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Abstract 
This paper proposes a wavelet based receiver structure for frequency-flat time-vary- 
ing Rayleigh channels, consisting of a receiver front-end followed by a Maximum 
A-Posteriori (MAP) detector. Discretization of the received continuous time signal 
using filter banks is an essential stage in the front-end part, where the Fast Haar 
Transform (FHT) is used to reduce complexity. Analysis of our receiver over slow- 
fading channels shows that it is optimal for certain modulation schemes. By compar-
ison with literature, it is shown that over such channels our receiver can achieve op-
timal performance for Time-Orthogonal modulation. Computed and Monte-Carlo 
simulated performance results over fast time-varying Rayleigh fading channels show 
that with Minimum Shift Keying (MSK), our receiver using four basis functions (fil-
ters) lowers the error floor by more than one order of magnitude with respect to oth-
er techniques of comparable complexity. Orthogonal Frequency Shift Keying (FSK) can 
achieve the same performance as Time-Orthogonal modulation for the slow-fading 
case, but suffers some degradation over fast-fading channels where it exhibits an error 
floor. Compared to MSK, however, Orthogonal FSK provides better performance. 
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1. Introduction 

Fueled by the increased interest in mobile communication for fast moving platforms [1] 
[2], signal detection over fast-fading channels has become an important research area 
in the last decade [3] [4]. When signal fading is slow, the channel over at least one 
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symbol interval can be assumed to be Additive White Gaussian Noise (AWGN), and a 
matched filter receiver front-end followed by symbol rate sampling provides good per-
formance [5]. However, with fast fading the above matched filter method is suboptimal 
and more advanced techniques are needed [6] [7]. 

Several methods of receiver design for fast-fading channels have been proposed [8]- 
[14]. Pilot symbol assisted modulation [8] adds known symbols in the transmitted sig-
nal, allowing the receiver to estimate the channel in order to establish an amplitude and 
phase reference for detection. This technique improves performance; however it lowers 
the effective bit rate, introduces delay, and requires buffer space at the receiver for 
channel interpolation. In [9] it is demonstrated that with fast fading, using a low-pass 
rectangular pilot filter produces an error floor, and more judiciously designed pilot fil-
ters are needed. In [10], the authors show that processing more than one sample per 
symbol ensures robust performance in a fast-fading environment when Nyquist pulse 
shaping is used, at the expense of increased system complexity compared to traditional 
detection techniques. In line with such concept a receiver structure for a fading channel 
applying multisampling is derived in [11]. 

Receivers for fast-fading channels based on filter banks are presented in [12]-[14]. In 
[12], the authors demonstrate two types of receivers based on single-filter and double- 
filter. The single-filter receiver consists of two matched filters derived using a time-se- 
lective channel model which approximates the fading process by the first two terms of 
its Taylor expansion. The double-filter receiver consists of two matched filters and two 
modified matched filters derived using a time-selective channel model approximating 
the fading process by truncating the Taylor series to the third term. In [13], the authors 
use specific basis functions as receiver filters for discretization. It is claimed that, by a 
moderate increase in complexity compared to a matched filter receiver, the perfor-
mance is close to optimal except at very high Signal-to-Noise Ratio (SNR). Another 
method of designing front-end filters is presented in [14], that employs the Karhu-
nen-Loeve (KL) expansion [15] to approximate the autocorrelation function of the 
fading process by a finite dimensional separable kernel. 

In this paper, we present a wavelet based receiver for frequency-flat time-varying 
Rayleigh channels, consisting of two parts: a front-end stage and a Maximum A-Post- 
eriori (MAP) detector. Discretization of the received continuous time signal is an es-
sential function of the front-end stage, and for this task we employ the framework for 
discrete representation of continuous time signals from [16] that is well suited for 
fast-fading channels. Furthermore, the Fast Haar Transform (FHT) algorithm [17] is 
used to reduce complexity. Performance analysis and Monte-Carlo simulation results 
are presented for three binary modulation schemes: Time-Orthogonal modulation, 
Minimum Shift Keying (MSK) and Orthogonal Frequency Shift Keying (FSK). 

2. System Model and Discrete Representation of Signals over 
Time-Varying Rayleigh Channels 

2.1. System Model and Framework for Discrete Representation 

In this work, we consider a frequency-flat time-varying Rayleigh fading channel, with 
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the complex baseband received signal expressed as [18] 

( ) ( ) ( ) ( ) , 0mr t g t s t n t t T= + ≤ ≤                     (1) 

where ( )ms t , ( 0,1, , 1m M= − ) is transmitted with a-priori probability mp , ( )g t  
is the fading process and ( )n t  is additive noise. The processes ( )g t  and ( )n t  are 
zero mean complex Gaussian and mutually independent. We assume that ( )g t  and 
( )n t  have independent real and imaginary components that are stationary with same 

autocorrelation function. We also assume that ( )n t  is white with a single-sided power 
spectral density (PSD) 0N . We can express (1) in the form 

( ) ( ) ( ) ( )T , 0r t g t t n t t T= + ≤ ≤s a                    (2) 

where ( ) ( ) ( ) ( )T
0 1 1, , , Mt s t s t s t−=   s , a  is a random M-dimensional vector with 

a-priori probability [ ]m mPr p= =a 1 , and [ ]T0,0, ,1,0,0m =1   having 1 as the mth 
component with the others being 0. Essentially, the vector a  selects the signal that is 
transmitted, and it is independent of ( )g t  and ( )n t . 

The process of discretization yields a finite dimensional vector of observables from 
a segment of a continuous time signal. We use the framework of [16] that is based on 
the KL expansion [15]. We start with the discretization of the message process 
( ) ( ) ( )Ty t g t t= s a  of mean 

( ) ( ) ( ) ( ) ( ) [ ]T T 0E y t E g t t E g t t E = = =       s a s a             (3) 

since ( ) 0E g t =   , autocorrelation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 2 1 2 1 2 1 2 1 2
0

, ,
M

y g g m m m
m

R t t E y t y t E E y t y t R t t p s t s t
−

∗ ∗ ∗

=

    = = =     ∑a  (4) 

because 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

T T
1 2 1 1 2 2 1 2 1 2

0

M

m m m
m

E y t y t g t t E t g t g t g t p s t s t
−

∗ ∗ ∗ ∗ ∗

=

   = =    ∑a as aa s (5) 

and ( ) ( ) ( )1 2 1 2,gR t t E g t g t∗ =   . The KL expansion for ( )y t  is 

( ) ( )
1

k k
k

y t y tϕ
∞

=

= ∑                         (6) 

where yk are uncorrelated complex Gaussian variables, and the basis functions ( )k tϕ  
are obtained by solving the integral equation 

( ) ( ) ( )1 2 2 2 1 1 20
, d , 0 , 0 .

T
y k k kR t t t t t t T t Tϕ λ ϕ= ≤ ≤ ≤ ≤∫            (7) 

In (6) we have 

( ) ( ) T
,0 , 10

d , ,
T

k k k k M ky y t t t y yϕ∗
−′ ′ = = = ∫ a y a               (8) 

where 

( ) ( ) ( ), 0
d .

T
k m m ky g t s t t tϕ∗′ = ∫                      (9) 

From the properties of the KL representation, we have 

k l k klE y y λ δ∗  =                           (10) 
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where klδ  is the Kronecker delta function, and 
1

T T T T
, ,

0
.

M

k l k l k l m y k m l m
m

E y y E E E p E y y
−

∗ ∗ ∗ ∗

=

        ′ ′= = =         ∑y ay aa y y aa y      (11) 

2.2. Examples for Specific Cases 

Slow-Fading Channel with Linear Combination of Orthogonal Signals 
The fading process ( )g t g=  where g has zero mean and autocorrelation 
( ) 2 2

1 2,g gR t t E g ρ = =  , and ( )ms t  is expressed as 

( ) ( )
1

,
0

P

m m p p
p

s t c u t
−

=

= ∑                        (12) 

where ,m pc  are complex scalars and ( )pu t  are orthogonal real functions such that 

( ) ( )
0

d
T

p q p pqu t u t t E δ=∫                      (13) 

with pE  denoting the energy of ( )pu t . In this case, (4) can be written as 

( ) ( ) ( ) ( ) ( )
1 1 1 1 1

2 2
1 2 , 1 , 2 , 1 2

0 0 0 0 0
,

M P P P P

y g m m p p m i i g p i p i
m p i p i

R t t p c u t c u t u t u tρ ρ β
− − − − −

∗

= = = = =

= =∑ ∑ ∑ ∑∑   (14) 

where 1
, , ,0

M
p i m m p m im p c cβ − ∗

=
= ∑ . After substituting (14) into (7), we have 

( ) ( ) ( )
1 1

2
1 , 1

0 0

P P
k

k k g p i p i
p i

t u tλ ϕ ρ β φ
− −

= =

= ∑∑                   (15) 

where ( ) ( ) ( )2 2 20
d

Tk
i i ku t t tφ ϕ= ∫ , showing that the basis functions ( )k tϕ  are linear  

combinations of ( ) ( ){ }0 1, , Pu t u t− . The variables ( ) ( ){ }0 1, ,k k
Pφ φ −  and kλ  can be 

found by solving a matrix eigen-problem. 
Multiplying both sides of (15) by ( )1qu t  and integrating results in 

( ) ( )
1

,2
0

, 0,1, , 1
P

k kk
q q q i i

ig

E q P
λ

φ β φ
ρ

−

=

= = −∑                 (16) 

because of (13). In matrix form, (16) becomes 
( ) ( )k k

kλ′ = GΦ Φ                          (17) 

where 2
k

k
g

λλ
ρ

′ = ,  n t=G E B ,  ( ) ( ) ( ) ( ) T

0 1 1, , ,k k k k
Pφ φ φ −

 =  Φ ,  ( )0 1 1, , ,n Pdiag E E E −= E   

with ( )diag ⋅  being a block diagonal matrix, and 

, .t q i P P
β

×
 =  B                          (18) 

We see that (17) is a matrix eigen-problem that can be solved by a multitude of me-
thods. 

Orthogonal signaling is a particular case where ,m p mpc δ=  and hence 

( ) ( ) ( )
1

0
.

P

m mp p m
p

s t u t u tδ
−

=

= =∑                    (19) 

Therefore 
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1

,
0

,
M

p i m mp mi p pi
m

p pβ δ δ δ
−

=

= =∑                       (20) 

and the matrix G  in (17) is ( )0 0 1 1 1 1, , , P Pdiag E p E p E p− − , showing that 
( )k
q k qkEφ δ=                            (21) 

2 .k g k kp Eλ ρ=                            (22) 

Substituting (20), (21) and (22) into (15) and using (19) yields 

( ) ( ) ( ) ( )
2 1

0

1 .
P

g k
k p p p k

pk k

t p u t s t
E

ρ
ϕ φ

λ

−

=

= =∑                 (23) 

Frequency-Flat Fast-Fading Rayleigh Channel 
Consider a basis functions ( )k tϕ  for the frequency-flat fast-fading Rayleigh chan-

nel. From (4), we see that the kernel can be of infinite dimension because of the auto- 
correlation function ( )1 2,gR t t . When approximating ( )1 2,gR t t  as a N dimensional 
separable kernel, (4) becomes 

( ) ( ) ( ) ( ) ( )
1 1

1 2 1 2 1 2
0 0

,
N M

y n n n m m m
n m

R t t f t f t p s t s tα
− −

∗

= =

= ∑∑              (24) 

where the coefficients nα  are calculated to yield a good approximation, and ( )nf t  
are suitable real functions. Denoting i n mpω α= , ( ) ( ) ( )i n mb t f t s t=  where i nM m= + , 
(24) becomes 

( ) ( ) ( )
1

1 2 1 2
0

, .
NM

y i i i
i

R t t b t b tω
−

∗

=

= ∑                    (25) 

Substituting (25) into (7), we have 

( ) ( ) ( )
1

1 1
0

NM
k

k k i i i
i

t b tλ ϕ ω φ
−

=

= ∑                     (26) 

where ( ) ( ) ( )2 2 20
d

Tk
i i kb t t tφ ϕ∗= ∫ . We see that the basis functions ( )k tϕ  are now linear 

combinations of ( ) ( ){ }0 1, , NMb t b t− . The coefficients of the linear combinations can 
be formed by solving a matrix eigen-problem. Multiplying both sides of (26) by ( )1jb t∗  
and integrating yields 

( ) ( )
1

,
0

, 0,1, , 1
NM

k k
k j i j i i

i
j NMλ φ ω γ φ

−

=

= = −∑               (27) 

where ( ) ( ), 1 1 10
d

T
j i j ib t b t tγ ∗= ∫ . In matrix form, (27) becomes 

( ) ( )k k
kλ = GΦ Φ                         (28) 

where =G ΓΩ , ( ) ( ) ( ) ( ) T

0 1 1, , ,k k k k
NMφ φ φ −

 =  Φ , ,j i NM NM
γ

×
 =  Γ  and 

( )0 1 1, , , NMdiag ω ω ω −= Ω  We see that (28) is also a matrix eigen-problem. After sub- 
stituting kλ  and ( )kΦ  into (26), we can compute the basis functions ( )k tϕ . 

3. Receiver Structure 

For convenience, we use the normalized time x t T= , expressing the received signal as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )T , 0 1mr x g x s x n x g x x n x x= + = + ≤ ≤s a              (29) 

where ( ) ( )r x r xT= ,  ( ) ( )g x g xT= ,  ( ) ( )m ms x s xT=  and ( ) ( )n x n xT= .  The 
symbol ~  denotes quantities in the normalized time setting. For consistency, ( )n x   

must have a single-sided PSD of 0N
T

. The block diagram of the receiver, illustrated in  

Figure 1, consists of two parts: a receiver front-end performing the received signal dis-
cretization, with output r  used in the second part that is a MAP detector. In Figure 1 
FHT stands for Fast Haar Transform [17], and the operator ( )Vec ⋅  yields a column 
vector obtained by concatenating the columns of a matrix. 

3.1. Receiver Front-End 

Operating on ( )r x , the front-end stage produces the observable vector r  with com- 
ponents 

( ) ( )1

0
d .k kr r x x xϕ∗= ∫                            (30) 

The basis functions ( )k xϕ  can be found using the second example in Section 2.2. In 
the normalized time setting, the parameters nα  and functions ( )nf x  in (24) are se-
lected using the wavelet-based eigenfunction method in [16], and hence n nα µ=  and 

( ) ( )n nf x xθ=  where nµ  and ( )n xθ  are eigenvalues and eigenfunctions of the au-
tocorrelation function ( ) ( ) ( )1 2 1 2,gR x x E g x g x∗ =  

  . Substituting (26) using the nor- 
malized time setting into (30), we have 

( ) ( ) ( ) ( )
1 11

0
0 0

1 1d
NM NM

k k
k i i i i i i

i ik k

r r x b x xωφ ωφ ξ
λ λ

− −
∗ ∗∗

= =

= =∑ ∑∫  

 

 

             (31) 

 

 
Figure 1. Receiver block diagram. 
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where ( ) ( ) ( )1

0
dk

i i kb x x xφ ϕ∗= ∫ 

  and ( ) ( )1

0
di ir x b x xξ ∗= ∫ 

 . In matrix form, (31) can be 
written as 

c= ⋅r L x                               (32) 

where ( )1
,

k
c k i k i i K NM

l λ ωφ ∗−

×
 = = L    and [ ]T0 1 1, , , NMξ ξ ξ −=x  . 

Using ( ) ( ) ( )i n mb x x s xθ=

  with i nM m= +  and 

( ) ( ) ( )
1

0
,

L
n

n l l
l

x d xθ ψ
−

=

= ∑ 

                          (33) 

where 2cL =  with c the maximum wavelet level, ( )l xψ  denoting a family of norma-
lized Haar wavelets including the scaling function with corresponding coefficients ( )n

ld  
that can be found using the method from [16], we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )
11 1

0 0
0

,

d d

, 0,1, , 1, 0,1, , 1.

L
n

i m n m l l
l

m n

r x s x x x r x s x d x x

e m M n N

ξ θ ψ
−

∗ ∗

=

= =

= = − = −

∑∫ ∫ 

   

 

           (34) 

Defining , ,m n M N
e

×
 =  E  

( ) ( ) ( )0 1 1N − =  d d d d   

                      (35) 

with ( ) ( ) ( ) ( ) T

0 1 1, , ,n n n n
Ld d d −

 =  d   


 , we have 

( ) ( )HVec Vec= = ⋅x E V d                      (36) 

where 

[ ]T0 1 1H M −=V V V V                      (37) 

with 
T

,0 ,1 , 1, , ,m m m m LV V V − =  V  , and 

( ) ( ) ( ) ( ) ( ) ( )1 11 2
, 0 0

d d .m l m l l m lV r x s x x x h r x s x x xψ ψ∗ − ∗= =∫ ∫            (38) 

In (38), lh  are normalization factors [19], and ( )l xψ  are a family of unnormalized 
Haar wavelets [19] with scaling function 

( )0

1, 0 1
0, else

x
xψ

≤ <
= 


                     (39) 

and 

( ) ( )2s
l x x fψ ψ= −                       (40) 

where 0,1, , 1s c= − , 0,1, , 2 1sf = −
, 2sl f= + , and mother function [19] 

( )
1, 0 1 2

1, 1 2 1 .
0, else

x
x xψ

≤ <
= − ≤ <



                   (41) 

Next, we define R L≥  as the resolution of ( )l xψ , and hence we can divide (38) 
into R sub-integrals resulting in 
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( ) ( )
11

1 2
,

0
d ,

pR
l R

m l l p mp
p R

V h r x s x xψ
+−

− ∗

=

= ∑ ∫                   (42) 

where l
pψ , ( 0,1, , 1p R= − ) are samples of ( )l xψ  given by 

2 1 ,
2

l
p l

p
R

ψ ψ + =  
 

                      (43) 

since ( )l xψ  are constant over each integration sub-interval. From (42), we have 
1 2

,
l m

m l lV h−= nΨ                        (44) 

where 0 1 1, , ,l l l l
Rψ ψ ψ − =  Ψ  and 

T

0 1 1, , ,m m m m
Rη η η − =  n   with 

( ) ( )
1

d .
p

m R
p p m

R

r x s x xη
+

∗= ∫  
                    (45) 

For conceptual simplicity, we take R L=  since a larger R does not affect the value of 

,m lV . Therefore, from (44), we have 
1 2= m

m
−V H nΨ                        (46) 

where ( )0 1 1, , , Ldiag h h h −=H   and 
TT T T0 1 1 .L− =   

Ψ Ψ Ψ Ψ  To solve (46)  

when R is large, we can use the FHT algorithm that has a computational complexity 
( )O N  where N is the number of input elements [17]. 

3.2. MAP Detector 

The observable vector (31) is zero mean jointly Gaussian with conditional Probability 
Density Function (PDF) 

( )( ) 11| e
H

m
m K

m

f s x
π

−−= r C rr
C



 

 



                      (47) 

where [ ]T1 2, , , Kr r r=r   
  and 

( ) ( )

( ) 0
,

| |

|

H H H
m m m

k l k l m KK K

E s x E s x E

N
c E y y s x

T
∗

×

     = ⋅ = ⋅ + ⋅     

  = = +  

C r r y y n n

I



      

   

            (48) 

with [ ]T1 2, , , Ky y y=y   
  where ky  is defined in (8) using the normalized time set-

ting, [ ]T1 2, , , Kn n n=n   
 , and 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

1 2 1 2
0 0 0 0 0 0

1 1

1 2 1 1 2 2 1 2

|

, d d .

l wk nNM NM L L R R
j j f e fi i e

k l m p q
i j e f p qe fk k l l

p q
R R

g m u m vp q
R R

dd
E y y s x

h ha a

R x x s x s x s x s x x x

ω φωφ
ψ ψ

λ λ

∗− − − − − −
∗

= = = = = =

+ +
∗ ∗

  = 

⋅

∑ ∑ ∑ ∑ ∑ ∑

∫ ∫ 





  

 

   

     (49) 

The normalization factors ensuring ( )k xϕ  have unit energy are derived in the Ap-
pendix. In (48), HE  ⋅ n n   is obtained by using 

( ) ( ) ( ) ( )1 1
1 2 1 2 1 20 0

d dk l k lE n n E n x n x x x x xϕ ϕ∗ ∗ ∗   =   ∫ ∫                   (50) 
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( ) ( ) ( )1 1 0 0
1 2 1 2 1 20 0

d d .k l kl
N Nx x x x x x
T T

δ ϕ ϕ δ∗= − =∫ ∫                  (51) 

The structure of the MAP detector can be simplified by using the log-domain 

( )( ) ( )1ln | ln ln ln .H
m m m m mf s x p K pπ−  = − + + − r r C r C 

             (52) 

Since lnK π  is constant, finding the maximum value of ( )( )| m mf s x pr   is equiv-
alent to finding the minimum over the M log-likelihood metrics 

1 ln ln .H
m m m mpι −= + −r C r C 

                        (53) 

3.3. Structural Analysis of the Receiver over Slow-Fading Channels 

In this case the fading process satisfies ( )g x g=  where [ ] 0E g = , 

( ) 2 2
1 2,g gR x x E g ρ = = 

 with eigenvalues [16] 

2 for 0
,

0 for 1, 2, , 1
g

n
n
n N

ρ
µ

 =
= 

= − 

                    (54) 

and (35) is of the form 

( ) ( ) ( )0 1 1

1 0 0
0 0 0

.

0 0 0

N

L N

−

×

 
 
  = =   
 
 

d d d d





   



   



             (55) 

Hence, (36) becomes 
T

0,0 1,0 1,0, , , ,0, ,0 .MV V V − =  x                     (56) 

Because i n mpω µ=  with ,i nM m= +  from (54) we have 
2 for 0,1, , 1

0 for , 1, , 1
g i

i
p i M

i M M NM
ρ

ω
 = −

= 
= + −





               (57) 

and (32) becomes 

[ ]
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T
1 2

1 1 11 2 1 2 1 2
1 0 0 1 1 1 1 1 1

2 2 21 2 1 2 1 2
2 0 0 2 1 1 2 1 1

1 2 1 2 1 2
0 0 1 1 1 1

, , ,

0 0

0 0
=

0 0

K

g g g M M

g g g M M

K K K
K g K g K g M M K

r r r

p p p

p p p

p p p

λ ρ φ λ ρ φ λ ρ φ

λ ρ φ λ ρ φ λ ρ φ

λ ρ φ λ ρ φ λ ρ φ

∗ ∗ ∗− − −
− −

∗ ∗ ∗− − −
− −

∗ ∗ ∗− − −
− − ×

=

 
 
 
 
 
 
 

r   


     

 

     

 

      

     

 

T
0,0 1,0 1,0, , , ,0, ,0 .

NM

MV V V − ⋅   

   (58) 

Therefore, we have ( )1 1 2
,00 ,M k

k k g i i iir p Vλ ρ φ− ∗−
=

= ∑  

  showing that kr  are linear combina-
tions of ( )

,0
k

i i ip Vφ ∗
 . From (42) we have 

( ) ( ) ( ) ( )
11 1

,0 0
0

d d
pR
R

i p i i
p R

V r x s x x r x s x x
+−

∗ ∗

=

= =∑ ∫ ∫   
             (59) 
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since 0 1h =  and 0 1pψ =  for 0,1, , 1p R= − . We can simplify (57) by removing the  

zeros, and assuming 1
ip

M
= . Then, with 

T
0,0 1,0 1,0, , , MV V V −′  =  x   and 

( )1 2 1
,

k
c k i k g i K M

l Mλ ρ φ ∗− −

×
 ′ ′= = L                       (60) 

we have 

.c c′ ′= ⋅ = ⋅r L x L x                          (61) 

Furthermore, since ( ) 2
1 2,g gR x x ρ=



, (4) in the normalized time setting can be ex-
pressed as 

( ) ( ) ( )
1

2
1 2 1 2

0
, ,

M

y g m m m
m

R x x p s x s xρ
−

∗

=

= ∑


                    (62) 

and substituting this into (7) yields 

( ) ( ) ( ) ( )
1 12

1 2 2 2 10
0

d
M

g m m m k k k
m

p s x s x x x xρ ϕ λ ϕ
−

∗

=

=∑ ∫ 

    

( ) ( ) ( )
1

2
1 1

0

M
k

g m m m k k
m

p s x xρ φ λ ϕ
−

=

=∑  

                            (63) 

where 

( ) ( )1( )
0

d .k
m m ks x x xφ ϕ∗= ∫

                        (64) 

In ([20], p. 170], the authors present optimum receivers for slow-fading channels. 
From Figure 2, it is seen that in order to prove that our receiver can achieve optimality, 
we need to focus on two components: the quadratic form 1H

m
−r C r

   and the bias term 
ln mC , since the major differences between our receiver and the optimum receiver 
from ([20], p. 170) are in these components. Using (61), the quadratic form in Figure 2 
can be written as 

1 1 .H H H
m c m c
− −′ ′ ′ ′=r C r x L C L x 

                         (65) 

Compared to ([20], p. 170], our receiver needs to satisfy the following two conditions to 
achieve optimality: 

Condition 1 

( )ln ln 1m m BSNR c= + +C                       (66) 

where Bc  is a constant and mSNR  is defined as 

( ) ( )2 12 22 2 2
0 0

0 0 0 0

d d
.

T
m g m g m g m

m

E g E s t t s x x E
SNR

N N N T N T

ρ ρ ρ  ⋅ = = = =∫ ∫ 



    (67) 

Condition 2 
1H

c m c m c
−′ ′ = +L C L B M                         (68) 

where cM  is a M M×  constant matrix, mB  has the form 



X. Shao, H. Leib 
 

397 

 
Figure 2. Simplified receiver block diagram. 
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                       (69) 

and 

,
0 1

S m
m m

m m

c SNRb
E N SNR

= ⋅
+

                       (70) 

with Sc  a constant. 
From section B of the Appendix we have that satisfying 

( ) ( ) ( )1

0
dk

m m k m mks x x x Eφ ϕ δ∗= =∫ 

                   (71) 

where m

m

E
λ





 is a constant sufficient for Conditions 1 and 2 to hold. Assume that the  

transmitted signals ( )ms x  are orthogonal 

( ) ( )1

0
d ,m n m mns x s x x E δ∗ =∫ 

                       (72) 

and equiprobable 
1

mp
M

= . From the first example of Section 2.2 when applied to or-  

thogonal signaling in the normalized time setting, we have 
2 ,k g kE Mλ ρ=                                   (73) 

( ) ( ) ( )1

0
d .k

m m k k mks x x x Eφ φ δ∗= =∫  

                   (74) 

From (73), it is seen that k

k

E
λ





 is constant. Because of (73) and (74), both Conditions  
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1 and 2 hold, showing that our receiver with orthogonal signaling is optimal for slow- 
fading channels. Next we consider the performance over fast-fading channels. 

4. Performance Analysis for Binary Modulation 
4.1. Error Probability 

From (53), using the log-likelihood metrics for hypotheses 0H  ( ( )0s t  was transmit-
ted) and 1H  ( ( )1s t  was transmitted), the log-likelihood ratio can be expressed as 

( ) 1 01 1
0,1 1 0 1 0

0 1

ln .H
p

p
ι ι − −Λ = − = − −

C
r C C r

C



 

 



                (75) 

Thus, we have the log-likelihood decision rule 

( ) 0

1

1 01 1
1 0

0 1

ln .
H

H

H

p

p
− −−

C
r C C r

C



 

 



                      (76) 

Defining ( )1 1
0,1 1 0

H − −Λ = −r C C r 

   and the bias term 
1 0

0,1
0 1

= ln
p

A
p

C

C





, then 0,1Λ  is a  

Hermitian quadratic form where 1 1
1 0
− −−C C   is a Hermitian matrix because 1

0
−C  and 

1
1
−C  are Hermitian. The observable vector r  is zero mean jointly Gaussian, and the 

conditional PDF of r  is given in (47). The characteristic function of the Hermitian 
quadratic form 0,1Λ  is given by [21] 

( ) ( ) ( )
0,1

1 111 1 0,1
0 1 0 0,1

1
1

K

K K i
i

j j j jω ω ω ωµ
− −−− −

Λ
=

∆ = − − = − = −∏I C C C I R


       (77) 

where ( )1 1
0,1 0 1 0

− −= −R C C C    and 0,1
iµ  are the eigenvalues of 0,1R . Assuming ( )0s x  

is transmitted but ( )1s x  is detected and denoting z jω= , the Pairwise Error Pro- 
bability (PEP) is [18] 

( ) ( ) ( ) ( )

( )0,1

0,1

0,1
0 1 0 0,1 0,1 0Pr | Pr |

1 e d d
2π

p

A j zu
j

P s x s x s x A s x

z z u
j

+ ∞ −
Λ−∞ − ∞

 = → = Λ <    

= ∆∫ ∫ 



   

           (78) 

where ( )
0,1

1 e d
2π

j zu
j

z z
j

+ ∞ −
Λ− ∞

∆∫ 

 is the PDF of 0,1Λ . Using similar methods as in [22]  

aided by the residue theorem [23], we have from (78) 

( ) 0,1
0,1

0,1

10,1 0,1 0,1

0

1 e i

i

K
A

p j i
i j

j i

P µ

µ

µ µ
− −

≠<

= −∑ ∏                   (79) 

for 0,1 0A ≤ , and 

( ) 0,1
0,1

0,1

10,1 0,1 0,1

0

1 1 e i

i

K
A

p j i
i j

j i

P µ

µ

µ µ
− −

≠>

= − −∑ ∏                 (80) 

for 0,1 0A >  . 
In our work the PEP was calculated from (79) (80) using the MATLAB software 
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package. We consider two fading autocorrelation functions: the Jakes’ model [24] 

( ) ( ) ( ) ( )1 2 1 2 0 1 2, 2π ,g dTR x x E g x g x J f x x∗ = = − 

               (81) 

and autocorrelation function of a Butterworth filtered fading process [12] 

( ) ( ) ( )1 2 1 2 1 2 1 2
1 π, exp 2π exp π sin 3π
2 6g dT dT dTR x x f x x f x x f x x = − − + − − + − 

 


 (82) 

where dT df f T=  is the normalized Doppler spread. We assume that ( )ms x  are equi-  

propable 0 1
1
2

p p= = . From (79) and (80), it is seen that the error performance is de-

termined by 0,1
iµ  which are the eigenvalues of ( )1 1

0,1 0 1 0
− −= −R C C C    and 0

0,1
1

lnA =
C

C





.  

The covariance matrix mC  is given by (48) with its components obtained from (49). 
The double integrations in (49) are computed numerically using the MATLAB function 
quad2d with an absolute accuracy of 10−23. The eigenvalues 0,1

iµ  are computed using 
the function eig which calculates eigenvalues of a symbolic matrix and ensures accuracy 
to at least 32 significant decimal digits by default. The SNR for performance analysis is 
defined as 

( ) ( ) ( )
1 1 12 2 2

0 0
0 0

0 0 0

1 1d d
2 2

T
m m

b m m
E g t s t t s x x

E
SNR

N N N T
= =

 
  

= = =
∑ ∑∫ ∫ 

        (83) 

where, using (81) and (82), we have ( ) ( )2 2
1.E g t E g x   = =      

  The accuracy of the 
performance analysis is confirmed by computer simulations. 

4.2. Computer Simulations 

Computer simulations in this paper employ the Monte-Carlo method and are imple-
mented in the C language. We implemented the receiver of Figure 1 with three binary 
modulation schemes: Time-Orthogonal modulation, MSK, and Orthogonal FSK. The 
Bit Error Rate (BER) is estimated from at least 400 errors. In addition, we run at least 
10,000 fading channel realizations to ensure accuracy. To emulate continuous time sig-
nals we massively oversample by using 4096 samples per symbol interval. 

For the Jakes’ model, we use the Rayleigh fading channel simulator of [25] that is 
based on the sum-of-sinusoids algorithm, where we employ 50 sinusoids. Since we over-  

sample, the Jakes’ model is expressed as ( )0 0ˆ ˆ2π 2π dT
dT p q

fJ f x x J p q
S

 − = − 
 

 where 

2 1ˆ
2p
px

S
+

= , 0,1, , 1p S= −  and 0,1, , 1q S= −  with S the total number of sam-  

ples taken per symbol interval. For the Butterworth lowpass filtered fading process, 
each fading realization is generated by passing two white and independent real Gaus-
sian processes through two identical third-order Butterworth filters as in [12]. The 3 dB 
bandwidth of these filters, df , is a measure of the fading rate. 

The SNR for simulations can be expressed as b b

n n

P E TSNR
P P

= =  where 
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( ) ( ) ( )
1 1 12 2 2

0 0
0 0

1 d d .
2 2

T
b m m

m m

TE E g t s t t s x x
= =

 = =  ∑ ∑∫ ∫              (84) 

After passing the received signal through an ideal band-limiting anti-aliasing filter, 
the power spectral density of ( )n t  becomes 

( ) 0 for
2 2

0 otherwise
n

B BN f
p f

 − ≤ ≤= 


                    (85) 

with sB F=  which is the sampling frequency. Instead of sampling at rate 1
sF

T
= , 

oversampling by a factor S yields s
SF
T

= . Since the additive noise is zero mean com-  

plex Gaussian with independent real and imaginary components which are stationary 
with same autocorrelation function, the variance of its real (or imaginary) component 
is given by [26] 

2 0
0 0

1 1 1 .
2 2 2 2c n s

NP N B N F S
T

σ = = = =                   (86) 

The Time-Orthogonal modulation scheme [13] is defined by the waveforms 

( )0

1 for 0 1 2
0 for 1 2 1
0 elsewhere

x
s x x

≤ <
= ≤ ≤



                       (87) 

( )1

0 for 0 1 2
1 for 1 2 1
0 elsewhere

x
s x x

≤ <
= ≤ ≤



                       (88) 

the MSK modulation scheme can be represented by 

( )0

1 for 0 1
2

0 elsewhere

x
s x

 ≤ ≤= 


                           (89) 

( ) ( )
1

1 exp π for 0 1
2

0 elsewhere

j x x
s x

 ≤ ≤= 


                  (90) 

and Orthogonal FSK modulation is defined by 

( )0

1 for 0 1
2

0 elsewhere

x
s x

 ≤ ≤= 


                          (91) 

( ) ( )
1

1 exp 2π for 0 1
2

0 elsewhere

j x x
s x

 ≤ ≤= 


                 (92) 

All three modulation schemes have the same average energy. According to our observa-
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tions, we have that 4N =  is large enough for approximating well the fading autocor-
relation functions for these cases. Moreover, 16L =  for Time-Orthogonal modulation 
and 64L =  for MSK as well as Orthogonal FSK are large enough to achieve good per-
formance. Thus, in this paper, we use these parameter settings for simulations. Unless 
explicitly stated, we use the Jakes’ model for performance analysis and simulations. 

Figure 3 illustrates the computed and simulated BER for Time-Orthogonal modula-
tion with different values of K and dTf . We see that increasing K can improve perfor-
mance. For the lower Doppler 0.1dTf = , increasing K beyond 4 does not improve 
performance for SNR less than 50 dB. For larger Doppler 0.25dTf = , using more than 
four basis functions can slightly improve performance for SNR > 40 dB. In [13], the 
authors propose a receiver front-end using specific basis functions to discretize the re-
ceived continuous time signal, which is simple to implement. In order to show that this 
receiver has a close to optimal performance, the authors also provide the optimal per-
formance for 0.1dTf =  as reference. Comparing Figure 3 with [13], we see that our 
receiver can achieve optimal performance for 2K = , 4 and 6. To reduce the overall 
complexity of our scheme we use the FHT algorithm, whose computational complexity 
is ( )O N  with N the number of input elements [17] in our receiver front-end. 

 

 
Figure 3. Time-orthogonal modulation, N = 4 and L = 16. 
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We can find analytically the diversity order that can be obtained with such a Time 
Orthogonal scheme by using Proposition 2 of [22]. Essentially the result of this propo-
sition is 

lim . qK
pSNR

P const SNR−

→∞
= ⋅                      (93) 

where for SNR →∞  the parameter qK  is the sum of all positive eigenvalues 0.1
iµ  

of 0.1R , that has one additional eigenvalue at −1 with multiplicity qK . Figure 4 and 
Figure 5 present the magnitude of these eigenvalues on a log scale for Time-Orthogonal 
modulation with 4K =  and 0.1dTf = . Figure 4 shows that two positive eigenvalues 
increase linearly with SNR, and Figure 5 shows that two negative eigenvalues decrease 
with SNR, converging to −1. In our case, we have two distinct and positive eigenvalues 
of multiplicity 1lq =  ( 1, 2l = ) satisfying 2

1 2q llK q
=

= =∑ , and a negative eigenvalue 
of −1 at SNR →∞  with multiplicity 2. Hence, this scheme provides an asymptotic di-
versity order of two which correlates well with our results of Figure 3 for 4,6K = . 

Figure 6 illustrates the calculated and simulated BER for MSK modulation with dif-
ferent values of K and dTf . For 0.1dTf = , we see that using two basis functions leads 
to a high error floor, and increasing K to 4 can improve performance and remove the  
 

 
Figure 4. Positive eigenvalues, N = 4, K = 4, L = 16 and fdT = 0.1. 



X. Shao, H. Leib 
 

403 

 
Figure 5. Negative eigenvalues, N = 4, K = 4, L = 16 and fdT = 0.1. 

 
error floor. Using 6K =  can slightly improve performance further for SNR > 60 dB. 
For 0.25dTf = , it is seen that using 2K =  yields a higher error floor compared to the 

0.1dTf =  case, and increasing K to 4 can lower the error floor by three orders of mag-
nitude. Using six basis functions can further improve performance and remove the er-
ror floor. We see that increasing the normalized Doppler spread degrades performance 
in this case. In [12], the authors present single and double-filter receivers designed for 
linearly and quadratically time-selective Rayleigh fading channel models. These receiv-
ers correspond to our case of two and four basis functions respectively. Performance 
analysis and simulation results are presented in [12] for MSK modulation. In order to 
fairly compare our scheme with [12], we use (82), which is the same as ([12], (5.1)), to 
design the basis functions for the receiver. We generate the fading process using two 
identical third-order Butterworth lowpass filters as in [12]. Figure 7 illustrates the com- 
puted and simulated results for MSK with 0.1dTf = . Comparing with Figure 4 from 
[12], we see that the single-filter receiver yields the same performance as our receiver 
with K = 2. Comparing with Figure 5 of [12], we see that the double-filter receiver pro-
vides the same performance as our receiver with K = 4 for SNR < 40 dB. For larger SNR, 
however, our receiver performs better and has an error floor that is more than one or-
der of magnitude lower than the error floor in [12]. Our receiver provides better per-
formance since we approximate the fading process more accurately than in [12]. 
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Figure 6. MSK modulation (Jakes), N = 4 and L = 64. 

 
From Figure 6 and Figure 7, we see that, for MSK with 0.1dTf = , the fading spec-

trum shape affects the performance of our receiver when using K > 2. With the Jakes’ 
fading spectrum, there is no error floor for 4K ≥  and the improvement between K = 
4 and K = 6 is small. With the Butterworth fading spectrum, the performance is worse 
than with Jakes’ fading, and there exists an error floor for K = 4. When K = 6, we do not 
observe an error floor for SNR ≤ 70 dB. With Butterworth fading we see a larger per-
formance improvement when increasing K from 4 to 6 than with Jakes’ fading. 

Figure 8 illustrates the computed and simulated BER for Orthogonal FSK. We see 
that for 0.1dTf = , using K = 2 leads to a high error floor, while increasing K improves 
performance and removes the error floor. However, beyond K = 4, increasing K does 
not improve performance for SNR less than 50 dB. For 0.25dTf =  we see that using K 
= 2 results in a higher error floor compared to 0.1dTf = , and increasing K to 4 re-
moves the error floor for SNR below 60 dB. Using K = 6 can improve performance fur-
ther for SNR > 35 dB. Orthogonal FSK and Time-Orthogonal modulation are ortho-
gonal signaling schemes with same performance over slow fading channels. However 
when dTf  increases, Orthogonal FSK performs worse than Time-Orthogonal modula-
tion, and better than MSK. 
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Figure 7. MSK modulation (Butterworth), N = 4, L = 64. 

5. Conclusions 

This paper considers a wavelets based receiver structure for frequency-flat time-varying 
Rayleigh channels. The receiver consists of a front-end performing discretization of the 
received continuous time signal, and a MAP detector processing the outputs from the 
front-end. The fast Haar transform algorithm is used to reduce computational com-
plexity. We present two conditions for achieving optimality over slow-fading channels, 
and demonstrate that using any orthogonal signaling scheme ensures optimality of our 
receiver in this case. 

Numerical performance analysis and Monte-Carlo simulation results of three binary 
modulation schemes are presented for fast-fading Rayleigh channels. Among these 
schemes, Time-Orthogonal modulation performs best, and MSK worst. Increasing K, 
the number of basis function that the receiver uses, improves performance, but when K > 
4 the performance is not improved further for Time-Orthogonal modulation and Or-
thogonal FSK using the Jakes’ fading model with 0.1dTf = . Moreover, not only the 
Doppler spread but also the fading spectrum shape affects performance. With Time- 
Orthogonal modulation, our receiver can achieve optimal performance presented in [13] 
as a reference. For MSK, our receiver using four basis functions can lower the error  
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Figure 8. Orthogonal FSK modulation, N = 4 and L = 64. 

 
floor by more than one order of magnitude compared to the double-filter receiver of 
[12]. Orthogonal FSK, which performs the same as Time-Orthogonal modulation over 
slow fading channels, provides a lower performance over fast time-varying fading 
channels. 
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Appendix 
A. Derivation of the Normalization Factors ka  and the Covariance of 

ky  

We derive the factors ka  that normalize the basis functions ( )k xϕ  to unit energy. 
We also derive the covariance of ky  defined in (8), using the normalized time setting. 
From (26) we have 

( ) ( ) ( ) ( )
1 112

0
0 0

1 1 d .
NM NM

k k
k i i i j j j

i jk k

a b x b x xω φ ω φ
λ λ

− −
∗∗

= =

= ∑ ∑∫   

 

              (94) 

Since ( ) ( ) ( )i n ub x x s xθ=

  with i nM u= +  and ( ) ( ) ( )j w vb x x s xθ=

  with 
j wM v= + , we have 

( ) ( ) ( ) ( ) ( ) ( )
1 1 12

2 0
0 0

1 d
NM NM

k k
k i i j j u n v w

i jk

a s x x s x x xωφ ω φ θ θ
λ

− −
∗ ∗

= =

= ∑ ∑ ∫ 

 



              (95) 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
1 1 1 1 1

1 2 1 22 0
0 0 0 0

1 d
wnNM NM L L

fk k e
i i j j u e v f
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dd s x x s x x x
h h

ωφ ω φ ψ ψ
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= = = =

= ∑ ∑ ∑ ∑ ∫
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( ) ( )
( ) ( )
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1 d
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= = = = =

= ∑ ∑ ∑ ∑ ∑ ∫




 

 



      (97) 

where (96) is obtained using (33), and (97) is due to ( )e xψ , ( )f xψ  being constant 
over each integration sub-interval with e

pψ  and f
pψ  defined in (43). 

The covariance of ky  can be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 1 2 2 2 20 0

| d dk l m m k m lE y y s x E g x s x x x g x s x x xϕ ϕ∗ ∗ ∗ ∗   =    ∫ ∫              (98) 
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 (99) 

Due to ( ) ( ) ( )i n ub x x s xθ=

  i nM u= +  and ( ) ( ) ( )j w vb x x s xθ=

  j wM v= + , we 
have 

( )
( ) ( )

( ) ( ) ( ) ( )
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where (101) is obtained using (33), and (102) is due to ( )e xψ , ( )f xψ  being constant 
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over each integration sub-interval, with e
pψ  and f

qψ  defined in (43). 

B. Conditions 1 and 2 

We show that satisfying (71) in Section 3.3 is sufficient for Conditions 1 and 2 to hold. 
Assume that ( ) 2

1 2,g gR x x ρ=


. Because of (71), from (98), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 1 2 2 2 20 0

| d dk l m m k m lE y y s x E g x s x x x g x s x x xϕ ϕ∗ ∗ ∗ ∗   =    ∫ ∫           (103) 

( ) ( ) ( ) ( )1 12 2
1 1 1 2 2 20 0

dg m k m l g m mk mls x x dx s x x x Eρ ϕ ϕ ρ δ δ∗ ∗= =∫ ∫ 

                    (104) 

In this case, from (48) the covariance matrix can be expressed as 
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C I









      



   (105) 

and hence, using (67), 
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ln ln 1 ln 1 lnKg m
m m
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 =  +  = + +
    

C


  

where ( )0lnK N T  is a constant. Thus, Condition 1 holds. 
The inverse of mC  is 
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where 
0

1
c KN T
′ =M I  is a constant matrix. Therefore, due to (68) and (109), we have 
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where H
c c c c′ ′ ′=M L M L  is a constant matrix because c′M  is a constant matrix. Because 

of (60), mB  can be expressed as 
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m c m c′ ′ ′=B L B L                           (112) 
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Due to (67) and (71), (115) becomes 
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where the non-zero component of B  can be put in the form 
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 is constant we have ,
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+

 where Sc  is a constant. 

Therefore, Condition 2 also holds. 
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