
Niña events. It is suggested that farmers should be encouraged to increase use of farm input in their agricul-
tural enterprises during the OND season; particularly when above normal rains are forecast. The close rela-
tionship between rainfall and NDVI yield ground for improvement in the prediction of local level rainfall. 
Effective dissemination of this information to stakeholders will go along way to ameliorate the suffering of 
many households and enable government to plan ahead of a worse season. This would greatly reduce the 
vulnerability of livelihoods to climate related disasters by improving their management. 
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1. Introduction 
 
Kenya’s arid and semi-arid lands (ASALs) cover ap-
proximately 83% of the country’s total area [1]. Accord-
ing to recent estimates, about 20% of Kenya’s population 
and some 60% of the country’s livestock are to be found 
in these ASALs [2]. The influx of human population 
from the high potential areas of Kenya to these ASALs 
has accelerated over the last 20 years [3]. It is estimated 
that up to 6 million of Kenya’s population live and ex-
ploit the resources of the ASALs. This means that 
ASALs are nationally important in terms of supporting 
rural livelihoods. The Kenyan Government acknowl-
edges that one third of the projected increase in agricul-
tural food production is expected to come from these 

ASALs [2]. Thus, it would seem that these ASALs will 
continue to play a very important role in terms of human 
settlement as well as production of subsistence food 
crops for the ever increasing human population [4]. The 
major environmental factors limiting crop production in 
these ASALs of Kenya are high potential evaporation 
and rainfall, with the latter being highly variable and 
unpredictable in space and time [5]. Apart from the en-
vironmental limitations, the new farming communities in 
these ASALs lack the indigenous knowledge in selecting 
crops and farming strategies well suited to the stabiliza-
tion and maximization of food production in their dimin-
ished rainfall circumstances. 

Rural populations are exposed to the impacts of cli-
mate variability on agricultural production that is con-
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sidered as the most rainfall-dependent of all human ac-
tivities [6,7]. This vulnerability is enhanced for the less 
economically developed countries in the tropics that, in 
many cases, are exposed to high climate variability at 
different spatial-temporal scales. Of particular impor-
tance and relevance to Kenya is the El Niño Southern 
Oscillation (ENSO) phenomenon that has been linked to 
climate variability in many parts of Sub-Saharan Africa 
where unique and persistent anomaly patterns have been 
detected in the rainfall over parts of southern Africa, 
eastern Africa, the Sahel region during periods of strong 
and persistent ENSO events [8-12]. The Sub-Saharan 
Africa is the only region world-wide where food produc-
tion per capita has decreased over the last twenty years 
[13]. Staple crop production occupies an important place 
in government policies, and one of the top priorities has 
become the stabilization of crop yields [14] in the con-
text of the long-term drought of the last decades [15] and 
the uncertainties of the global climate change [16]. With 
increased capability to forecast ENSO events well in 
advance [17-19], there has emerged a growing convic-
tion and interest in using climatic information in deci-
sion-making process, especially during crop production 
[20,21]. The assumption we explore here is that the 

Normalized Difference Vegetation Index (NDVI) anoma-
lies are related to ENSO climate teleconnections in af-
fecting agricultural production [20]. These teleconnec-
tions are manifested as short-term perturbations in local 
climate that in turn affect crop yields. Agricultural areas 
most affected by ENSO-related impacts should be dis-
tinguishable by differences in growing season NDVI 
values during ENSO phases. The challenge is to differ-
entiate those components of climate variability related to 
ENSO climate teleconnections from the background of 
natural variability. 

In this paper, the primary objective is to assess the in-
terannual climate variability and the response of vegeta-
tion cover to it by integrating rainfall and satellite-derived 
NDVI data sets for semi-arid southeast Kenya (Figure 1). 
A secondary objective is to make a contribution towards 
meeting the challenge for more local level studies in un-
derstanding the impacts of climate variability and change 
on the agricultural sector in the ASALs of Kenya. An 
understanding of the historical patterns of dry and wet 
cycles in the region could provide some important in-
sights into issues of management of food resources dur-
ing ‘bumper’ years to minimize the effects of recurrent 
famine and food shortages during drought years. 

 

 

Figure 1. A map showing the position of the study area in Kenya, administrative districts and distribution of rainfall stations.  
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2. Studied Area 
 
The study area (Figure 1) is a subset of Kenya’s ASALs 
and comprises 20% of the total land surface area [1]. 
There are two cropping seasons related to the rainy sea-
sons: ‘long’ March-May (MAM; with planting in March 
to April), and ‘short’ October-December (OND; with 
planting in October to November). Mean annual rainfall 
in the study region ranges between 549 mm and 963 mm 
a year (Table 1). This amount is insufficient for the pro-
duction of most crops. Occasionally the rains fail or are 
below normal for consecutive seasons, leading to 
drought. Rainfall variability is a common phenomenon in 
the study area and this negatively affects agricultural 
production, food security and the general livelihood of 
the population. A large majority of the inhabitants are 
smallholder subsistence farmers. Agricultural production 
is influenced by the significant spatial and temporal 
variations that occur in the rainfall. Despite farming 
plans being made for both seasons, the October-Decemb- 
er season is the most dependent on by farmers and whose 
predictability is quite high [22,23] 

We selected the study region for a number of reasons: 
A large proportion of the population in the region de-
pends on rainfed maize as staple food crop. The produc-
tion of this cereal is risky in these ASALs due in part to 
its sensitivity to year-to-year variability in the amount 
and timing of rainfall. The fluctuation in production 
leads to loss of income due to reduced yields and above 
all threatens the food security of the country. Since this 
cereal plays a crucial role in the food security of the 
country, it is important that accurate cereal production 
estimates are provided to the government and other food 

security stakeholders for timely intervention in case of 
deficit. This can be by use of vegetation index images 
and seasonal rainfall forecast. The predictability of the 
short rains at a seasonal time scale is quite high [22] over 
the portion of Kenya that encompasses the study area. 
Rainfall in this region is strongly linked to the El 
Niño-Southern Oscillation (ENSO) [10,12,24,25] raising 
the need to assess its impact at varying temporal and 
spatial scales. 

We selected the study region for a number of reasons: 
A large proportion of the population in the region de-
pends on rainfed maize as staple food crop. The produc-
tion of this cereal is risky in these ASALs due in part to 
its sensitivity to year-to-year variability in the amount 
and timing of rainfall. The fluctuation in production 
leads to loss of income due to reduced yields and above 
all threatens the food security of the country. Since this 
cereal plays a crucial role in the food security of the 
country, it is important that accurate cereal production 
estimates are provided to the government and other food 
security stakeholders for timely intervention in case of 
deficit. This can be by use of vegetation index images 
and seasonal rainfall forecast. The predictability of the 
short rains at a seasonal time scale is quite high [22] over 
the portion of Kenya that encompasses the study area. 
Rainfall in this region is strongly linked to the El 
Niño-Southern Oscillation (ENSO) [10,12,24,25] raising 
the need to assess its impact at varying temporal and 
spatial scales. 
 
3. Data and Analysis Methods 
 
For this study, the following data sets were used: 

 
Table 1. Geographic location (longitude and altitude) of the study stations mean annual long (MAM) and short (OND) rainfall. 

Station Longitude Latitude Altitude Rainfall (mm) 

 ˚E ˚S (m) MAM OND Annual 

Kiritiri 37.65 0.68 1143 440.1 425.5 963.5 

Ishiara 37.78 0.45 853 350.5 422.9 857.8 

Kambo 37.52 0.53 1250 451.6 373.8 938.9 

Kalaba 37.38 0.75 1128 489.9 363.2 948.0 

Kyuso 38.22 0.53 747 282.5 418.1 779.2 

Matiliku 37.53 1.95 1097 324.6 375.8 833.0 

Kangundo 37.45 1.20 1280 335.9 339.2 783.5 

Katumani 37.23 1.58 1600 276.6 299.9 696.0 

Malinda 37.08 1.48 1524 243.0 180.1 549.4 

Makindu 37.83 2.28 1000 200.1 338.3 629.3 

Kibwezi 37.98 2.40 914 220.2 400.4 710.6 
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3.1. Rainfall 
 
Daily precipitation data was obtained from the Kenya 
Meteorological department (KMD) archives from 1961 
to 2003 for the 11 stations used in the study (Table 1). 
Rainfall record periods however varied between 25 and 
43 years. The selected stations are not well distributed 
over the study region (Figure 1) because of closure, 
missing data and short record periods. Missing data in 
the record periods were estimated using the method de-
scribed by [26]. Homogeneity test on the data sets was 
done according to the method of [27]. The study also 
sought to investigate ENSO-related variability in rainfall 
at annual and seasonal timescales in southeast Kenya for 
the period 1960 to 2003. This was achieved by adopting 
the National Center for Environmental Prediction (NCEP) 
(http://www.cpc.ncep.noaa.gov/comment-form.html). NCEP 
has classified ENSO events since the 1885 world. How-
ever the study limited itself to the period 1960 to 2003 
because it was about this time that most of the rainfall 
stations were established. According NCEP [28] the 
years 1965, 1972, 1982, 1986, 1987, 1991, 1994 and 
1997 were classified as El Niño years; whereas 1970, 
1973, 1975 1988, 1998 as La Niña years. Quantification 
of ENSO-related variability events is to enhance the un-
derstanding of their effect on rainfall and crop yield in 
southeast Kenya. 
 
3.2. Normalized Difference Vegetation Index 

(NDVI) 
 
The NDVI is based on properties of green vegetation to 
reflect the incident solar radiation differently in two 
spectral wavebands observed by the AVHRR sensor 
aboard NOAA polar orbiting satellite series (NOAA-7,9, 
11,14,16): visible 550-700 nm (Channel 1) and near- 
infrared 730-1000 nm (Channel 2) [29]. The presence of 
chlorophyll pigment in green vegetation and leaf scatter-
ing mechanisms cause low spectral reflectance in Chan-
nel 1 and high reflectance in Channel 2, respectively. 
Reflectance values change in the opposite direction if 
vegetation is under stress [30]. Hence, the NDVI meas-
ures vegetation vigour and greenness [31] and is calcu-
lated as follows: 

   NDVI NIR R NIR R            (1) 

where: NIR and R represent the reflectance of the near 
infrared (Channel 2) and the red (Channel 1), respec-
tively. The NDVI is unit-less, with values ranging from –1 
to +1. Healthy green vegetation normally has the highest 
positive values while surfaces without vegetation, such 
as bare soil, water, snow, ice or clouds usually have low 
NDVI values that are near zero or slightly negative. 

Stressed vegetation or vegetation with small leaf area has 
positive but reduced NDVI values [30,32]. The justifica-
tion for using NDVI data in monitoring ecosystem dy-
namics in arid and semi-arid lands is based on the exten-
sive research agenda in the 1980s and 1990s in arid re-
gions that demonstrated the significant correlation be-
tween NDVI and rainfall variations on seasonal to inter-
annual time scales [33-37]. The established relationship 
between NDVI and rainfall formed the basis for using 
time series NDVI data for drought monitoring and early 
famine warning systems in areas with sparse rainfall 
networks [38-40]. Furthermore, NDVI data set has been 
used to examine the connection between climate varia-
tions and ecosystem dynamics, particularly those associ-
ated with ENSO phenomenon [41-44] and recently to 
investigate long-term trends in vegetation [29,45,46]  

Data used in this study were processed by the GIMMS 
group at NASA’s Goddard Space Flight Center, as de-
scribed by Anyamba and Tucker [29]. For this research, 
NDVI monthly data from 1981-2004 at 8 km spatial res-
olution was used [29]. In addition, monthly NDVI data 
from SPOT Vegetation Instrument from May 1998 to 
December 2004 at 1 km spatial resolution was utilized. 
The satellite data was used to study aspects of spatial 
variability that were not captured by the rainfall stations 
data. Since NDVI is closely related to rainfall seasonality 
[29], analysis was focused on the growing seasons, i.e. 
‘long’ and ‘short’ rainy seasons in our case. These sea-
sons for arid and semi-arid Kenya are well differentiated 
and details can be found in Jaetzold et al. [47]. The 
months of March, April and May, hereafter referred to as 
MAM represent the ‘long’ rains growing period, while 
October, November and December (OND) represent the 
‘short’ rains growing period. The long-term NDVI cli-
matology (1981-2004) was created by averaging data for 
all cloud-free pixels for MAM and OND for the same 
period. The year to year variability in the NDVI patterns 
was examined by calculating yearly MAM and OND 
anomalies as follows: 

    1 100NDVI NDVI NDVI          (2) 

where: NDVI are the respective MAM and OND 
anomalies, NDVI are individual seasonal MAM and 
OND means and NDVI is the long-term MAM and 
OND mean. Table 2 shows aggregate NDVI for annual 
and seasonal NDVI by station in the study area. 
 
4. Results and Discussion 
 
Figures 2(a-c) show rainfall variability for MAM, OND 
and annual for some of the sites in the study. Rainfall in 
southeast Kenya deviates from the normal by more than 
1.5 standard deviations (For example, 1961, 1967 and  
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Table 2. Aggregate NDVI for annual and seasonal NDVI by 
station in the study area. 

Station Name MAM OND ANNUAL

Kiritiri Chief’s Camp, Embu  0.55 0.54 0.51 

Ishiara Agricultural Farm  0.61 0.57 0.55 

Kambo Kamau’s Farm 0.60 0.62 0.58 

Kyuso Agricultural Office, Mwingi 0.50 0.51 0.44 

Machakos, Matiliku Health Centre 0.54 0.53 0.49 

Kangundo Kithimani D.O’s Office 0.52 0.47 0.46 

Katumani Exp. Res. Station 0.44 0.38 0.38 

B&T Malinda Ranch, Lukenya 0.41 0.35 0.35 

Makindu Met. Station 0.47 0.45 0.41 

Kibwezi, DWA Plantation Ltd. 0.53 0.51 0.47 

 
1987). High rainfall variability makes it difficult for 
farmers to plan for agricultural activities [4] and fre-
quently lead to crop failure. It is also significant that 
ENSO events have an impact on rainfall in Southeast 
Kenya. However, not all ENSO events lead to extreme 
climatic events in Southeast Kenya. 

Analysis of El Niño years (as defined by NCEP) (Ta-
ble 3(a)) reveals that not all stations in SE Kenya receive 
above normal rainfall especially during the OND season. 
In fact, of the eight El Niño years (1965, 1972, 1982, 
1986, 1987, 1991, 1994, and 1997), it was in 1982, 1994 
and 1997 when all stations received above normal OND 
rainfall: but with varying magnitude. In 1972, out of the 
nine stations with analyzed data, five stations recorded 
above normal rainfall. Kangundo (–0.26), Katumani 
(–0.12), Kiritiri (–0.01) and Kyuso (–0.06) recorded be-
low normal rainfall in 1972 While in 1986, Kambo 
(–0.31) and Malinda (–0.29) received below normal 
OND rainfall. Of these three years, 1997 was the most 
pronounced with ten stations recording a positive stan-
dard deviation of above 1.0 during the OND season. 
While more than six stations recorded a positive standard 
deviation of above 1.0 for the OND seasons of 1982 and 
1994. It is important to note that despite 1987 being clas-
sified as an El Niño year, all the stations in the study area 
recorded below normal rainfall. Analysis of the MAM 
rainfall season of El Niño years show that nearly all the 
stations recorded below normal rainfall in 1965, 1972, 
1987 and 1991. Results further indicate that in most sta-
tions, MAM season preceding OND season in El Niño 
years were characterized by suppressed rainfall. Similar 
results were recoded by [9] when they characterized 
ENSO events in some parts of Kenya. 

In La Niña years (1970, 1973, 1975, 1988, 1998) all 
stations recorded below normal rainfall amount during  

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 2. Normalized annual, MAM and OND rainfall at 3 
selected stations in the study area. (a) Kibwezi (Makueni); 
(b) Katumani (Machakos); (c) Kyuso (Mwingi). 
 
OND season except in 1988 (Table 3(b)). 1973 and 1975 
are fairly unique years in that for both MAM and OND 
seasons, most of the stations received below normal 
rainfall, culminating into a decline in annual rainfall. In 
1988, most of the stations received above normal rainfall 
during the MAM and OND rainfall seasons despite 
NCEP’s classification of the year as La Niña. In 1998, 
most stations recorded above normal MAM rainfall ex-
cept Kalaba (–0.69) and Kyuso (–0.69) which recorded 
below normal rainfall. The above normal rainfall events 
in most of the stations in 1998 MAM season can be at-
tributed to the prolonged effect of the 1997 El Niño 
event.   
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Table 3(a). Analysis of magnitude of El Niño events based on National Center for Environmental Prediction (NCEP) (2005) 
classification. 

1965 1972 1982 1986 1987 1991 1994 1997 
Station 

MAM OND MAM OND MAM OND MAM OND MAM OND MAM OND MAM OND MAM OND

ISHIARA - - –1.38 0.09 1.05 1.04 0.10 0.07 –1.39 –1.09 –0.23 –0.58 –0.16 1.44 0.64 2.45

KALABA - - - - –0.48 1.77 1.27 0.01 –0.79 –0.24 –0.43 0.56 0.00 0.90 –0.06 0.46

KAMBO - - - - 0.72 0.81 –0.76 –0.31 –0.40 –1.38 –0.83 –0.32 0.45 1.84 0.17 2.32

KANGUNDO –1.16 –0.28 –0.77 –0.26 –0.47 0.52 0.82 0.94 –0.85 –1.26 –1.00 –0.67 0.37 1.47 0.36 1.62

KATUMANI –1.14 0.14 –0.97 –0.12 –0.13 1.07 0.39 0.07 –1.28 –1.28 –0.78 –0.07 –0.73 2.37 –0.01 1.52

KIBWEZI –1.24 –0.85 –1.59 0.18 1.45 1.66 0.21 0.18 –0.73 –1.26 –0.01 –0.36 –0.34 0.58 –0.17 1.85

KIRITIRI –1.18 –0.62 –1.45 –0.01 –0.02 0.47 –0.05 0.37 –0.97 –1.42 –0.68 -–0.67 –0.62 0.99 –0.04 2.56

KYUSO –0.76 –0.34 –1.19 –0.06 –0.66 0.25 –0.12 0.30 –0.63 –1.00 –0.59 –0.68 –0.08 0.59 1.00 2.18

MAKINDU –1.01 –0.58 –1.79 0.00 0.18 2.00 0.18 0.16 –0.52 –1.23 –0.64 –0.29 –0.31 1.23 0.06 1.40

MALINDA - - –1.31 0.15 –0.33 1.27 0.81 -0.29 –1.01 –0.87 –0.94 0.33 0.11 1.10 1.19 4.44

MATILIKU –0.80 –0.79 –1.16 0.54 0.51 1.09 0.29 0.64 –0.97 –0.64 –1.22 0.58 –0.78 0.26 0.23 2.86

Note: Bold and unbold indicate below and above rainfall events, respectively. 

 
Table 3(b). Analysis of magnitude of La Niña events as classified by National Center for Environmental Prediction (NCEP) 
(2005) classification. 

1970 1973 1975 1988 1998 
Station 

MAM OND MAM OND MAM OND MAM OND MAM OND 

ISHIARA - - –0.88 –1.48 0.89 –0.18 1.92 0.24 0.98 –1.22 

KALABA - - - - –0.48 –0.69 0.82 0.73 –0.68 –1.47 

KAMBO - - –1.27 –1.09 0.00 –1.16 1.11 2.16 0.16 –0.75 

KANGUNDO 1.21 –1.25 –1.69 –0.99 –0.95 –1.07 1.80 –0.30 0.02 –1.44 

KATUMANI 0.77 –1.36 –1.64 –0.73 –0.86 –0.72 0.49 0.23 1.04 –1.10 

KIBWEZI 0.32 –0.92 –0.32 –0.41 –1.54 –1.13 –0.12 1.15 1.44 –1.35 

KIRITIRI 1.29 –0.90 –1.74 –0.95 –0.66 –0.86 0.45 0.76 2.31 –1.36 

KYUSO 1.16 –0.99 –1.01 –0.56 0.50 –0.98 –0.21 0.05 –0.69 –0.75 

MAKINDU 0.25 –1.19 –0.78 –1.03 –0.57 –0.97 0.81 –0.02 0.51 –1.34 

MALINDA 0.91 –0.95 –0.95 –1.19 –0.42 –0.79 2.00 –0.03 1.45 –1.03 

MATILIKU 0.04 –1.13 –1.21 –1.08 –0.17 –0.99 0.62 0.87 0.31 –1.32 

Note: Bold and unbold indicate below and above rainfall events, respectively. 

 
The result suggests that variation from normal rainfall 

and vegetation condition is highest during El Niño than 
La Niña events. It also emerged that in El Niño years, 
which are usually characterized by above normal rainfall 
events during the OND season, there were more stations 
with above normal rainfall during OND season than pre-
ceding MAM rainfall (Figure 3). This was with the ex-
ception of 1986 where 75% of the stations received 

above normal rainfall during the MAM season compared 
to about 48% that received above normal during the 
OND season. Results show that ENSO events in south-
east Kenya vary in magnitude, both in time and space. 
Notable examples are 1987 and 1988 which were classi-
fied as El Niño and La Niña years respectively but turned 
out to be the opposite. Variations on the intensity of El 
Niño have also been documented by Ammisah-Arthur et 
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al. [9]. Previous studies have strongly linked ENSO 
events with OND rainfall in Eastern Africa; but there is 
scant literature on ENSO-MAM seasonal rainfall in the 
region [48]. With reports of improved skill of predicting 
ENSO events [19,49] these results are therefore a pointer 
to the need to determine the influence of ENSO events at 
local level and prepare local communities on the poten-
tial impact of these events. 

Figures 4 (a-d) show the effect of inter-annual sea-
sonal rainfall variability on NDVI in selected stations 
Machakos and Mwingi districts for MAM and OND 
growing season. The results show that the driest years 
had the lowest NDVI values while the wettest years had 
maximum NDVI values for the same. For instance, dur-
ing the MAM season, 1984, 1993 and 2000 recorded the 
lowest amounts of rainfall and NDVI values for April 
-June in the region. Many parts of Southeast Kenya and 
Eastern Africa recorded failure of the 1984 MAM rains 
and low production of staple cereals prompting action 

from government and development agencies to secure 
food to people [26,50,51]. The 2000 drought was among 
the severest on record in Kenya with wide spread 
socio-economic impacts [52] that included famine and a 
decline in the generation of hydro-electric power. Al-
though inter-annual rainfall variability is low in parts of 
Southeast Kenya (Figure 4 (c,d)), the magnitude of 
NDVI variation is high. This could imply that rainfall 
amount is not the only determinant of NDVI. Tottrup and 
Raumussen [53] used NDVI data to analyze long-term 
changes in crop production and found that rainfall vari-
ability is not the singular determinant of crop yield in 
Peanut Basin in Senegal. Thiam [54] established that in 
addition to rainfall amount, factors such as soil type, de-
forestation overgrazing, and agricultural land uses de-
termine primary biological productivity of land in Mau-
ritania. In the case of Mwingi district, rainfall distribution, 
alongside bio-physical characteristics could be a major 
determinant of biological productivity of vegetation. 

 

 

Figure 3. Percentage of stations receiving above normal rainfall in El Niño years for annual, MAM and OND. 
 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

Figures 4. Effect of inter-annual rainfall variability on vegetation during the MAM and OND seasons. (a) Matiliku 
(Machakos), MAM; (b) Matiliku (Machakos), OND; (c) Kyuso (Mwingi), MAM; (d) Kyuso (Mwingi), OND; Key: OND-Rn- 
October–December Rainfall; MAM-Rn-March-May rainfall; AMJ-ndvi-April-June NDVI; NDJ-ndvi-November-January 
NDVI. 
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Although April and November are the peak rainfall 
months in Southeast Kenya, May and December are the 
peak NDVI months (Figures 5 (a-b)). Thus, after rainfall 
onset, there is a one month lag period for NDVI to reach 
its peak. A lagged effect of NDVI was also observed 
when MAM and OND rainfall showed high correlation 
values with April-June (AMJ) NDVI and Novem-
ber-January (NDJ) NDVI respectively. In other studies, 
Anyamba et al. [55] reported a lagged response of rain-
fall and NDVI in Eastern Africa after the 1997/ 1998 El 
Niño event. Similarly, Wang and You [56] found that 
vegetation response to North Atlantic Oscillation delayed 
by 1.5 years. The delayed impact of rainfall on vegeta-
tion has implications on the food web in the ecosystem. 
For communities in Southeast Kenya, who are 
agro-pastoralists, this has implication on planning for 
pasture. Funk and Brown [57] have used the lagged rela-
tionship between rainfall and NDVI to estimate vegeta-
tion response to current climatic conditions, helping to 
make early warning systems earlier. 

Results of aggregate NDVI values show all districts to 
have slightly enhanced green vegetation conditions dur-
ing the OND season than for MAM season (Table 4). 
This can be attributed to more and reliable OND rainfall 
than MAM rainfall in Southeast Kenya [1,22,58]. The 
close coupling between OND and ENSO & related SSTs 
has enhanced its predictability [19] providing a window  
 

 
(a) 

 

 
(b) 

Figure 5. Effects of rainfall on NDVI at selected stations in 
Southeast Kenya (a) Kambo-Embu, (b) Katumani-Machakos. 

Table 4. Aggregate NDVI for April-June (AMJNDVI) and 
November-January (NDJNDVI) by district. 

District (AMJNDVI) (NDJNDVI) 

Embu 0.63 0.69 

Makueni 0.47 0.48 

Machakos 0.47 0.48 

Mwingi 0.50 0.59 

Mbeere 0.58 0.62 

 
of opportunity in planning for agriculture, pasture and 
managing natural resources in Southeast Kenya. Sea-
sonal variations in vegetation conditions can also be at-
tributed anomalous ENSO events. For instance, An-
yamba et al. [55] demonstrated that the 1997/1998 ENSO 
event had the Eastern and Southern parts of Africa ex-
periencing continuous above normal NDVI levels for a 
period of over 8 months from October 1997 to May 
1998. 
 
5. Conclusions 
 
Results presented in this study reinforce earlier findings 
that year to year and season to season rainfall variability 
is persistent in eastern Africa [9,26,59] and this will con-
tinue to impact on vegetation and rain-fed dependant 
livelihoods. This research establishes that the October- 
December rains are more reliable as manifested in the 
amount of rainfall and the greenness of the vegetation 
compared to the March-May rainfall season. Although 
these research findings show a common pattern in the 
amount of rainfall during ENSO events in southeast 
Kenya, all El Niño and La Niña events are not equal in 
magnitude. In other words, prediction of an ENSO event 
does not always lead to an anomaly in southeast Kenya. 
These findings complement those of Amissah-Arthur et 
al. [9] who found that all El Niño events are not equal in 
terms of their regional impact on Kenyan rainfall. This 
variation therefore calls for a need to generate climate 
forecasts at a local level (downscaling) with a view to 
improving the skill of predicting ENSO events and fore-
cast more accurately. But such predictions of ENSO 
events should be accompanied by advisories derived 
from knowledge of within-season rainfall characteristics 
such as onset, cessation and length of growing season for 
effective planning of agricultural decisions. The lagged 
response between seasonal rainfall and NDVI can be 
used to project crop yield performance over the semi-arid 
and food insecure Southeast Kenya. This will go a long 
way in assisting food security and reducing the vulner-
ability of local communities. Stakeholders will be able to 
put in place relief measures early enough to avert climate 
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related disasters. The close relationship between rainfall 
and NDVI therefore calls for an improvement in local 
level rainfall and NDVI prediction and the effective dis-
semination of this information to stakeholders. This 
would greatly reduce the vulnerability of livelihoods to 
climate related disasters by enhancing their effective 
management. However, observed NDVI trends can not 
be solely explained by rainfall data. Thus, there is need 
to develop a methodology that will distinguish between 
climate-induced and human-induced factors. 
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