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Abstract 
It is convincingly demonstrated by numerous studies that the self-similarity of modern multime-
dia network traffic is presented by Hurst parameter (H). The specific performance is that the sim-
ilar degree is higher along with the increase of H when H is between 0.5 and 1. However, it is 
doubtable that whether the complicated process of self-similarity can be described comprehen-
sively by the parameter H only. Therefore, another important parameter cf has been proposed 
based on the discrete wavelet decomposition in this paper. The significance of the parameters is 
provided and the performance of the self-similarity process is described better. 
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1. Introduction 
It is a truth universally acknowledged that the Self-Similarity of network traffic has demonstrated that network 
data exhibit two major attributes: scale-invariant and the slow power-law decrease of the autocorrelation func-
tion [1]. Especially, Hurst (H) is a key parameter that can describe statistical feature of data and the second-or- 
der statistics in the self-similar process [2]. In general, the model built here exhibits long-range dependence 
when H is between 0.5 and 1, and the degree of similarity is growing with the increase of H. The model shows 
short-range dependence when H = 0.5 and the network is instable when H < 0.5. Therefore, estimating the Hurst 
parameter effectively and accurately plays a significant role in analyzing the performances and detecting the 
abnormities of networking. 

Recently, people have designed a number of approaches to evaluate the Hurst parameter, such as R/S method, 
variance-time analysis, periodogram method [3]-[5] and the method based upon the Discrete Fractional Gaus-
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sian Noise (DFGN) Model and Haar wavelet [6]. All these methods accurately estimate the Hurst parameter to 
some degree. However, most of the current models describe the extremely complicated Self-Similarity of the 
network based on the only H parameter, which might lead to inaccurate simulation and sub-optimal protocol 
performance. This issue has attracted much concern in telecommunications. Darryl Veitch and Patrice Abry [7] 
point out that there exists another parameter in the research of self-similarity and introduced it initially. However, 
they did not come to a certain and clear conclusion. In addition, Wu Yuanming [8] also mentions that it is inap-
propriate to describe the self-similarity of network under the condition of only Hurst parameter.  

Therefore, unlike most existing studies that primarily focus on the estimating of H, we not only improve the 
estimator for the H, but also make a comparison and analysis between Hurst parameter and cf parameter in this 
paper. What’s more, some detail comparison figure between H and cf is displayed under the reasonable and ad-
ditional technical idealization through the wavelet method and discrete wavelet decomposition. Based on the re-
sults, it is shown that the cf parameter also plays a key role in measuring the self-similarity of networking traffic. 

The remainder of the paper is set out as follows. Section 2 presents the mathematical definitions and proper-
ties of LRD. And we present the proposed method for estimating the Hurst parameter and cf parameter of 
second-order self-similar process. In Section 3, the simulation results and deductions of experiments on the basis 
of wavelet method are analyzed. And concluding remarks and further research directions are finally presented in 
Section 4. 

2. Preliminaries 
The network traffic in mathematics can be characterized as a random process, reflecting the self-similarity in the 
structure of network traffic on different time scales. The self-similarity process has complicated qualities and 
one of the important character is long-range dependence (LRD) [9] [10]. And the definition of LRD is related to 
the H parameter and cf parameter, which can be described as follows: 

( ) ( ) ( )1~ 0,1x k c k α
λγ α− − ∈                              (1) 

Equivalently, it can be defined as the power-law divergence at the origin of its spectrum: 

( ) ~ 0x ff v c v vα− →                                (2) 

where, ( )xf v  satisfies, in the case of discrete time process: 

( ) ( )1 22
1 2

0x x x vf v dγ σ
−

= = ∫                              (3) 

and 2
xσ  is the variance of (or power) of tx . 

Apparently, each of these definitions includes two parameters： ( ),cγα  or ( ), fcα , respectively, which are 
equivalent as 

( ) ( ) ( )1
2 2 sin

2fc cα
γ

α π
π α− − 

= Γ  
 

                         (4) 

where, Γ  is the Gamma function, and in each pair α  is closely related to the Hurst parameter:  

( )1 2H α= +                                 (5) 

According to the reference of [7], we can get the relationship between fc  and cγ : 

( )2 2f Xc ασ π −=                                 (6) 

Consequently, the expression of fc  is as follows [11] [12]: 

( ) ( ) ( ) ( )2 1
2 2 2 sin

2f xc α α α π
π σ π α− − − 

= Γ  
 

                    (7) 

The long-range dependence of networking traffic was analyzed by the wavelet decomposition coefficients in 
wavelet estimation methods [13] [14]. It was divided into approximate and detail part through the discrete wave- 
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let transaction, in which the approximate part means the low frequency of wavelet and the detail part means the 
high frequency of wavelet [15] [16]. The definition is as follows. 

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
1 1
det , ,

j j

j j x j k x j k
j j

x t approx t ail t a j k t d j k tφ ψ
= =

= + = +∑ ∑ ∑∑              (8) 

where, the ( ),xd j k  is the inner product of ( )x t  and ( ),j kψ  

( ) ( ) ( ), , ,xd j k x t j kψ=                                  (9) 

And with the spectrum estimation method, the energy spectrum of jµ  in 02 jω−  is 

( )1 ,j x
kj

d j k
n

µ = ∑                                   (10) 

where, jn  refers to the wavelet coefficients in the j scales of wavelet decomposition. And the following ex-
pression will be got according to the definition of Self-Similarity [17] [18]. 

2 2 2 2log log log logj f j njj c C n Xµ α= + − −                         (11) 

where, α comes from the equation (5) and 
jnX is the Chi-square variable of decomposition scale j. 

( ) 2
0C v v dv

α−
= Ψ∫                                  (12) 

Therefore, we can get the curve graph about j and 2log jµ . The slop of the curve can be expressed as fol-
lows: 

2 1Hα = −                                      (13) 

3. Simulation Result and Analysis 
3.1. The Simulation of Self-Similarity Networking Traffic 
The networking traffic model simulates the actual networking traffic, which is the basis for analyzing network-
ing performance, predicting networking traffic and designing networking destruction. Recently, there are many 
Self-Similarity networking traffic models [19]. Such as ON/OFF model, FBM/FGN model, FARIMA model and 
GARIMA MODEL, etc. Considering the model stability and algorithm simplicity, this paper adopts the Fractal 
Gaussian Noise (FGN) model [20]-[22]. Based on Fast Fourier Transform (FFT), the spectral density function of 
Fractal Brownian motion (FBM) is constructed firstly. Then a first-order difference is made to get the FGN se-
quence. Lastly, we get the simulation of Self-Similarity networking traffic process by setting appropriate H pa-
rameter. This paper makes two typical Self-Similarity traffic simulation for H = 0.6 and H = 0.7, and the simula-
tion is as follows: 

In Figure 1 and Figure 2, they respectively show the simulation of network traffic with H = 0.6 and H = 0.7. 
Where the abscissa points out that the length of sample is 1024 and the ordinate represents the random results 
from the Fractal Gaussian Noise process. The simulation of network traffic has self-similarity when H = 0.6, and 
it has better self-similarity when H = 0.7. 

 

 
Figure 1. FGN sequence with the sample length of 1024 and H = 0.6. 
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Figure 1 and Figure 2 show the FGN sequence with different Self-Similarity character. In the next, when es-
timating the Hurst parameter, the wavelet decomposition coefficients of FGN sequence would be used. 

In Figure 3 and Figure 4, they show the simulation results of discrete wavelet decomposition when the Hurst 
parameter in theory of the signal sequence is 0.6. The simulation results are given in Figure 3 when the decom-
position scale is 1 and 2, and the ones are shown in Figure 4 when 3 and 4. This decomposition results will be 
used in the calculation to the actual value for Hurst parameter and cf parameter. 

In Figure 5 and Figure 6, they show the simulation results of discrete wavelet decomposition when the Hurst 
parameter in theory of the signal sequence is 0.7. The simulation results are given in Figure 5 when the decom-
position scale is 1 and 2, and the ones are shown in Figure 6 when 3 and 4. 

 

 
Figure 2. FGN sequence with the sample length of 1024 and H = 0.7. 

 

 
Figure 3. High frequency part of wavelet decomposition for H = 0.6 FGN sequence 
(scales 1 and 2). 

 

 
Figure 4. High frequency part of wavelet decomposition for H = 0.6 FGN sequence 
(scales 3 and 4). 
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Figure 5. High frequency part of wavelet decomposition for H = 0.7 FGN se-
quence (scales 1 and 2). 

 

 
Figure 6. High frequency part of wavelet decomposition for H = 0.7 FGN se-
quence (scales 3 and 4). 

 
From Figures 3-6 the wavelet decomposition for H = 0.6 and H = 0.7 are presented. The sequence length is 

reduced to the half of the original sequence and the decomposition coefficients will be used in estimating the 
self-similarity parameter in the next. 

3.2. Parameter Estimation Based on the Wavelet Estimating Method 
According to the relevant definition in section 2, Figure 7 and Figure 8 are the simulation results with different 
parameters based on the wavelet estimating method. The abscissa represents the decomposition scales j and the 
ordinate is 2log jµ  by the formula (10). Specially, the slop of the graph is α  = 2H − 1 and thus the estima-
tion of two parameters can be obtained. 

In Figure 7 and Figure 8, they respectively represent the simulation result of wavelet method for H = 0.6 and 
H = 0.7 in theory. The abscissa of the figure shows the decomposition scales of discrete wavelet decomposition 
and the ordinate refers to the related expression according the definition in Section 2. And the dotted line 
represents the original data, the solid line represents the fitting data after linear approximation. We can get the 
actual value of Hurst parameter and cf parameter through the curve’s slope and related expression in Figure 7 
and Figure 8.  

In Figure 7 and Figure 8, H and cf parameter by the slop of curve are estimated based on the wavelet de-
composition. When the theoretical value of H is 0.6 and the actual value is 0.602, the actual value of cf is 5.614. 
Likewise, when the theoretical value of H is 0.7 and the actual value is 0.680, the actual value of cf is 2.112. Ob-
viously, the difference between theoretical value and actual value is small. The wavelet decomposition is an un-
biased and efficient method. 

3.3. Analysis about Theoretical and Actual Value of H and Cf Parameter 
In Table 1, the theoretical and actual value of H and cf parameter are analyzed. According to eight different  
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Figure 7. Parameter estimation for H = 0.6 FGN sequence. 

 

 
Figure 8. Parameter estimation for H = 0.7 FGN sequence. 

 
Table 1. Analysis about the theoretical and actual value of H and cf parameter. 

H  Ĥ  m  cf ˆ fc  v  

0.60 0.602 0.002 5.770 5.614 0.156 

0.65 0.639 0.011 2.955 3.365 0.410 

0.70 0.680 0.020 1.712 2.112 0.400 

0.75 0.728 0.022 1.064 1.301 0.237 

0.80 0.808 0.008 0.692 0.647 0.045 

0.85 0.857 0.007 0.464 0.440 0.024 

0.90 0.879 0.021 0.319 0.372 0.053 

0.95 0.924 0.026 0.224 0.270 0.046 

 
parameters, the different results of eight group data are shown in Table 1. 

Where, m means the difference between the theoretical and actual value of H parameter and v means the dif-
ference between the theoretical and actual value of cf parameter. We can also get Figure 9, Figure 10 according 
to Table 1. 

In Figure 9, it shows the comparison results between theoretical and estimated value of H vividly. Where the 
abscissa means the group numbers of comparing is 8 and the ordinate describe the range of H value. And the 
dotted line represents theoretical value, the solid line represents the estimate value. Obviously, the H value is 
growing with the change of self-similarity of network traffic. 

In Figure 10, it shows the comparison results between theoretical and estimated value of cf vividly. Where the 
abscissa means the group numbers of comparing is 8 and the ordinate describe the range of cf value. And the 
dotted line represents theoretical value, the solid line represents the estimate value. Obviously, the cf value is de-
clining with the change of self-similarity of network traffic. 
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Figure 9. Comparison between theoretical and estimated value of H. 

 

 
Figure 10. Comparison between theoretical and estimated value of cf. 

 
It can be seen the estimated result of H and cf by wavelet method shows high accuracy. Figure 9 and Figure 

10 show the different trend of H and cf parameter, namely, the value of H parameter is increasing and the value 
of cfparameter is decreasing with the change of self-similarity of network traffic. 

4. Conclusions  
The accurate estimation of self-similar characteristic parameters is the basis to improve Internet analysis and de-
sign. This paper makes a lot of theoretical analysis and numerical calculation on the basis of wavelet decompo-
sition method. Not only estimating the H parameter, but also researching another important parameter cf. More-
over, it reveals the fact that cf parameter has important relationship with the Self-Similarity of networking traffic. 
The Self-Similarity degree is growing with the increasing of H when 0.5 1H< < . However, The Self-Simila- 
rity degree is growing with the decreasing of fc  when 0 5.6fc< < . It can be seen that the cf parameter plays 
a crucial role for estimating the Self-Similarity degree of networking traffic. Therefore, we should considerate 
both H parameter and cf parameter in the future research. So it is not very accurate to take cf as a constant in 
some article. This paper adopts FGN model and wavelet estimating method, so we also need further research to 
show the character of cf parameter for other calculation. 

In the end, this paper verified a novel parameter cf for estimating the self-similarity of networking traffic. 
Through the fractional Gaussian Noise model and wavelet method, we get lots of simulation results that show 
the better performance of cf parameter in networking traffic. In addition, it show the important role of cf para-
meter for describing self-similarity. In the future research, we should estimate H parameter and cf parameter to-
gether to measure the self-similarity of networking traffic better. 
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