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ABSTRACT 

The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security 
analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the 
establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse 
implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our pro- 
posed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber 
security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We 
describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.  
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Situational Understanding 

1. Introduction 

The concept of anomaly is ubiquitous in the cyber secu- 
rity area. Generally, the term anomaly is defined as a 
departure from typical values, forms, or rules. The pro- 
cess of anomaly detection should, therefore, detect data 
that do not conform to established typical behavior [1-4]. 
Such data are often referred to as outliers. In the case of 
anomaly detection in network traffic data, anomalous 
activities are often not individual rare objects, but unex- 
pected bursts in events. Thus anomaly detection requires 
not only a statistical definition of atypical objects, but 
also appropriate aggregations of network data.  

These aggregations enable analysis at multiple scales.  
More than 25 years ago, Denning [5] employed anom- 

aly detection for cyber security data. In [5], anomaly de- 
tection was accomplished with thresholds and statistics. 
The limitation of simple threshold and statistics were 
well documented in the more recent literature [3]. One of 

the directions for improvement discussed in [6] was to 
include additional information such as classifying objects 
participating in network traffic, such as users, computers, 
and programs. Initially, this classification was supported 
by statistical analysis [6]. Later, there were some pro- 
posed solutions based on soft computing [7]. One exten- 
sion of the research was based on a statistical time series 
approach. There are many parametric and non-parametric 
tests to find outliers in time series. One simple way to 
detect anomalies in time series was described in [8] 
where a non-parametric method called Washer was in- 
troduced. The need to simultaneously consider multiple 
anomaly detectors was discussed in [9]. 

In spite of many successes, rapidly discovering novel 
and sophisticated cyber attacks from masses of hetero- 
geneous data and providing situational understanding to 
cyber security analysts is an ongoing problem in cyber 
defense. In this paper, we describe a part of a compre- 
hensive system to perform knowledge discovery and ex- 
traction from security events in large data sets through 
the integration of various anomaly detectors, real-time 
cyber security data visualization, and a learning feedback 
loop between users and algorithms. The requirements for 
the system are to maintain scalability to voluminous 
streaming data, and to minimize the time from observa- 
tion to discovery.  

*This research was supported in part by an appointment to the Higher 
Education Research Experiences (HERE) Program at the Oak Ridge 
National Laboratory (ORNL) for Faculty, sponsored by the US De-
partment of Energy and administered by the Oak Ridge Institute for 
Science and Education. This research was also funded by LDRD at 
Oak Ridge National Laboratory (ORNL). The manuscript has been 
authored by a contractor of the US Government under contract DE-
AC05-00OR22725. Accordingly, the US Government retains a nonex-
clusive, royalty-free license to publish or reproduce the published form 
of this contribution, or allow others to do so, for US Government pur-
poses. 

The main emphasis of this paper is on specifying the 
graph of aggregations including probabilistic models for 
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anomaly detection. We propose techniques to generate a 
variety of models representing typical behavior at multi- 
ple scales enabling the comparison of network traffic 
based on learnt models. The models associated with the 
graph of aggregations allow for natural graphical repre- 
sentations and address important challenges of know- 
ledge discovery for cyber defense. Cyber security experts 
can use their domain knowledge to systematically trav- 
erse the aggregation graph. Scalability is assured by 
working with a proper proportion of materialized (pre- 
computed) and virtual nodes in the aggregation matrix. 
Timeliness of discovery is assured since most of the cy- 
ber security data are preprocessed, and analysts can have 
instantaneous access to anomalousness information using 
a graphical interface. 

Uncovering relevant cyber security information is 
needed for a rapid and accurate decision-making process, 
which can be significantly improved when an informa- 
tion system allows for a convenient traversal of multi- 
level anomalousness data by a human user or a software 
agent. The traditional data warehouse architecture [10-12] 
can be expanded to provide important functions, such as 
a drill-down operator for cyber security analysts. Drill- 
down operators usually are somehow restrictive, limiting 
the possibilities of different views. The effective use of 
such an operator can be improved if flexible options are 
available to the user and information about these options 
is clearly presented to the user [13].  

In this paper, we discuss the theoretical and practical 
aspects of cyber-security event aggregations in a cyber- 
security data warehouse. The event aggregation graph 
includes the fact table (cyber-security raw data streams) 
and the set of related summary tables containing infor- 
mation about various event aggregations. The main event 
aggregation graph includes only summary tables (in ad- 
dition to the fact table) containing information for simple 
aggregations that were based directly on key attributes. 
The main event aggregation graph has a number of levels 
corresponding to the number of key attributes in the fact 
table.  

The aggregations may involve complex aggregation 
formulas. We will refer to the resulting tables as complex 
summary tables. In this paper we will discuss aggrega- 
tions related to sliding windows. The complex summary 
tables can create their own hierarchies in the form of 
additional layers of the aggregation graph. The links can 
connect the complex summary tables with main summary 
tables.   

The event aggregation graph with all its components: 
main summary tables and complex summary tables, can 
be a good foundation to provide the most noteworthy 
data for a cyber-security analyst. Using the graph, the 
interaction between analyst and data warehouse opera- 
tions can be defined to assist in browsing through the 

past data and comparing it with the current data stream. 
By automatically identifying the most noteworthy events 
and aggregations, a reduced graph can be created for 
cyber security analyst to show aggregations that are most 
relevant to anomalies and situational understanding. 

The event aggregation graph can be also used to dy- 
namically address security problems by restricting some 
network traffic identified as most risky and when the 
threat level is very high. That restriction could practically 
be implemented temporarily until cyber security analyst 
makes an appropriate decision. 

The timely response of cyber security analysts requires 
a timely response of the system which in turn requires 
appropriate model for optimization of table implementa- 
tion. The summary tables can be either virtual or materi- 
alized. The performance of a data warehouse depends on 
the proper choice of summary table materialization. In 
order to build the proper implementation model there is a 
need to understand computational dependency between 
tables. It can be represented as a computational depend- 
ency graph showing all possible computation paths to 
create each aggregation table.  

This paper is organized as follows. In Section 2, we 
describe anomalies and anomaly detectors for cyber se- 
curity data using firewall events as an example. In Sec- 
tion 3, a star schema for the example cyber security data 
is presented. In Section 4, creation of simple summary 
tables and a main aggregation graph is discussed. In Sec- 
tion 5, the main aggregation graph is extended to include 
complex summary tables. In Section 6, using aggregation 
graph for situational understanding of cyber security 
system is discussed. Section 7 presents architecture of a 
data warehouse system for cyber security data. 

2. Anomalies and Anomaly Detectors  

Cyber security data can come in many forms. There is 
some structural commonality, though, and alignment 
points for possible data integration. Most of the data set 
can be viewed as conveying information about who did, 
what, to whom, and when they did it, which we refer to 
as a “Who-What-toWhom-When” structure.   

A firewall log is a good example of cyber security data. 
Each record of the log will be referred to as a micro- 
event or simply event. Each event describes the activity 
taken by the firewall and includes: source IP address and 
source port that represent “Who”; destination IP address 
and destination port that represent “to Whom”. For each 
event there are firewall event codes including action (e.g. 
Build) and the protocol (e.g. TCP) that together identify 
“What”. Time, as usual, is also included and it uniquely 
represents “When”. An example of a sequence of firewall 
events is shown in Figure 1. The IP addresses are repre- 
sented graphically as stars, and ports are represented as     
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Figure 1. Graphical representation of an example sequence of firewall events. 
 
rectangles. Each event is represented graphically as a 
directional link. Time is graphically represented as a 
pentagon attached to the directional link and firewall 
event codes are represented as rounded rectangles also 
attached to the directional link. 

The analysis can be based on the individual events or 
on the aggregations of events. In the example, there is an 
event that uses the TCP protocol and destination port 
6667, which could be rare since IRC chat services might 
be prohibited. Another example of an anomalous event 
would be traffic terminating at a non-DNS server on des- 
tination port 53.   

An example of anomalies for aggregations of events is 
presented in Figure 1. The occurrence of multiple 
“Build” events coming from the same “Who” and going 
to the same “to Whom” in very close time is anomalous 
with respect to expected network traffic flow. This case 
shows that in addition to analyzing individual events 
there is a necessity to analyze aggregations of the events.  

There are challenges with choosing the proper aggre- 
gations in cyber security data. The groups of events cor- 
responding to aggregations should have appropriate size 
to differentiate between “typical” and “anomalous” tem- 
poral aberrations, e.g. different load for different days of 
the week vs. malicious events identified from the note- 
worthy events. With small groups, the sparsity of mi- 
cro-events may be insufficiently to provide a reliable 
probabilistic analysis. With the larger group the prob- 
abilistic analysis will be more reliable. At the same time 
if the group is too large it might not properly reflect the 
typical temporal aberrations. As we move out to wider 

groups, these more local effects will have reduced impact 
on the averages. Domain knowledge will guide the 
choices of the types of aggregations sought after to indi- 
cate possible known attacks. Indeed, it is easy to see that 
the aggregations used to find a Distributed Denial of 
Service attacks and a Social Engineering Phishing attacks 
can be at differing scales. Hence, there is a tradeoff be- 
tween sparsity and specificity.  

Various aggregations can be used to identify anoma- 
lousness of a group of events through probabilistic com- 
putations. An aggregation is a way of collecting events 
into a macro-event and typically assigning some aggre- 
gate value to that macro-event, such as count. Many pos- 
sible ways to aggregate events can be considered. The 
typical aggregations are by some attribute value, e.g. 
aggregating events by the same event code and source IP. 
Since cyber security data analysis should be very sensi- 
tive to the temporal aberrations, the time limits are typi- 
cally imposed on at least some aggregations e.g. by a 
fixed time window or by a fixed number of events. The 
goal is to create a model to provide various probabilistic 
measures for cyber security analyst to assist him/her with 
maliciousness detection through various anomaly indi- 
cators as shown in Figures 2(a) and (b). 

One model of determining anomalousness is based on 
simple probabilities of occurrence of a micro- or macro- 
event. Unfortunately, a basic probability threshold is a 
poor proxy for anomalousness. We can see it clearly by 
considering a property with a very big domain of N val- 
ues (where values have approximately the same prob- 
ability and no value is ever practically repeated) and a  
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Figure 2. (a) Relationships between Typical, Atypical and 
Malicious for a simple anomaly analysis; (b) Relationships 
between Typical, Atypical and Malicious for different ano- 
maly specifications.  
 
property with a small domain with only two values 
(where only two values occur but one with the probabil- 
ity 1/N). We would expect the occurrence of any value 
for the first property to be much less anomalous than the 
rare value for the second property, even though both 
would have a probability of about 1/N. The choice of a 
probability threshold is directly dependent on the under- 
lying probability distribution describing the data. There 
are different approaches that satisfy the general require- 
ments for understanding of anomalousness. In our system 
we use the following definition to identify exceptionally 
rare events: 

  logA g P  P G P g         (1) 

where G is a random variable distributed according to the 
counts and g is one value it can take. The outer probabil- 
ity on the right-hand side is random with respect to G. 
The computation of this anomalousness is as follows. 
First, we compute the counts of appropriate groups of 
events, and then we compute probability distribution for 
each group P(g). Then we can compute the tail probabili- 
ties to find the anomaly for each group g. A similar ap- 
proach can be used to identify exceptionally frequent 
events.  

3. Cyber Security Data Warehouse 

A cyber security data warehouse can be built from vari- 
ous network data. Specifically, it can be built from the 
firewall data log that was described in the previous sec- 
tion. The data warehouse star schema for the firewall 
data log can be designed as shown in Figure 3. The 
model includes the four main components of the “Who- 
What-toWhom-When” structure as dimension tables: 
Source Machine, Request, Destination Machine and Time. 
The fact table, in our case, contains information about 
firewall events. The firewall events can be referred to 

shortly as events. The role of each table is as follows. 
The Source Machine dimension contains the information 
for a specific machine initiating the event i.e. IP address 
and port used by the machine, and other attributes e.g. 
Machine Class. The key identifier for each object in the 
Source Machine dimension is the composite attribute 
{Source IP, Source Port}. The Request dimension con- 
tains the information about the firewall event codes that 
include Action (e.g. “Build”) and the Protocol (e.g. 
“TCP”), and other descriptions and classifications. The 
key identifier for each object in the Request dimension is 
the composite attribute {Action, Protocol}. The Destina- 
tion Machine dimension has a similar structure to Source 
Machine and contains IP address, port used by the ma- 
chine, and other attributes e.g. Machine Class. The key 
identifier for each object in the Destination Machine di- 
mension is the composite attribute {Destination IP, Des- 
tination Port}. 

Each event has a time stamp represented by the Time 
dimension that can also contain some time classification 
e.g. part of day. The key identifier for each object in the 
Time dimension is the attribute {Time} which is actually 
a composite attribute equivalent to pair of attributes Day 
and Hour.  

The fact table, also referred as event table or simply 
T01, contains the log of all firewall events made from 
one machine to another machine at a specific time. The 
fact table has seven attributes: Time, Source IP, Source 
Port, Protocol, Action, Destination IP, and Destination 
Port. These attributes are foreign keys and allow to ac- 
cess and group events based on dimension table values. 
We will refer to all foreign keys as index attributes, and 
underline their name since other attributes can also be 
present in the fact table. Since each event has a time 
stamp, the Time attribute is actually a primary key attrib- 
ute of the fact table, but the implication of this for our 
approach is minimal as it is discussed later.  

4. Main Summarization Hierarchy for a 
Cyber Security Data Warehouse 

One of the fundamental operations for a data warehouse 
is the processing of the fact table in an anticipation of 
user queries. The new tables can be obtained by aggrega- 
tion of events in the fact table and summarizing informa- 
tion (creating information summary) for each aggrega- 
tion. These new tables are, referred to as summary tables. 
Summary tables in a cyber security warehouse can also 
contain information about event anomalies. It is impor- 
tant, therefore, to develop a systematic method for the 
design of the hierarchy of summary tables, which results 
in a systematic method to access anomaly information.   

In general, the hierarchy of summary tables can be 
modeled as a directed acyclic graph (DAG). Let us look    
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Figure 3. The initial star schema for the cyber security data warehouse. 
 
at an example of hierarchy T11, T21, ···, T71 of sum- 
mary tables obtained from our fact table (T01) containing 
as shown in Figure 4. Level zero is for the fact table 
which describes all events. The first level consists of 
summary tables containing information about aggrega- 
tions obtained from the fact table by reducing it by a sin- 
gle index attribute, e.g. the summary table T11 is ob- 
tained by summarizing information about all T01 events 
that came from the same Source Machine, had the same 
Request, and were directed to the same Destination Ma- 
chine but happened any Time.  

We can consider the second level as the one consisting 
of summary tables containing information about aggre- 
gations obtained from the first level by reducing it by an 
additional index attribute. For example, the summary 
table T21 could be obtained by summarizing information 
taken from T11 for each group that came from the same 
Source Machine, had the same Request, and were di- 
rected to the same IP address as shown in Figure 4.  

We could also interpret the third level as the one con- 
sisting of summary tables containing information about 
aggregations obtained from the fact table by reducing it 
by two index attributes. In this paper, however, we con- 
centrate on investigating the relationships between sum- 
mary tables in the same or in an adjacent level. 

The reduce operator, referred to as R, is used to indi- 
cate what type of the grouping will be used for summa- 
rization. The R operator can be represented graphically 
as a label on the link between the tables e.g. from table 
T01 to T11. The first argument for the R operator is an 
index attribute, e.g. Time. It determines what index at- 
tribute will be dropped in the newly created summary 
table. The second argument for the R operator is the 

grouping method. For the main summary graph only the 
simple grouping method based on removing one index 
attribute will be allowed. This simple grouping method is 
denoted as “index based”.  

In general, the number of summarization levels in the 
summarization graph is equal to the number of index 
attributes and the number of summary tables on each 
level can be computed based on all possible combina- 
tions for the corresponding subset of index attributes. In 
our case, we have 7 levels and on the highest level there 
is single table T71 that contains the maximum summari- 
zation—the summarization on the highest abstract level. 
The directed links are showing possible transformations 
from one table to another.  

The levels of the summarization graph correspond to 
various granularities for grouping. The first summariza- 
tion level corresponds to the least coarse (finest) group- 
ing, the next (second) summarization level corresponds 
to coarser grouping, etc. There are seven levels of granu- 
larity for our data warehouse. At level 0 (lowest level), 
the granularity is the finest and the records of actual 
events are stored. When these records are summarized, 
the level of granularity is coarser. For example T11, a 
time independent summary table, has the coarser granu- 
larity. Furthermore, T21, T31, etc. are even coarser. In 
general, coarser levels of granularity provide fewer de- 
tails but require smaller records to be stored.   

In practice, some nodes in the graph are of a lesser 
importance. Since the Time attribute is a primary key 
attribute for the fact table T01, the first summarization 
level practically has only one meaningful table T11. Ap- 
plying the R operator with any argument other than Time 
argument would not perform  grouping, but rather it  any  
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Figure 4. The main summarization hierarchy for the cyber security data warehouse. 
 
would project one of the attributes from the T01 table. 
The steps described above can also result in new attrib- 
utes for each table. These attributes describe the proper- 
ties of newly created groups. Each group can have vari- 
ous properties assigned to it, e.g. Count property can 
store the number of events. In our example of the sum- 
mary table T11, the Count property is computed by sim- 
ply counting the number of events in each group. Let us 
describe summary tables and their attributes more for- 

mally. Each summary table contains a set of groupings 
 G g , ,  g , ,  g  1 i n  where each group gi needs to 

have some properties computed and stored as table at- 
tributes. The number of groups is determined by possible 
values of the summary table index attributes. The R op- 
erator specifies how each grouping gi is created. The 
computation of the property is determined by a computa- 
tion method. The “Count” computation method allows to 
compute values of the Count property by simply count-
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ing the number of events in each group gi. The “Sum” 
computation method allows to compute values of the 
CountAll attribute by adding count property for each 
group gi. This is equivalent to counting all events in the 
fact table. It is important to notice that the summary table 
does store the actual sequence of events (or sequence of 
sequences of events, etc.) but rather it stores an informa- 
tion summary for an implicit group of events (identified 
by its index attributes). This information summary is 
stored in the form of each group’s properties.  

There are other computation methods, e.g. based on 
attribute values of the same table. The Probability is a 
good example of such property. The unconditional prob- 
ability pi can be computed for each group gi and stored as 
its non-index attribute probability. For the cyber security 
applications it is also important to compute various con- 
ditional probabilities (if summarization level allows for 
that) for each aggregation gi and stored as its non-index 
attributes probabilityC1, probabilityC2, etc. 

The Anomaly attributes can be computed based on the 
formula discussed in Section 2. In a typical situation the 
computation of anomaly is based on attribute values of 
the same table. The anomaly is computed for each group 
gi based on distribution of the values of the attribute 
probability. Actually, the anomalies for low and high 
values can be computed and stored as its non-key attrib- 
ute as anomalyLow and anomalyHigh. Additionally, the 
anomalies for low and high values can be computed for 
each aggregation gi based on conditional probability dis- 
tributions and stored as its non-key attribute anomalyC1, 
anomalyC2, … To simplify our presentation we will as- 
sume that all these anomalies are represented by a single 
anomaly property.  

The different tables have different anomaly indicators. 
The granularity of the tables corresponds to the granular- 
ity of anomalies. Since the anomalies of networking 
events are related to some aggregation of events the 
granularity of anomaly on the zero level is often consid- 
ered to be too fine. When anomalies are computed on 
summarized data the results are more likely to point to 
noteworthy aggregations. For example T41, a time inde- 
pendent summary table, can show a significant atypical 
behavior.  

5. Complex Aggregation Tables for Event 
Windows 

So far we have discussed the main hierarchy graph with 
its main summary tables using nodes and simple reduc- 
tions (by one index attribute) as directed links. In the 
case of network traffic data, anomalies are often not rare 
objects, but unexpected bursts in events. Thus anomaly 
requires not only a probabilistic definition of atypical 
objects, but also appropriate probabilistic computations 

for aggregations of network events. In this section we 
present data models for bursts of the events and tech- 
niques to identify anomalies in the bursts of the events. 

Generally the aggregation method to model bursts of 
events can be window based or event proximity based. In 
this paper, we address only window based aggregation. 
Here, we have different types of windows with two most 
obvious: fixed-time window and fixed-number-of-events 
window. Let us concentrate on fixed-number-of-events 
window. 

We can model a sliding fixed-number-of-events win- 
dow by proper aggregation of event (fact) table T01. The 
previously discussed R operator needs to be extended to 
denote this aggregation properly. The extension is based 
on an observation that a simple index based aggregation 
would not suffice here, but more complex aggregation of 
events should be here performed, i.e., aggregation of all 
events within the window. Additionally, each window 
needs to be uniquely identified since we want to perform 
various window based computations. The beginning or 
ending time of window can be used for that purpose.  

We will denote the operator to perform window based 
aggregation as R({}, fixed-number-of-events-window). 
There is an empty set as a first argument of R since the 
Time index is kept even though it needs different inter- 
pretation. The second argument fixed-number-of-events- 
window indicates the type of complex aggregation. Other 
types of aggregation can also be used, e.g. fixed-time- 
window. 

Deciding about the overlap of sliding windows re- 
quires some attention since it will affect the number of 
aggregations. The extreme case of associating a window 
with each event is not practical because of the large 
amount of computations and data (no data reduction), 
while single events would not affect the total count that 
much. Another extreme case of making window disjoint 
is not sufficient since the burst of events divided into two 
windows might not trigger the anomaly detector. Practi- 
cally, some overlapping factor needs to be selected, e.g. 
50%. As a result the data contain many redundancies 
since the same event will be present in many groupings. 
For the window overlapping factor of 50%, the replica- 
tion factor will be close to 2. 

The information about window based aggregations can 
be stored in a summary table, e.g. the new table T01A1. 
This new table does not belong to main summarization 
hierarchy since complex aggregation was used. It will be 
placed in the new layer of the node T01 since it uses the 
same index attributes. In general, any newly introduced 
complex aggregation will result in the creation of the 
new table and new layer of the summarization hierarchy. 
The new table is placed in that layer in the same node as 
the main summary table with the same index attributes. 
The new table, in our case was named T01A1 since “A1” 
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will stand for additional layer number one related to the 
additional complex aggregation.  

The newly created table can be a starting node of a 
new hierarchy placed in the new layer. Other tables of 
the new hierarchy would also correspond to main sum- 
mary tables that have the same index attributes. For ex- 
ample, data in table T00A1 can be summarized into an- 
other table T11A1 by the R operator with the simple ag- 
gregation i.e. R(Time, index-based). The table T21A1 
will also belong to the same layer since the simple ag- 
gregation was used. In general, any new table con- 
structed by a simple aggregation will belong to a layer of 
the initial table. The relationships between tables in the 
different layers of the same node can be identified. For 
example the table T11A1 can be very similar to T11 after 
adjusting for event redundancies by, e.g., dividing count 
by 2 when windows are overlapping by 50%.  

The summarization hierarchy will, therefore, consists 
of a main layer, called also layer number zero or main 
hierarchy and additional layers corresponding to other 
aggregation methods or derived hierarchies.  

The aggregations’ properties can be computed using 
different computation methods as before. Let  

1 i n  be a set of aggregations (groups) 
stored in table T00A1 where each aggregation gi consists 
of network events in a fixed size window. We will use 
again our basic probabilistic model for computing anoma- 
lies: count of events of the same type in each window 
(counti), compute the probabilities for each aggregation 
(events of the same type), and then compute the anoma- 
lies for each aggregation based on the probability distri- 
bution of P(G). 

 ,  g , ,  g G g ,

6. Using Summarization Hierarchy for  
Situational Understanding of Cyber  
Security System  

We implemented our cyber-security data warehouse 
model on the IEEE Vast 2012 Situational Understanding 
and Cyber-forensics data [14]. The summarization hier- 
archy graph was created based on the previously defined 
index attributes: Time, Source IP, Source Port, Action, 
Protocol, Destination IP, and Destination Port. We used 
mostly the layer of the summarization hierarchy corre- 
sponding to window based aggregations. These aggrega- 
tions were constructed for non-overlapping windows 
with the five minutes window duration.   

First, the anomalous behavior with respect to the vol- 
ume of all traffic was detected based on the appropriate 
table on the sixth level of aggregation (called table 
T62A4) with the single index attribute Time indicating 
the beginning of the window, and non-index attribute 
Count describing the traffic volume. Using this grouping, 
we were able to determine that the network traffic was  

 

Figure 5. The additional layer of complex summary tables 
for the window based aggregations. 
 
anomalous (drastically lower) for many windows. More 
specifically we could identify a four-hour period of ano- 
malous traffic.   

This anomaly was a starting point of a down traversal 
(drill-down operation) of the summarization graph. We 
looked at the lower level (level 5) aggregation described 
by a table (called table T52A4) with two index attributes 
Time and Action, and non-index attribute Count describ- 
ing the traffic volume. We observed an anomalous high 
percentage of traffic through the firewall that was related 
to the value “system log entry” of the attribute Action. 
The discovery of these anomalous events was very im- 
portant. The system log entries indicated that the connec- 
tions were made to the firewall itself and that changes 
were made to the firewall settings. It looked like danger- 
ous tampering to firewall information that may have con- 
tributed to other traffic deviations around the same time.  

Another anomaly was discovered by traversing the 
part of the summarization graph containing tables on the 
fourth and lower aggregation level with at least three 
index attributes Time (indicating the beginning of the 
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window), Source IP and Destination IP. This traversal 
resulted in the observation that exactly one source IP was 
responsible for all traffic from workstations to websites 
for some specific window sequences. This strongly indi- 
cated a possible misdirection or man-in-the-middle attack 
where all traffic is routed through an intermediate con- 
tact.  

Warehouse and Cyber Security Event Database. Both 
components use the aggregation hierarchy graph as a 
model for the data storage. The Update Data Warehouse 
processor updates Cyber Security Data Warehouse peri- 
odically (e.g. daily) with recorded events that occurred 
after the last update from the Cyber Security Event Da- 
tabase. In addition, there are Anomaly Global Patterns, 
and Anomaly Occurrence databases. Anomaly Global 
Patterns are updated periodically at the same time the 
data warehouse is updated. Anomaly Global Patterns are 
computed based on values of the anomaly attributes in 
the aggregation hierarchy graph. The simple interpreta- 
tion of the content of Anomaly Global Patterns is that 
patterns contain all historical event probability distribu- 
tions (Layer 0, 1). The simple interpretation of the Cyber 
Security Event Database is that it contains the current 
events in the form of the most recent window (Layer 1). 
The Identify Anomaly processor is a crucial component 
of the system and works on-line to compute anomalies in 
the current event table T11 and in the tables above based 
on historical event table T11 practically updating the 
Anomaly Occurrences database (actually a part of Cyber 
Security Event Database). There are two main tasks for 
Anomaly Integration and Visualization processor. First, it 
combines the anomalies into a single measure and dis- 
plays the result as a warning meter. Second, it displays 
the individual anomalies for the cyber security analyst.  

Yet another anomaly was discovered by applying 
complex aggregation to the attributes Machine Class for 
both source machine and destination machine. The ag-
gregation resulted in the summary table (called table 
T62A5) with the original index attribute Time uniquely 
identifying each window and three new attributes Source 
Computer Class, Destination Computer Class, and Count. 
Indeed, by considering the collection of events parti-
tioned by computer class, we observed the deviation 
from the typical traffic pattern originating from the DNS 
server and ending at DNS servers. Actually, for the IEEE 
Vast 2012 data, the anomalous behavior was observed 
after the first 20 hours. Departure from this baseline in- 
dicated a misdirection of routing, possibly involving se- 
rious exfiltration of protected data. 

7. System Architecture 

The conceptual system architecture is shown in Figure 6. 
It is built based on typical data warehouse architecture 
and contains two main components: Cyber Security Data  

 

 

Figure 6. System architecture.   
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The cyber security analyst can specify globally and for 
each node the threshold for anomalies to be displayed. 
The cyber security analyst can also define new nodes in 
the graph by associating the new aggregation with it. 

8. Conclusion 

In this paper, we introduced the generalization of aggre- 
gation operation as applied to a cyber security system. 
We discussed the concept of an event aggregation graph 
that contains not only information about various aggre- 
gations but also anomalies related with each aggregation 
level. The aggregation graph once implemented can be 
explored to enhance the cyber security analyst’s situ- 
ational understanding. When the graph is presented to the 
cyber security analyst, only the relevant nodes are in- 
cluded, allowing him/her to focus on most probable 
threats of network intrusion.   
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