
Int. J. Communications, Network and System Sciences, 2012, 5, 644-660
http://dx.doi.org/10.4236/ijcns.2012.529075 Published Online September 2012 (http://www.SciRP.org/journal/ijcns)

MDCHeS: Model-Driven Dynamic Composition of
Heterogeneous Service*

S. Farokhi, A. Ghaffari, H. Haghighi, F. Shams
Automated Software Engineering Research Group, Electrical and Computer Engineering Faculty,

Shahid Beheshti University GC, Tehran, Iran
Email: so.farokhi@mail.sbu.ac.ir, am.ghaffari@mail.sbu.ac.ir, H_haghighi@sbu.ac.ir, F_Shams@sbu.ac.ir

Received June 27, 2012; revised July 24, 2012; accepted July 30, 2012

ABSTRACT

Web Service Composition provides an opportunity for enterprises to increase the ability to adapt themselves to frequent
changes in users’ requirements by integrating existing services. Our research has focused on proposing a framework to
support dynamic composition and to use both SOAP-based and RESTful Web services simultaneously in composite
services. In this paper a framework called “Model-driven Dynamic Composition of Heterogeneous Service” (MDCHeS)
is introduced. It is elaborated in three different ways; each represents a particular view of the framework: data view,
which consists of a Meta model and composition elements as well their relationships; process view, which introduces
composition phases and used models in each phase; and component view, which shows an abstract view of the compo-
nents and their interactions. In order to increase the dynamicity of MDCHeS framework, Model Driven Architecture
and proxy based ideas are used.

Keywords: Service-Oriented Architecture; Web Service Composition; RESTful Web Service; SOAP-Based Web

Service; Model Driven Architecture; Proxy Service

1. Introduction

Composition is one of the central and most important
tenets of service-oriented computing [1]. Web Services
Composition (WSC) has evolved much interest amongst
the researchers in the academic world as well as the in-
dustry. This is because the composite service presents the
features that an individual service cannot present. Indeed
WSC provides the opportunity for enterprises to adapt
themselves quickly to frequent changes in user demands
via integrating of existing services1.

There are currently two main categories of Web ser-
vices: services that are developed based on traditional,
heavy weight SOAP protocol; and services that are de-
veloped based on REST protocol, which is newer and
simpler. The Web services in first category were more
common in the past. They are described by Web Service
Description Language (WSDL) and are referred as SOAP
based services in this paper. On the other hand, the REST
architectural style, corresponding to the RESTful ser-
vices, is emerging as an alternative technology platform
to realize service-oriented architecture [2]. RESTful Web

services introduce a new level of abstraction, which does
not fit well with the message-oriented paradigm of
WSDL [3]. Although SOAP based services are consid-
ered as asset of most of the current organizations, be-
cause of the simplicity of RESTful services, they are
widely accepted by the public and with the goal of at-
tracting a larger user community, more and more service
providers are switching to use them [4]. The existence
and need of these two different kinds of Web services
has brought up new challenges in WSC area. The main
question is how to compose heterogeneous Web services
in a single composite service.

In addition, Web service environment is highly dy-
namic in nature and the number of Web service providers
is constantly increasing that it is leading to the availabil-
ity of new services in daily basis [5]. In such a dynamic
environment, a dynamic WSC approach is required.

Besides, Model driven Architecture (MDA) facilitates
development of WSC and decreases its complexity by
providing different abstraction levels. It leads to separat-
ing the composition logic from the specific composition
implementation [6] achieved by introducing Platform
Independent Model (PIM), Platform Specified Model
(PSM), and transformation between them automatically.
Therefore, by assisting of MDA, Web service design can
be captured by PIM, which focuses on the business logic

*The preliminary version of this paper was presented at International
Conference on Information Science and Applications, ICISA 2011,
Jeju Island, Republic of Korea.
1The terms “service” and “Web service” have been used interchangea-
bly in this paper.

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 645

rather than the underlying platform technologies. On the
other hand, Web service implementation is presented as
PSM, which is related to certain platforms and business
process description languages [7].

WSC has triggered a considerable number of academic
and industrial research efforts that each of them focuses
on certain phases of the composition process. Based on a
survey on existing approaches [8], which some of them
are discussed in Section 2, some shortcomings of current
approaches have been identified as follows:
 Since the number of available services, has been

dramatically increasing over the Web during recent
years, WSC procedure has become a highly complex
challenge, but most methods do not offer a direct so-
lution to address this issue.

 According to the frequent changes in the Web service
environment, static WSC methods suffer from adapt-
ing to those changes.

 Most of the current methods are not applicable on
composing heterogeneous Web services.

To overcome mentioned problems, we proposed a
framework called MDCHeS (Model-driven Dynamic
Composition of Heterogeneous Service). It covers the
whole phases of designing composite services and has
the required elements and components as well. We util-
ized the Model Driven Architecture and Proxy concepts
to increase the dynamicity and adaptability of our frame-
work.

The rest of this paper is structured as follows: Related
work is presented in Section 2. The proposed framework
introduced in Section 3. In order to evaluate our frame-
work, we have three approaches in the Evaluation section,
first it will be evaluated by performing a case study,
second an expert questionnaires related to MDCHeS
framework will be represented and third a comparison
with some other leading frameworks has been done. The
last section is dedicated to the conclusion and future
work in this field.

2. Related Work

In this section, a brief review of some service composi-
tion methods and summary of some shortcoming, which
are addressed in our work, are presented. For a better
understanding, they are categorized according to differ-
ent characteristics of our proposed method.

2.1. Heterogeneous Service Composition

In [9] as one of the initial attempts to integrate SOAP and
RESTful services, a framework called REST2SOAP is
proposed. It leverages WADL specification, so it can
wrap RESTful services into SOAP services semi-auto-
matically. This framework converts RESTful services
into SOAP service. Therefore, it can ignore some fea-

tures of RESTful services. In order to minimize the in-
teractions between heterogeneous services, the authors of
[10] have presented a hybrid approach. Their work con-
tains both a BPEL engine and a REST orchestration en-
gine. Hence, the main workflow is divided into several
sub-workflows according to their intrinsic architectural
style. Then, each resulted sub-worked is handled in a
native way. SOAP-based orchestration is conducted in
the BPEL engine, while REST services are orchestrated
in the REST orchestration engine. The separation of
these two kinds of Web services in a composite service is
not a good idea, because it is not applicable in all situa-
tions. We found [4] as an outstanding work in the het-
erogeneous services composition field that enables BPEL
to support RESTful services as well as SOAP-based ones.
However, it is just an orchestration language like BPEL
by the ability of invoking RESTful Web services. Indeed,
it does not a comparable method with ours as a composi-
tion framework.

The authors of [11] focused on resolving the problem
of heterogeneity among service interface and protocols
by using Web service adapters. They introduced taxon-
omy of common mismatches in service interfaces and
provided their resolutions.

2.2. Model Driven Service Composition

In the field of model-driven development, the proposed
approach in [8] supports dynamic service composition. It
uses UML as a method to model service compositions as
well as OCL to express business rules, which governs the
process of service composition. The authors believe that
they can use business rules to determine how a service
composition should be structured and scheduled, how the
services and their providers should be selected, and how
service binding should be conducted. The proposed
method uses a model called Information Model (IM) to
compose services. Beside these advantages, there are
certain shortcomings in this approach that are the lack
fulfillment of different service types, service constraints,
and evaluation phase.

2.3. Dynamic Service Composition

The [12] is a prototype that guides a user in the dynamic
composition of Web services. Authors have developed a
semi-automatic process that includes presenting match-
ing services to the user at each step of a composition and
filtering the possibilities. The generated composition is
then made to execute through WSDL. In [13] the authors
have presented a context based Web service composition
approaches and provided a comparative study of them,
by term context they mean any information that can be
used to characterize the entity.

Several approaches have utilized the proxy and adapter

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL.

Copyright © 2012 SciRes. IJCNS

646

concepts in order to increase the dynamicity and adapta-
bility. In proposed frameworks of [14,15], share the com-
mon idea of indirect invocation of Web services to make
composite services more adaptable to various runtime
changes.

2.4. Summary

Despite the amount of research devoted to Web service
composition, very little attention has been paid to the
proposing a comprehensive method to take into account
some major issues in this field, such as supporting het-
erogeneous services, being dynamic as well as compre-
hensive and simple. We believe that MDCHeS frame-
work by introducing three different views of service
composition have been able to cover these mentioned
issues.

3. The Proposed Framework

A framework is a set of constraints on components and
their interaction, and a set of benefits that derive from
those constraints. A framework defines a model of com-
putation, which governs the interaction of components
[16]. Based on this definition, we proposed MDCHeS
framework with three different views: data, process, and
component view.
 Data view consists of a Meta Model to represent

composition elements and their relationship to con-
struct a composite service.

 Process view defines the process of designing a
composite service that runs through a phased ap-
proach. In each phase, a specific model will be de-
rived based on the result model of its previous phase.

Indeed, each phase is responsible to convert its input
model into a specific output model. The goals of us-
ing these models are to increase the abstract, dy-
namicity, and simplicity level of composition process.

 Component view of MDCHeS framework presents
components and shows which components interact
with each other in order to fulfill the required tasks.

We will illustrate these views in three sub-sections
separately in the following.

3.1. MDCHeS Data View

MDCHeS framework performs heterogeneous service
composition in a model-driven fashion. Hence, we have
designed a Meta Model, which is inspired from papers
[8,17,18]. Indeed, this Meta Model is the schema of
MDCHeS repository and has been structured to increase
dynamicity and supporting composition of services with
different protocols simultaneously. This will happen by
supporting the storage of both kinds of Web services in
the repository. The elements of our Meta Model are Ac-
tivity, Role, Provider, Service, and Message. Figure 1
depicts elements and their relationships. Details of these
elements will be as follows:
 Activity: This element represents a well-defined

concept for a functionally. A composite service is
composed of several functionalities. For instance, in a
trip planning composite service, functionalities are
flight, hotel, and shuttle booking. Activity concept is
used to have an abstract definition for each group of
Web services providing the same functionality. De-
fining the concept of Activity and Service decreases
the dependency of composite service to concrete Web

Figure 1. Meta model.

S. FAROKHI ET AL. 647

services and leads to a better adaptability and in-
creasing the dynamicity. The main attributes of Activ-
ity element are name, function, type, category, and
input-output parameters.
○ Function describes the main functionality corre-

sponding to Activity. It is used as a primary key in
relations with other elements.

○ Type determines whether the Activity is atomic or
composite.

○ Category is a standard ordination that is used in
UDDI (Universal Description Discovery and Inte-
gration). For instance, a possible Category is “SIC
(Standard Industrial Classification)” [19].

○ Input-output parameters: these parameters are
used to satisfy a specific Function of Activity. They
are in a higher abstraction level than real input-
output parameters of concrete Web services.

 Message: The input and output parameters of each
Activity form a Message. It includes name, parame-
ters-name and parameters-type.

 Role: Role is an abstract element that is responsible
for performing an Activity. Each Role contains name,
and functions as its attributes. Each Role can do one
or more function(s).

 Provider: Each Provider provides a concrete service.
If a Provider supports all functions of a Role, it will
play that Role. The attributes of a Provider are name,
and functions.

 Service: A Service contains all common attributes of
a Web service such as name, type, function, URL,
method-name, input-output parameters, description
and some non-functional requirements such as avail-
ability and Response-time.
○ Type determines whether the Service is SOAP-

based or RESTful.
○ Method-name in SOAP-based Web service means

operations of a service and in RESTful Web ser-
vice means HTTP method such as GET DELETE,
POST, and PUT.

○ Function: This is the main functionality that is
done by this Service. In this paper, it has been
supposed that each Service just has one function. It
means that a Service with two functions should be
saved in the framework Repository as two sepa-
rated Services each with one function.

3.2. MDCHeS Process View

As we mentioned before, the proposed approach is based
on model-driven principles. In this section, the MDCHeS
process view will be discussed in three sub-sections:
proposed models to conduct composition process, com-
position phases and finally proposed composition algo-
rithms, which are used in composition phases.

3.2.1. Proposed Models
MDCHeS utilizes four models to increase simplicity,
abstraction and dynamicity of composition process. It is
worth mentioning that the goals of these models are not
as replacements of some current accepted models such as
WSDL, etc. They are introduced to convert the proposed
composition process as the transformation of four models
based on MDA principles. They are designed according
to a base model inspired from [20,21] that is depicted in
Figure 2. The base model has four parts as following:
 Elements (Functionality/Activity/Service/Proxy)

definition: These elements are used in our proposed
four models respectively. As the Figure 2 shows for
each element it is needed to introduce several sub-
elements. For instance, for Service element these
things should be mentioned: service-id, provider-id
and type of service. These characteristics are extracted
from the Repository in each phase. The first three
elements are described in the previous section; Proxy
is a Web service that mediates the invocation between
a service consumer and a service provider. It de-
creases the dependency between the composite ser-
vice and the concrete Web services that are invoked
by this composite service. This way, the replacement
of alternative concrete services will be possible with a
lower cost.

 Functionality Constraints: This part is used just for
IM (introduced below) to describe user’s constraint of
each Functionality element.

 Global Constraints: In this part, the constraints that
are related to the through composite service will be
introduced. These constraints can be boundary input-
output parameters and some non-functional require-
ments of the composite service.

 Data & Control Specification: This part shows Data
flow and control flow among elements by using graph
notation.

In the following four models that are derived from the
introduced base model are briefly described.
 Input-Model (IM): It includes a set of requested

Functionalities, parameters, constraints and a control
flow and a data flow among them. IM also includes
non-functional requirements and user’s preferences
related to a requested Functionality. A sample defini-
tion for Global constraints in an IM is depicted in
Figure 3. IM uses all four parts of base model. As
was mentioned before, Functionality is the proper
element, which is used in the first part of this model.

 Abstract Composite Service Model (ACSM): If
each Functionality in an IM is replaced by a proper
Activity, the result will be an ACSM. Therefore, Ac-
tivity is the used element in the ACSM. Three other
parts of IM will be updated based on Activity proper-
ties in the ACSM.

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 648

Figure 2. Base model.

Figure 3. A sample of IM.GC.

 Concrete Composite Service Model (CCSM):

CCSM will be generated by replacing each Activity in
each ACSM with suitable Service(s) and related
properties. Therefore, used element in this model is
Service.

 Executable Proxy-bases Composite Service Model
(EPCSM): In this model, a Proxy service is generated
and used for each Activity. The Proxy services are de-
ployed and are made ready to be invoked. After cre-
ating an uninitialized EPCSM based on the corre-
sponding generated ACSM, the best CCSMs are used
to configure that EPCSM. From user’s point of view,

this model is a workflow stated in BPEL language
that consists of invocation to some Proxy services,
which are SOAP-based. Therefore, it can simply be
executed by BPEL engine.

From the model-driven point of view, each IM, ACSM,
and CCSM is a PIM, because these models are not
bounded to a specific platform and are based on some
abstract elements such as Activity, Role, Provider, etc
and this way they help to have a method with more dy-
namicity. However, EPCSM is a PSM because it is de-
scribed by an execution language such as BPEL, so it is a
platform specific model.

3.2.2. Composition Phases
Service composition is divided into two main use cases,
service composition development and service composi-
tion management [1]. In the former, system tries to gen-
erate a business process by composing services. This use
case starts after receiving a new service request and fi-
nally returns an executable composite service, while in
the latter, user interacts with the system to execute and
manage executable composite services. It begins when
the user wants to execute a composite service. This paper
focuses on the first use case and supporting the second
one has been addressed as a future work for MDCHeS
framework.

Since service composition development is a complex
process, we utilize a phased approach to compose ser-
vices. It starts with preparing an abstract specification
and gradually makes it more concrete to construct an
executable service, based on the given specification.
Figure 4 depicts MDCHeS phases as well as transforma-
tion of models.
 Specification

Based on [22], there are different levels of user’s speci-
fication:

○ Partial specification that depends on the level of
user’s domain knowledge and user should outline
Functionalities.

○ Full specification that includes details of all sub-
Functionalities and their relationship of a compos-
ite service.

The goal of this phase is receiving and analyzing the
given IM, which clarifies the order and interactions of
requested Functionalities and their data and control de-
pendencies. Therefore, MDCHeS framework needs Full
Specification as its input in the format of IM.
 Discovery

In this phase, all Functionalities of the received IM
should be replaced by available Activities that are avail-
able at the framework repository. Based on the matching
categories of [18], there are three kinds of approaches:
keyword matching, parameter matching, and IOPE
matching. As this phase is not in our main research focus,

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL.

Copyright © 2012 SciRes. IJCNS

649

Figure 4. The phases of MDCHeS approach.

 Selection
Extracted QoS in Specification phase (“Global Con-

straints” part of IM or IM.GC) and generated CCSM(s)
of the previous phase are as two inputs of this phase. For
each Service at the repository there are some QoS pa-
rameters that each provider specifies them. In MDCHeS
framework, we consider Availability and Response-time
as QoS of Service. Their values are specified in “Global
Constraints” part of CCSM (CCSM.GC). Type of Ser-
vices is another factor at this phase, type value is written
in CCSM.SD (Service Definition part). Total evaluation
factor, which is based on mentioned criteria, is used to
order generated CCSM as a ranked set. In order to utilize
user’s feedbacks and earn more accrue result, this ranked
set can be edited via user interactions.

we use keyword matching to find common Function be-
tween Functionality and Activity, and parameter match-
ing to compare the requested Functionality with the ex-
isting Activity to find the best match of them. We have
utilized WordNet [23] to match similar words that using
at Functionalities and Activities as well as their input-
output parameters. The SearchActivity method (line 31 of
Algorithm 1), finds and replaces suitable Activity(s) for
each specific Functionality. Moreover, if no single Activ-
ity is found, ComposeActivities method (line 45 of Algo-
rithm 1) will generate a new composite Activity by
composing available Activities to satisfy user request by
a backward method. If this step is unsuccessful, interact-
tion with the user will be necessary.

The output of this phase is ACSM. Since it is possible
to find more than one Activity for each Functionality, a
set of ACSMs may be generated for a given IM as the
output of Algorithm 1 (line 30).

 Execution
For producing an executable composite service, one or

more ACSMs are received and for each Activity inside
them, a Proxy service is generated to form an EPCSM.
At first, the Proxy services are uninitialized and no con-
crete Services are assigned to them. After the Selection
phase, a ranked list of concrete Services is used to ini-
tialize the Proxy services. It means that the high ranked
Services for each Activity are assigned to the corre-
sponding Proxy service. At runtime, the proxy services
are responsible for mediating the invocations between the
workflow engine, which exec tes the composite service, u

 Construction
This phase receives a set of ACSM as input and gen-

erates related CCSM(s) as output. In this phase, it is time
to find appropriate Roles, Providers, and Services for
each Activity, and then turns ASCM(s) into CCSM(s).
Alike the previous phases, it is possible to generate sev-
eral CCSMs for each ACSM because it is possible to find
more than one suitable Services for an Activity. In order
to complete this phase, Algorithm 2 has been utilized.

S. FAROKHI ET AL. 650

Algorithm 1. Pseudo-code of ACSM generation algorithm.

GenerateACSM()

Input: IM;

Output: SACCSM as a Set of ACSMs related to given IM;

{

1: SApproved = {}

2: SNotApproved = {Fi| Fi IM}

3: For each Fi in SNotApproved

4: SFi = SearchActivity (Fi)

//The main loop for making sure there is at least one <Activityi> for each functionality

5: While (SNotApproved is not Empty)

//Trying to fulfill functionalities which there is no single activity for them

6: For each SFi which is empty do

 //Compose some activities as a new ACSM instance to fulfill the requested functionality

7: SFi = ComposeActivities (Fi)

8: If SFi is NULL then //If composition fails

9: interactionResult = InteractWithUser ();

10: Switch (interactionResult)

11: Case “Fi decomposed”:

 //User may decompose the Fi into some more fine-grain Functionalities

 // to increase the success probability in discovery process

12: Fdecomposed = all new sub Functionalities for Fi with Related IO(i) and CF

 //update SNotApproved

13: Remove Fi from SNotApproved
14: Add each Fj Fdecomposed to SNotApproved

 //search new functionalities

15: For each Fj Fdecomposed

16: SFj = SearchActivity (Fj)

17: Case “Abort”: //User may give up the composition process because he cannot

 //decompose the functionality anymore

18: ShowMessage (“Abort”);

19: For each Fi in SNotApproved // taking the user’s approval

20: Similarityi = ComputeSimilarity (Fi, SFi);

 // Removing some improper <activityi, IOj> from SFi based on the amounts

 // of similarity. It can be done both automatically and by user interactions.

21: Refine (SFi);

22: If (there is at least one <Activityi, IOj> in SFi) then

23: Add Fi to SApproved

24: Remove Fi from SNotApproved

25: End While

26: For each Fi in SApproved do

27: For each Ai in SFi do

 //Fetch related Role with the same functionality for each Ai from the main Repository.
28: FetchRole (Ai);

//Making all combinations of different <activityi, IOj> SFi for each Fi IM.FD

//by initializing ACSM.DCG instances from IM.DCG and then replacing the Fi nodes by ctivityi and related IO and Ri;

//ACSM.AD= for each Fi in IM.FD replace Ai in ACSM.AD and Add Ri;

//ACSM.GC= for each GC.IO in IM.GC replace boundary IO of IM.DFG;

29: SACSM = MakeAllCombinations();

30: Return SACSM;}

--

31: SearchActivity()

 Input: Fi, IM.DFi

 Output: SActivities as a Set of proper Activities related to given Functionality;

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 651

32: SActivities = {}
33: SActivities = FindActivity (Fi..Category);

34: SfunctionalityNames= FindSimilarWords (Fi.name); // Using WordNet for find all similar words for this Functionality name;

35: For each Ai in SActivities do
36: If Ai.name {SfunctionalityNames} // There is at least one namei in SfunctionalityNames which w is matched with Ai.name)
37: then
 //It remains in SActivities

38: Similarity [Ai] = ComputeIOSimilarity (Ai.IO, Fi.IO);

39: else
40: Remove Ai From SActivities

41: For each Ai in SActivities do
42: If Similarity [Ai] < SimilarityThreshold

43: Remove Ai From SActivities OR InteractWithUser ()
44: Return SActivities;

--

45: ComposeActivities(Fi)

Input: Sinput, Soutput;

Output: SglobalPossibleGraphs;

46: SglobalPossibleGraphs = {}

47: N0 = InitilizeNode ();
48: N0.Input = Soutput;

49: G0 = InitializeGraph ();
50: G0.Root = N0;

51: SglobalPossibleGraphs = GenerateCompositionGraph (G0, Sinput);

52: Return SglobalPossibleGraphs;

--

53: GenerateCompositionGraph()

Input: initialGraph, Sinput;

Output: SlocalPossibleGraphs;

54: Sleaf = GetLeafs (initialGraph);

55: SlocalPossibleGraphs = {}

56: For each leafi Sleaf do
57: For each pi leafi.Input do
58: If (pi Sinput)

 // Input parameter is satisfiable and can be removed from the list

59: Remove pi From Sinput

60: MarkAsBoundryInput (pi);

61: If(Sinput == {})

62: return initialGraph;

63: else
64: SActivity = FindActivityByOutput (pi);

65: If(SActivity.size == 0)

66: Return {}; //Fail

67: firstActivity = SActivity.begin ();

68: initialGraph.AddChild (firstActivity, leafi, pi);

69: Remove firstActivity from SActivity

70: If(SActivity.size != 0) //If there is more activity

71: For each activityi SActivity do

72: newGraph = InitiateFromExistingGraph (initialGraph);

73: newGraph.AddChild (activityi, leafi, pi);

74: SresultedGraph= GenerateCompositionGraph (newGraph, Sinput);

75: SlocalPossibleGraphs = SlocalPossibleGraphs SresultedGraph;

76: SresultedGraph= GenerateCompositionGraph (initialGraph, Sinput);

77: SlocalPossibleGraphs = SlocalPossibleGraphs SresultedGraph;

78: Return SlocalPossibleGraphs;

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL.

Copyright © 2012 SciRes. IJCNS

652

Algorithm 2. Pseudo-code of EPCSM generation algorithm.

GenerateCCSM ()

Input: SACSM as a Set of ACSMs, and IM for constraints;

Result: Sccsm as a Set of CCSMs related to given SACSM;

1: SCCSM = {}; //A Set of concrete models which is initially empty

2: For each acsmi.DCG that acsmi SACSM do

// DCG means Data Control Graph that is in Data & Control Specification part of proposed four models.

3: Create ccsmj as a CCSM instance and initialize it from the acsmi ;

4: For each nodes and related edges acsmi. DCG do

 //Finding proper providers and services for this given activity

5: Servicesi = FindServices (activityi, IOj, IM.FC);

// Discover proper services based on the predefined relationship between message, activity, role, provider and service in the Main Repository

Updating the ccsmj by these discovered services.

// The corresponding providers are added implicitly.

6: Add Servicesi and Provideri to the ccsmj.SD and ccsmj.DCG ;

7: Compute totsl QoS for each ccsmi based on the QoS of each contained Services and complete ccsmi.GC;

8: Add type of Services to ccsmi.DS;

9: Add ccsmj to SCCSM;

10: Return SCCSM;

//A set of ranked CCSMs will be generated among all ccsm instances which stored in SCCSM based on the evaluation factor

//In order to take user confirmation, user's interactions can be made at this time.

11: OrderedSCCSM = RankedCCSMs (SCCSM, IM..GC);

// In this step for each Activity of ACCSM, a proxy will be initialized based on the best proper service for that Activity.

12: EPCSM = MakeExecutable (theFirstRankedCCSM, ACCSMs);

13: Return SEPCSM;

3.3. MDCHeS Component View and concrete services. Beside the mediation, they are

responsible for resolving the interface incompatibilities.
We all know that the services, even with the same func-
tionality, may have different interfaces. These differ-
ences can be in type, order or the number of input-output
parameters. The concrete services can also support dif-
ferent protocols. The Proxy services are used to resolve
these incompatibilities through a process called Interface
Mapping. For example, when a Proxy service receives a
SOAP-based request but the goal concrete service is
RESTful, the proxy service maps the incoming request to
a RESTful invocation, which the selected Web service
expects.

In two previous sub-sections, we elaborated data and
process view of our framework. In this part, component
view will be introduced. Figure 5 depicts MDCHeS fra-
mework architecture. In the following, we state a brief
description of each component:
 Request Analyzer: This component receives the

user’s request, which is in IM format, as input, and
then analyzes the given IM and sends each part of it
to the suitable components.

 Main-Repository: All available composition ele-
ments such as Activity, Message, Role, Provider, and
Service as well as some needed elements to cover
their relationships will be stored in the Main-Reposi-
tory in order to fulfill the user requirements. The
schema of this repository is derived from Meta Model,
which was illustrated in Figure 1.

3.2.3. Proposed Algorithms
MDCHeS composition process is the transformation of
four models to each other that happens in each phase.
This transformation is done by two main algorithms that
should be run sequentially. (Algorithms 1 and 2). The
first algorithm produces a composite service in the form
of an abstract model and then the second algorithm gen-
erates a proxy-based executable composite service. In the
following, pseudo-codes of these algorithms have been
shown. They are applied on a case study in section 0 to
illustrate how they work.

 Discovery-Engine: This component is responsible for
communication with Main-Repository to find proper
elements for each component. This component uses
keyword and parameter matching for its search as
well as WordNet [23]. As we can see at Figure 5, if
each component needs the interaction with Main-
Repository, it will do it via the mediation of this
omponent. Indeed, it has following responsibilities: c

S. FAROKHI ET AL. 653

Figure 5. MDCHeS framework.

○ Searching suitable Activity, Role and IO-Message
elements for ACSM-Generator component based
on the given Functionalities of each IM in the Dis-
covery phase. In this phase, if our method gener-
ates a Composite Activity, the Activity will be
stored in the Main-Repository for further reuse.

○ Searching proper Provider and Service elements
based on the related Activities of each ACSM for
CCSM-Generator component at the Construction
phase.

○ Updating Main-Repository elements via commu-
nicating with UDDI.

 ACSM-Generator: This component generates all
possible ACSMs by replacing each Functionality with
its relevant discovered Activity(s) set. ACSM-Gen-
erator uses Discovery-Engine component to search
proper elements of the Main-Repository.

 CCSM-Generator: As mentioned before, our com-
position approach is an incremental process. Hence,
requested composite service will be completed in
each step gradually. In order to create CCSM, this
component receives ACSM(s) and transforms it/them
into a CCSM by replacing the proper Provider and
Service elements for each Activity by interacting with
Discovery-Engine. Furthermore, some relevant user’s
preferences are applied for generating CCSMs. These
preferences, as Figure 5 shows, have been taken from
“Functionality Constraints” part of IM (IM. FC),
which will be used at this component as an input. For
instance, if using of a specific Provider was recom-

mended by user, this component would only select
the provided Services of the mentioned Provider.

 Selector Engine: This component receives the output
of the Request Analyzer component that contains user
preferences from “Global Constraints” part of IM (IM.
GC), and CCSM(s) of CCSM-Generator component.
It performs the Selection phase and provides a set of
ranked CCSMs based on the best match to evaluation
factor, which was introduced at the Selection phase

 EPCSM-Generator: This component is responsible
to generate the output, executable composite service
model. It receives one or more ACSM(s) and gener-
ates an EPCSM by replacing each Activity with a
Proxy service. Later these proxy services will be ini-
tialized and configured by a set of ranked CCSMs
produced by the Selector Engine.

4. Evaluation

In this section, in order to show the applicability, and
feasibility of mentioned algorithms, a case study is ap-
plied to them. After that, capabilities of our framework
are evaluated through a statistical analysis of experts’
answers to the questions shown in Table 1. Finally, some
main factors to evaluate a composition framework are
mentioned and then our proposed framework is com-
pared with some leading frameworks.

4.1. Case Study

We applied the proposed algorithms on a real world

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 654

Table 1. Experts’ evaluation of the MDCHeS framework.

Scope of
capabilities

MDCHeS capabilities 1 2 3 4 5 np m sd

It is not need that user who requests a composite service has a deep
technical knowledge.

0 0 4 5 2 7 3.81 0.75

MDCHeS consider both functional and non-functional requirements
in constructing requested composite services.

0 4 2 3 2 5 3.27 1.19Input

MDCHeS uses a suitable format to take user’s requirements. 0 1 5 2 2 4 3.50 0.86

This method has the ability to use organization assets and reuse
existing composite services.

0 0 0 8 3 11 4.27 0.46

MDCHeS can use all types of Web services in outside of the
organization to use in composite services.

0 0 1 5 5 10 4.36 0.70

Using MDCHeS framework facilitates designing of composite
services.

0 0 1 8 2 10 4.09 0.47

MDCHeS is practical in the scope of an enterprise. 0 3 5 3 0 3 3.00 0.77

MDCHeS framework can be adapted to dynamic Web service
environments.

0 2 5 4 0 4 3.18 0.75

Process

By using MDCHeS framework more and more in an enterprise,
the successful response rate to user requests will increase.

0 0 0 3 7 10 4.70 0.48

MDCHeS output (EPCSM) is a suitable model to cover
dynamicity in the ntime.

0 0 1 6 4 10 4.27 0.64

Output
EPCSM uses proper techniques to use heterogeneous services in
a composite service.

0 1 0 8 2 10 4.00 0.77

scenario which is inspired from [24,25]. As a prerequisite,
we prepared a data set to simulate MDCHeS Main- Re-
pository elements based on the structure of Meta Model
by using Microsoft Access as DBMS. To save space,
only a few rows of each table of this data set are shown
in Figure 6. We run our case study on this data set. The
scenario is as follows: “A user wants to arrange his travel
in order to attend to an event such as: a conference or a
business meeting. Therefore, he must be able to register
to that event and arrange for accommodation as well as
his transportation. Moreover, he wants to get the weather
forecast of the destination city at that period of time.”

The MDCHeS framework can realize the specified
scenario by using the available elements at the Main-
Repository and applying the proposed algorithms on
them. As we mentioned before, Figures 6(a)-(i) depict a
small snapshot of available Activity, Message, Role, Pro-
vides, Service elements and some other tables which
cover the relationships among these elements.

Based on the input of Algorithm 1, Figure 7 is ac-
cepted as IM; it is worth mentioning that, we just show
the graphs of “Data-Control Specification” part (DCG) of
each model as generated artifacts, because of the space
limitation. Furthermore, for the sake of simplicity, we
have not shown inputs and outputs of each graph.

At first, each Functionality of Figure 7 will be re-
placed by its relevant <Activity, Role, IO-Message> tuple
by invoking SearchActivity (Fi) function (line 4 of Algo-

rithm 1). This function (line 31 of Algorithm 1) finds
one or more appropriate tuple(s) for Flight, Event, Ho-
tel-Shuttle and car functionalities. The nodes of Figures
9(a) and (b) show found tuple.

In this example, there is no suitable found pair for
Weather Functionality with city-name as its input at the
Main-Repository (line 6 of Algorithm 1). Hence, Com-
poseActivities (Fi) function (line 7 of Algorithm 1) will
be called. This function (line 45 of Algorithm 1) aims to
make a proper composite Activity for this Functionality
by composing available atomic Activities. This function
firstly scans Tables 1(d), (f), (h), and (a) to find suitable
Activity with the same output messages as output mes-
sages of the Weather. The <A7, R7, M10, M25> set will
be selected in this step. Then, it tries to find appropriate
<Activity, Role, IO-Message> tuple with the same output
message set as input message set of the selected pair.
This step will be performed repeatedly until appropriate
pair would be constructed to satisfy Weather Functional-
ity. The result for this Functionality would be the com-
position of <A7, R7, M10, M25> and <A8, R8, M11,
M26> as Figures 8(a) and (b) show.

In the next steps, Algorithm 1 examines each <Activ-
ity, Role, IO-Message> to be decided as being “Ap-
proved” or “Not approved”, when the algorithm can find
at least one approved set for each Functionality, it marks
the Functionality as “Approved” (line 19 of Algorithm 1).
If it finds no suitable Activity for at least one given Func-

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 655

Figure 6. (a)-(i) A brief snapshot of main-repository elements.

Figure 7. IM.

tionality (line 8 of Algorithm 1), the algorithm will in-
teract with user to decompose given Functionalities and
will repeat mentioned steps for them again until it
achieves a successful result.

As the last step, different ACSMs will be generated
based on <Activity, Role, IO-Message> combinations. The
constructed ACSMs of the IM (Figure 7) are shown in
Figures 9(a) and (b). In this step two tasks should be done.

In one hand, one or more CCSM(s) should be gener-
ated. For this aim, Algorithm 2 receives the outputs of
Algorithm 1 as well as IM.FC (line 7 of Algorithm 2).
Then, <Provider, Service> tuple will be extracted for
each <Activity, Role, IO-Message> tuple and forms the
CCSM(s) represents the resulted CCSMs for the given
ACSM of Figure 9(a).

On the other hand, ACSMs are used to produce an un-
initialized EPCSM. It will be initialized after determining
a set of ranked CCSM(s), which is finalized via user in-
teraction. User can select one of the generated CCSMs
(without user interaction the highest ranked CCSM will
be sent as output).

In addition, Algorithm 2 selects two possible <Pro-
vider, Service> tuple for some nodes of ACSM in Figure
9(a). Hence, there are two versions of CCSMs, which are
represented in Figures 10(a) and (b) as two results of
this step. Finally, the algorit m fills Global Constraint h

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 656

(a) (b) (c)

Figure 8. (a)-(c) Model transformation of “Trip Planning” scenario.

(a) (b)

Figure 9. (a), (b) Generated ACSMs.

(CCSM.GC) and Service Definition (CCSM.SD) parts of
these two CCSMs and rank them based on evaluation
factor (line 7 of Algorithm 2).

In this step, we have the most proper CCSM, which is
Figure 10(a) in this scenario, so the Proxy services in-

side the EPCSM (nodes of Figure 11) can be initialized
by it (line 11 of Algorithm 2). The EPCSM that is de-
picted in Figure 11 is completed and is ready to be de-
livered to user for further invocations. In Figure 11, the
colored services are the initiated ones that have been had

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 657

(a) (b)

Figure 10. (a), (b) Generated CCSMs.

Figure 11. EPCSM.

selected based on the nodes of CCSM of Figure 10(a). In
Figure 8, we can see the transformation of IM to ACSM
and then CCSM, which is done by Algorithms 1 and 2.

4.2. Experts’ Evaluation of the MDCHeS
Framework

The experts’ evaluation of MDCHeS was collected
through a survey as a workshop at ASER research group.
We had eleven participants in our survey and all of them

had rich experience in software development as well as
suitable knowledge in service-oriented architecture. The
questions had been organized into three categories re-
garding to inputs, outputs, and our composition process.
The participants could answer a question based on a
five-point scale ranging from 1) strongly disagree, 2)
disagree, 3) neutral, 4) agree, to 5) strongly agree.

In Table 1, np expresses the number of positive re-
sponses, m represents average of the given grades, and sd

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 658

denotes the standard deviation.

4.3. MDCHeS Comparison

In order to compare the capabilities of MDCHeS frame-
work with capabilities of some current leading frame-
works, a set of criteria are needed. Since, different au-
thors have proposed various criteria for this goal; we
chose a common set of them. They are introduced briefly
in the following. Then, we have compared it among cur-
rent frameworks in Table 2. Before this comparison,
these frameworks will be introduced.

4.3.1. Composition Factors
 Composition Strategy [26]

Existing composition strategies in the field of service
composition are model driven, semantic, formal, dy-
namic, and aspect-oriented. We utilized model-driven as
MDCHeS composition strategy.
 Automation Level [5,27]

The process of describing user’s requested workflow,
selecting suitable services to compose, and composing
selected services that can be performed in the following
categories:

○ Automatically, i.e., using a tool that implements a
composition algorithm.

○ Semi-automatically, i.e., in case that a user makes
choices during the composition phase aided by an
interactive tool.

○ Manually that will be done by user.
As mentioned before, the proposed framework per-

forms service composition in a semi-automatic fashion.
Although the major parts of development can be done
automatically, some interactions can be made to take the
user confirmations in Discovery, Construction, and Se-
lection phases. We believe methods in this category work
better than others do, because user’s feedbacks can lead
to a more satisfactory composite service.
 Composition logic [5]

Composition logic is defined as how the interactions
among participating services take place in the composi-
tion process. Accordingly, composition logic has been

presented in the three categories: process-driven, rule-
driven, and hybrid.

In the process-driven mechanism, the composition uses
process definitions, which business logic is expressed as
an input model to specify possible interactions among the
participating Web services. In rule-based, business rules
use to specify composition logic. In hybrid, business
logic divides to business processes that are made by
business rules. The composition logic of MDCHeS is
process-driven.
 Composition time [28]

It refers to the moment at which the approaches per-
form the service composition synthesis. Two distinct
moments may exist: design-time, and runtime. MDCHeS
create composite service at design time.
 Support heterogeneous services [9,28,29]

Heterogeneous in this concept means in the level of
technology and using protocols. Therefore, there are two
types of Web service, SOAP-based and RESTful.

4.3.2. Introduce Leading Composition Frameworks
In the following, a brief description of some current
leading composition framework is presented. The capa-
bilities of these frameworks compare in Table 2 with the
features of MDCHeS.

eFlow [30,31] is a framework to support specify, en-
actment, monitor and run Web services. Composition had
been done by graph theory and composite services have
been modeled as business processes. This is an industrial
method now.

METEOR-S project [32] was established as a dynamic
framework to compose Web services. It focuses on de-
sign time composition by developing patterns that are
able to bind dynamically in the run-time.

WebTransact approach [33] includes a layered frame-
work to provide a structure to construct reliable compos-
ite service. It uses WSDL to describe service functional-
ity and WSTL (Web Services Transaction Language) to
facilitate Web service functionalities.

In [34] a framework called DynamiCoS is presented.
It supports different phases to provide automatic service
discovery, selection, and composition process. To achieve
this automated support, DynamiCoS utilizes ontology.

Table 2. MDCHeS framework comparison.

Composition
framework

Composition Strategy Automation level Composition logic Composition time
Support heterogeneous

services

MDCHeS Model driven Semi-automate Process Oriented Design Yes

eFlow [30,31] Dynamic Semi-automate, Manual Process Oriented Design No

METEOR-S [32] Semantic Semi-automate, Manual Rule Oriented Design No

WebTransact [33] Dynamic Semi-automate, Manual - - No

DynamiCoS [34] Semantic Automate Process Oriented Runtime No

Copyright © 2012 SciRes. IJCNS

S. FAROKHI ET AL. 659

As Table 2 shows, although MDCHeS is a semi auto-

mated framework, it has the capability of supporting het-
erogeneous Web services by using Model Driven prince-
ples that have facilitated its composition process.

5. Conclusion and Future Work

In this paper, MDCHeS framework was proposed to
compose heterogeneous Web services dynamically. We
introduced this framework via three different views: data,
process, and component view. Each view provides cer-
tain instructions to cover the whole process of composing
Web services. In data view, the Meta Model embraces all
required elements to handle composition of both both
SOAP-based and RESTful Web services.

In process model, phased approach fulfills user’s re-
quests in a piecemeal fashion through five phases: Speci-
fication, Discovery, Construction, Selection, and Execu-
tion. In addition to apply proposed algorithms on
MDCHeS models. In component view, introduced com-
ponents as well as their responsibilities and interactions
provide software architecture to fulfill designing Web
service composition.

MDCHeS framework receives IM as the input model
and eventually generates an executable proxy-based com-
posite service semi-automatically as the output model.

In order to cope with the complexity of the composi-
tion process, model-driven principles have been used in
MDCHeS framework.

Although MDCHeS framework is the enhanced ver-
sion of [35], we have defined some future work to en-
hance it more.

Supporting “service composition management”, which
was described before, can be a significant future work of
this research. Using Activity, Role, Provider and Proxy
concepts and defining ACSM enables our method to
generate the best composite service dynamically in cases
that the underlying layer (physical services) has been
changed. However, there are some other aspects of dy-
namicity, which are relevant to dynamic replacement or
reconfiguration of services at runtime; they will be ad-
dressed as the future work. Supporting of more QoS pa-
rameters and apply them on Discovery and Selection
phases is yet another future work.

6. Acknowledgements

This project was partially funded by Shahid Beheshti
University under the program Automated Software En-
gineering Research Group, Faculty of Electrical and
Computer Engineering.

REFERENCES
[1] C. Pautasso, “On Composing RESTful Services,” Pro-

ceedings of IEEE Internet Computing, Vol. 12, No. 5,
2008, pp. 24-31.

[2] B. Benatallah, R. Dijkman, M. Dumas and Z. Maamar,
“Service Composition: Concepts, Techniques, Tools and
Trends,” In: Z. Stojanović and A. Dahanayake, Eds., Ser-
vice-Oriented Software System Engineering: Challenges
and Practices, Idea Group, 2005, pp. 48-66.

[3] C. Pautasso, “Composing Restful Services with JOpera,”
Proceeding of the International Conference on Software
Composition (SC09), Zurich, July 2009, pp. 142-159.

[4] C. Pautasso, “RESTful Web Service Composition with
BPEL for REST,” Data & Knowledge Engineering Jour-
nal, Vol. 68, No. 9, 2009, pp. 851-866.
doi:10.1016/j.datak.2009.02.016

[5] C. Pautasso, “BPEL for REST,” Business Process Man-
agement, Springer, 2008, pp. 278-293.
doi:10.1007/978-3-540-85758-7_21

[6] F. Lécué, E. Silva and L. F. Pires, “A Framework for
Dynamic Web Services Composition,” Proceedings of the
2nd ECOWS Workshop on Emerging Web Services Tech-
nology (WEWST07), Halle, 26 November 2007.

[7] R. Khadka and B. Sapkota, “An Evaluation of Dynamic
Web Service Composition Approaches,” Proceedings of
the 4th International Workshop on Architectures, Con-
cepts and Technologies for Service Oriented Computing
(ACT4SOC), Athens, 23 July 2010, pp. 67-79.

[8] B. Orriens, J. Yang and M. Papazoglou, “Model Driven
Service Composition,” Proceedings of Service-Oriented
Computing Conference (ICSOC), Trento, 15-18 Decem-
ber, 2003, pp. 75-90.

[9] Y. Peng, M. Shang-Pin and L. Jonathan, “REST2SOAP:
A Framework to Integrate SOAP Services and RESTful,”
Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications (SOCA’
09), Taipei, 14-15 December 2009, pp. 106-109.

[10] K. He, “Integration and Orchestration of Heterogeneous
Services,” Proceedings of the IEEE Joint Conferences
Pervasive Computing (JCPC), 3-5 December 2009, pp.
467-470.

[11] W. Kongdenfha, H. R. Motahari-Nezhad, B. Benatallah, F.
Casati and R. Saint-Paul, “Mismatch Patterns and Adap-
tation Aspects: A Foundation for Rapid Development of
Web Service Adapters,” IEEE Transactions on Services
Computing, Vol. 2, No. 2, 2009, pp. 94-107.
doi:10.1109/TSC.2009.12

[12] K. Fujii and T. Suda, “Dynamic Service Composition
Using Semantic Information,” Proceedings of the 2nd In-
ternational Conference on Service Oriented Computing
(ICSOC’04), November 2004, pp. 39-48.

[13] Y. Jadeja and K. Modi, “Context Based Dynamic Web
Services Composition Approaches: A Comparative Study,”
International Journal of Information and Education
Technology, Vol. 2, No. 2, 2012, pp. 164-166.

[14] M. Di Penta, R. Esposito, M. Villani, R. Codato and M.
Colombo, “WS Binder: A Framework to Enable Dynamic
Binding of Composite Web Services,” Proceedings of the
International Workshop on Service-Oriented Software
Engineering, ACM, Shanghai, 2006, pp. 74-80.

Copyright © 2012 SciRes. IJCNS

http://dx.doi.org/10.1016/j.datak.2009.02.016
http://dx.doi.org/10.1007/978-3-540-85758-7_21
http://dx.doi.org/10.1109/TSC.2009.12

S. FAROKHI ET AL. 660

[15] A. Erradi and P. Maheshwari, “Dynamic Binding Frame-
work for Adaptive Web Services,” Proceedings of the 3rd
International Conference on Internet and Web Applica-
tions and Services, 8-13 June 2008, pp. 162-167.
doi:10.1109/ICIW.2008.121

[16] E. Lee, “What’s Ahead for Embedded Software,” Pro-
ceeding of the IEEE Computer, Vol. 33, No. 9, 2000, pp.
18-26.

[17] W. Junye, M. Lirui and C. Hongming, “A REST-Based
Approach to Integrate Enterprise Resources,” Proceed-
ings of the International Forum on Computer Science-
Technology and Application, Vol. 3, 2009, pp. 219-223.

[18] L. Liu, Z. Wu, Z. Ma and W. Wei, “Functionality Seman-
tic Indexing and Matching Method for RESTful Web Ser-
vices Based on Resource State Descriptions,” Proceeding
of the World Congress on Computer Science and Engi-
neering (WCSE), Xiamen, 19-21 May 2009, pp. 138-142.

[19] Wikipedia, “Standard Industrial Classification,” 2012.
http://en.wikipedia.org/wiki/Standard_Industrial_Classifi
cation

[20] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic and
S. Dustdar, “Towards Composition as a Service—A Qua-
lity of Service Driven Approach,” Proceeding of the
IEEE 25th International Conference on Data Engineering,
29 March-2 April 2009, pp. 1733-1740.
doi:10.1109/ICDE.2009.153

[21] F. Rosenberg, “QoS-Aware Composition of Adaptive
Service-Oriented Systems,” Ph.D. Dissertation, TU Vi-
enna University, Vienna, 2009.

[22] A. Kim, M. Kang, C. Meadows, E. Ioup and J. Sample,
“A Framework for Automatic Web Service Composi-
tion,” Technical Report of Naval Research Lab Washing-
ton DC, 2009. http://handle.dtic.mil/100.2/ADA499917

[23] Wikipedia, “WordNet,” 2012.
http://en.wikipedia.org/wiki/WordNet

[24] R. Hull, M. Hill and D. Berardi, “Semantic Web Services
Usage Scenario: e-Service Composition in a Behavior
Based Framework,” Semantic Web Services Initiative
Language, 2005.

[25] T. De Giorgio, G. Ripa and M. Zuccala, “An Approach to
Enable Replacement of SOAP Services and REST Ser-
vices in Lightweight Processes,” Proceedings of the 10th
International Conference on Current Trends in Web En-
gineering, Vienna, July 2010, pp. 338-346.

[26] S. Dustdar and W. Schreiner, “A Survey on Web Services

composition,” International Journal of Web and Grid
Services, Vol. 1, No. 1, 2005, pp. 1-30.
doi:10.1504/IJWGS.2005.007545

[27] R. Pessoa, E. Silva, M. Sinderen, D. Quartel and L. Pires,
“Enterprise Interoperability with SOA: A Survey of Ser-
vice Composition Approaches,” Proceeding of the 12th
IEE Enterprise Distributed Object Computing Conference,
Auckland, 1-4 September 2009, pp. 238-251.

[28] H. Zhao and P. Doshi, “Towards Automated RESTful
Web Service Composition,” Proceeding of IEEE Interna-
tional Conference on Web Services, 6-10 July 2009, pp.
189-196. doi:10.1109/ICWS.2009.111

[29] Z. Haibo, “Scalable Composition of Web Services Under
Uncertainty,” Ph.D. Dissertation, University of Georgia,
Vienna, 2009.

[30] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy and M.
Shan, “eFlow: A Platform for Developing and Managing
Composite e-Services,” Proceeding of IEEE Academia/
Industry Working Conference, New York, 27-29 April
2000, pp. 341-348.

[31] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy and M.
Shan, “Adaptive and Dynamic Service Composition in
eFlow,” Proceedings of 12th International Conference on
Advanced Information Systems Engineering (CAiSE),
Stockholm, June 2000, pp. 13-31.

[32] R. Aggarwal, K. Verma, J. Miller and J. Milnor, “Dy-
namic Web Service Composition in METEOR-S,” Pro-
ceeding of the World Wide Web Conference, Athens,
2004.

[33] P. Pires, “WEBTRANSACT: A Framework for Specify-
ing and Coordinating Reliable Web Services Composi-
tions,” Technical Report ES-578/02, Federal University
of Rio De Janerio, 2002.
http://www.cos.ufrj.br/~pires/webTransact.pdf

[34] E. Silva, F. Pires and M. Sinderen, “Supporting Dynamic
Service Composition at Runtime Based on End-User Re-
quirements,” Proceedings of 1st International Workshop
on User-Generated Services, Stockholm, 24 November
2009.

[35] S. Farokhi, A. Ghaffari, A. Nikravesh and F. Shams, “A
Model Driven Framework to Compose Heterogeneous
Services,” Proceeding of the International Conference on
Information Science and Applications (ICISA’11), Jeju-do,
2011.

Copyright © 2012 SciRes. IJCNS

http://dx.doi.org/10.1109/ICIW.2008.121
http://dx.doi.org/10.1109/ICDE.2009.153
http://dx.doi.org/10.1504/IJWGS.2005.007545
http://dx.doi.org/10.1109/ICWS.2009.111

	3.2.1. Proposed Models
	3.2.2. Composition Phases
	3.2.3. Proposed Algorithms

