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Abstract 
 
In this paper, we propose to generalize the coding schemes first proposed by Kozic et al. to high spectral ef-
ficient modulation schemes. We study at first Chaos Coded Modulation based on the use of small dimen-
sional modulo-MAP encoding process and we give a solution to study the distance spectrum of such coding 
schemes to accurately predict their performances. However, the obtained performances are quite poor. To 
improve them, we use then a high dimensional modulo-MAP mapping process similar to the low-density 
generator-matrix codes (LDGM) introduced by Kozic et al. The main difference with their work is that we 
use an encoding and decoding process on GF (2m) which enables to obtain better performances while pre-
serving a quite simple decoding algorithm when we use the Extended Min-Sum (EMS) algorithm of De-
clercq & Fossorier. 
 
Keywords: Chaos Coded Modulation, Expectation Maximization, Gaussian or Rayleigh Mixtures, 

Low-Density Parity-Check (LDPC), Low-Density Generator-Matrix (LDGM), Factor Graph, 
Extended Min-Sum (EMS) 

1. Introduction 
 
Since the pioneering work of Frey in 1993 [1], chaotic 
communications has been an important topic in digital 
communications. Due to their extreme sensitivity to ini-
tial conditions which, for example, facilitates theoreti-
cally the separation of merging paths in a trellis based 
code, these systems have also been considered as good 
potential candidates for channel encoding [2-7]. This 
explains why chaotic modulations and channel encoders 
derived from chaotic systems have been extensively 
studied in the open literature. According to us, there are 
mainly two types of chaos based channel encoders de-
pending on the size of the transmitted alphabet. The first 
kind of chaos based channel encoders includes non-linear 
generators which transmit binary messages and benefit 
from the correlation between successive transmitted bits 
to obtain some coding gain. Due to the poor spectral ef-
ficiency, it is rather easy to optimize this kind of codes to 
obtain a non-null free distance and to obtain reasonable 
good performances, i.e., codes that outperform un-coded  

systems [8-12]. Some authors have even used these bi-
nary non-linear constituent encoders to build parallel 
concatenated schemes just like turbo-codes which per-
form quite closely to the theoretical bounds provided that 
the interleave size is big enough [13,14]. The second 
kind of chaos based channel encoders includes those 
which transmit a complex quasi-continuous alphabet, i.e., 
those which are inherently chaotic in all their character-
istics. These channel encoders exhibit a high spectral 
efficiency and can be compared to Trellis Coded Modu-
lation (TCM) schemes. Many works deal with the opti-
mization of such coders and, among them, perhaps the 
most famous ones were those named Chaos Coded Modu-
lation (CCM) schemes. However, the weakness of such 
transceiver was their poor BER performance since they 
did not have even better performances than un-coded 
systems such as Binary Phase Shift Keying (BPSK) 
[15-17]. This was particularly the case for the systems 
which use CSK (Chaos Shift Keying) Modulation 
[18-20]. Nevertheless, some recent studies have stressed 
the fact that Chaos Coded Modulation (CCM) systems, 
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working at a joint waveform and coding level, can be 
efficient in additive white Gaussian noise channels [21- 
23]. These promising works on the AWGN channel have 
been recently further extended by Escribano & al in the 
case of Rayleigh flat fading channels [24].  

In this work, we use Chaos Coded Modulation designs 
of S. Kozic [25,26] and we optimize them using the dis-
tance spectrum. We find that the distance spectrum dis-
tribution can be good approximated by Rayleigh prob-
ability distribution function (pdf). Using this optimiza-
tion step, we can optimize their structures. Furthermore 
we show that using a high dimensional modulo-MAP 
mapping process we are able to considerably improve the 
performances of this kind of schemes and to obtain per-
forming codes. This principle is related to the former 
work of Kozic & Hasler in [27]. In their work, low-den-
sity generator-matrix (LDGM) codes are used as natural 
interleave in front of mappings to signal constellation. 
That is why this kind of code can be assumed as particu-
lar kind of BICM. However, the chaotic map is used as 
joint coding (interleaving) and modulation, and thus, the 
complete system is a single code. The framework of it-
erative decoding is based on factor graphs, which is a 
graphical representation of codes. LDPC and LDGM 
linear block codes have a very simple graphical repre-
sentation called Tanner graph. However, for nonlinear 
codes, the graphical representation is not so simple, and 
this may be the reason why the large potential of nonlin-
ear codes is not yet exploited. The main difference with 
their work is that we use an encoding and decoding 
process on GF (2m) which enables to obtain better per-
formances while preserving a relative simple decoding 
algorithm when we use the Extended Min-Sum (EMS) 
algorithm of Declercq & Fossorier [28]. The contribu-
tions of our paper are thus the following ones. 

Detailed study of the distance spectra of the chaos 
based encoders and characterization of their distribution. 

New encoding and decoding process based on the use 
of graph factorization and the use of Belief Propagation 
(BP) algorithm over high order Galois fields GF (2m). 

The rest of the paper is organized as follows. In Sec-
tion 2, we give the basic principles for the chaos coded 
modulation schemes proposed by S. Kozic. We propose 
to approximate the distance distribution with some usual 
laws such as the Rayleigh one. In Section 3, we show the 
high dimensional coding process based on LDPC over 
GF(2m); simulation results are provided which demon-
strate the outstanding performances of these structures. 
Concluding remarks are eventually given in Section 4.  
 
2. Chaos Coded Modulation Scheme,  

Distance Spectrum Study 
 
2.1. Chaotic Coder Structure 
 
We consider the Chaos-Coded modulation scheme of 

Figure 1. This scheme was originally given by S. 
Kozic in his PhD works [26]. The scheme of Figure 1. 
can be represented by means of a convolutional coder 
of rate  = 1/(n.(Q + 1)), where at each time step k, one 
bit bk enters the coder and a vector of (Q+1) bits v = 
[vQ,vQ-1,…,v0]

T is produced. The signal constellation is 
realized by a weighted sum of vectors 2-i. A(Q-i+1) mod 
(1) where A is some matrix which optimizes the dis-
tance spectrum of the code. This mapping, due to the 
modulus operation, is a highly non-linear operation and 
serves as a chaos generator. Henceforth, we have a 
system which combines a convolutional coder with a 
multi-dimensional mapping in the same way as Multi- 
level Trellis Coded Modulation (M-TCM). The corres- 
ponding convolutional coder is classically described by: 
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S. Kozic defines several possible matrices T = {ti,j} 
in his work which give good performances: 
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Concerning, the choice of the matrix A, we can write 
the transmitted vector at the output of the modulator: 
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Before transmitting xk on the channel propagation 
medium, we modulate each of its components in 
NRZ-BPSK, i.e., : xk → 2 xk -1. 

Rather than a global optimization algorithm which 
should look for the convolutional coder together with 
the mapping process, we choose to fix a convolutional 
coder structure and then we work on the mapping 
process by using a particular form of matrix A. We 
found that the choice Ti,j = Tshift for i = j and Ti,j=Ttent  
for i ≠ j enables to obtain a large set of performing 
non-linear mapping with A. For example, in the case n 
= 2, using this choice for matrices T, we are looking 
for matrices A with the following structure:  
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and we optimize the choice of a21 using the distance 
spectrum. In the case, n = 3, we use matrix form: 
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Figure 1. Trellis chaos-coded modulation encoder. 

 
The choice of the remaining parameters ai,j is done 

using the distance spectrum of the code. The state of 
the coder is defined by vector Sk: 

Sk = [bk,…,bk-n,…bk-Qn,…,bk-(Q+1).n+1]
T      (3) 

Concerning the choice of Q, it’s clear that the Vi- 
terbi decoding algorithm is rapidly limited by the com-
plexity in the number of states which is equal to 2n.(Q+1). 
Practically, the number n(Q + 1) should not exceed 12 
which correspond to 4096 states. For n = 2, this gives a 
maximum value of Q equal to 5, and for n = 3, this 
gives a maximum value of Q equal to 3. The choice of 
Qa, is more complicated and is related to the chaotic 
behaviour of the coder. 

 
2.2. Spectrum Distance Analysis 
 
In order to optimize the coders, we study their distance 
spectrum. To do this, we have to determine the trajec-
tories in the trellis which start with a common state Si 

= Si
* and evolve in disjoint paths for (L-1) time steps 

and then merge again into the same state Sk = Sk
* not 

necessarily equal to Si. This kind of trajectory in the 
trellis defines a loop and the loop is characterized by 
its initial state Si, its final state Sk and its length L. The 
distance of corresponding codewords belonging to the 
two competing paths in the loop is:  

21
2
, ,
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i k

L

L S S m m
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  x x*             (4) 

The problem of the computation of (4) is that, unlike 

linear codes when we can choose a reference path equal 
to a all zero sequence, due to the non-linear mapping, we 
have to test all the possible transmitted sequence for a 
given loop length together with all the possible starting 
states. Hence, the distance spectrum computation prob-
lem is of non polynomial complexity and in straightfor-
ward manner requires the inspection of all possible 
initial conditions and all possible controlled trajecto-
ries. For example, there are 2n.(Q+1).2nL different con-
trolled trajectories of length L. In order to compute the 
distance spectrum with a reasonable complexity while 
keeping a sufficient accuracy, we form all the possible 
pair of sequences starting from a given state and both 
converging towards an other state after L steps with L 
belonging to the interval [Qn + 1, n.(Q + m)], i.e. the 
length of the loop varies from Qn+1 (the constraint 
length of the code plus one) to to n.(Q + m) (we limit 
practically the search to m = 2 or 3 in our case due to 
the computation burden). We have partitioned the dis-
tance spectrum into subsets by distinguishing error 
events which entail one error bit, error events which 
entail two error bits, error events which entail three 
error bits and so on. In practice, we limit our search to 
error events which entail five maximum error bits since 
simulation results evidenced that it was sufficient to 
obtain accurate upper bounds for the BER. 

We obtain for example with matrices: Ti,j = Tshift for 
i = j and Ti,j = Ttent  (i.e. n = 2) for i ≠ j and a21 = 8, Q 
= Qa = 3, the distance spectrum illustrated on Figure 2.  

In fact, we found that, in a majority of cases, the shape 
of the distance spectrum is close to a Rayleigh distribu-
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tion with the following probability density function:  
2 2( ) /2.
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For example, with the distance spectrum plotted on 
Figure 2, we calculate parameters μj and σj

2 to obtain 
the best fitting between the pdf of the distance spec-
trum and fc(x,mj,σj

2) we obtain with classical MMSE 
technique: μj  σj

2  6.7. This corresponds to a mini-
mum free distance of the coder equal to dfree  6.7. We 
have developed an original EM (Expectation-Maximization) 
algorithm to obtain the approximated Rayleigh distribu-
tion of the distance spectrum as a mixture of Rayleigh 
laws. The mixture of Rayleigh laws can be written as: 
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where (μn,σn
2) represents a Rayleigh law of parame-

ters: μn and σn
2. The Maximum Likelihood (ML) re-

search algorithm to find: πn, μn, σn
2 can be summarized 

as: 
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where ψ (x,μ,σ2) denotes the value of a Rayleigh law of 
parameters μ,σ2 at x. For a fixed number of mixtures J, 
based on the observations:   ,i = 1,…,n, the pa-
rameters   j,mj,j,j=1,…,J can be estimated using 
the EM (Expectation Maximization) algorithm. The 
algorithm proceeds in two steps: 

E-step: Compute 
 

 
Figure 2. Distance spectrum of the chaos coded modulation. 
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Define the following hidden data Z = zi, i = 1,…, n 
where zi is a J-dimensional indicator vectoring such 
that: 
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The complete data is then X  (,Z), we have : 

,2

1 1

( , ) . ( ; ,
i j

n J z

j i j j
i j

p R m   
 

    Z    (11) 

The log-likelihood function of the complete data is 
then given by: 
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where C is a constant. The E-step can then be calculated 
as follows: 
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The M-step is calculated as follows. To obtain j, 
we have: 
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To obtain {σj} we have the set of equations: 
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The set of Equations (16) and (17) is a set of coupled 
non-linear equations and we use the optimization toolbox 
with the function fsolve to solve (16-17) at each maximi-
zation step. 

The set of Equations (16) and (17) is a set of coupled 
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with the function fsolve to solve (16-17) at each maximi-
zation step. 
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To end this part, we give some BER results on AWGN 
channels, using the optimization obtained by the distance 
spectrum computation to find good modulation parame-
ters. Due to a lack of place we only give simulation re-
sults. For n = 2, we obtain the following result on Figure 
3. 
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The chaotic coder outperforms un-coded BPSK at high 
SNR’s due to good asymptotic properties with a moder-
ate high free distance. The weakness of this kind of code 
is their poor coding rate. There are several solutions to 
improve this. The first is to make input bits enter the 
coder by groups of k bits. In this case, the coding rate 
becomes equal to: k/n.(Q + 1). 
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is their poor coding rate. There are several solutions to 
improve this. The first is to make input bits enter the 
coder by groups of k bits. In this case, the coding rate 
becomes equal to: k/n.(Q + 1). 

However, this considerably reduces the correlation 
degree between consecutive states and renders the trellis 
non-binary. We found that the penalty encountered by 
this method too much important (using k = 2 results in 4  

However, this considerably reduces the correlation 
degree between consecutive states and renders the trellis 
non-binary. We found that the penalty encountered by 
this method too much important (using k = 2 results in 4  
dB losses compared to k = 1) so we prefer using punc-
turing to increase the coding rate of our proposed coders. 
We added the case of punctured codes on Figure 4 with 
the best puncturing patterns we found for rate 8/7 and 
4/3.  

dB losses compared to k = 1) so we prefer using punc-
turing to increase the coding rate of our proposed coders. 
We added the case of punctured codes on Figure 4 with 
the best puncturing patterns we found for rate 8/7 and 
4/3.  
  The conclusions are nearly the same, considering the 
case n = 3 as it is illustrated on Figure 4.  
  The conclusions are nearly the same, considering the 
case n = 3 as it is illustrated on Figure 4.  

With a free distance equal to 13 for the optimized code  With a free distance equal to 13 for the optimized code  
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Figure 3. Performances of Trellis Chaos-Coded Modulation 
over AWGN channels for n = 2, Q = 3. 
 
with rate 1/9, the punctured codes (9/7) are able to out 
perform un-coded BPSK at high SNR’s. To complete this 
overview of BER performances over AWGN channels, 
it is important to say that using the approximate pdf’s of 
the distance spectrum, we are able to accurately predict 
the BER at high’s SNR’s. To complete the results, we 
give on Figure 12 the best performances we found with 
n = 3, Q = 3 (i.e. the number of states is 4096). 

In fact, as it is expected, increasing the quantization 
level for a given dimensionality n, entails some losses. 
Compared to Figure 4, the loss in terms of SNR for a 
BER of 10-4, 10-5 is approximately 1 dB on Figure 5 and 
punctured codes are unable to outperform un-coded 
BPSK. 

It is clear that the obtained performances remain poor.  
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Figure 4. Performances of Trellis Chaos-Coded Modulation 
over AWGN channels for n = 3, Q = 2. 
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binary/q-ary converter is then used to obtain vectors 
dk+i-Q = (dk+i-Q

(1), dk+i-Q
(2),…, dk+i-Q

(n-1), dk+i-Q
(n))T of q-ary 

symbols: di
(p), p = 1,2,…,n belonging to the alphabet: A = 

(0,1,…,q-1). Each obtained vector dk+i-Q is then multi-
plied by a sparse low-density based matrix AQ-I and 
weighted by a factor 2-(i+1) then, the new resulting en-
coding vectors are added to obtain the vector: 
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Q
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k k i Q
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

 z A d ) . 

Finally, to obtain a chaotic trajectory we add the vec-
tor: 2-(Q+1).(A-I).e with: e [1, 1,…, 1]T. This yields to the 
following equation: 

( 1) -

0

2
2 . . . mod

2

QQ
i Q i

k k i Q
i

q


 
 



 x A d p     (19) 

 Figure 5. Performances of optimized Trellis Chaos-Coded 
Modulation over AWGN channels for n = 3, Q = 3 (4096 
states). 

With: p=2-Q.(A-I).e=K.(A-I).e. 

The coding sequence at the output of the modulator is 
then equal to: x = (x1, x2,…, xk,…).The relation (19) is 
called the high-dimensional expansion associated with 
the chaotic system (18). Another way to represent the 
encoding rule is to use the following equation: 

 
To increase them, we propose to generalize the non-linear 
output mapping to matrices A of high-dimension. 
 
3. High Dimensional LDPC Based 

Mod-MAP Mapping with B.P Decoding 1 12. . mod 2 .( 1/ 2. ) modQ
k k kq q
   x A x d e   (20) 

 The relation (20) is simpler than (19) to better under-
stand the encoding algorithm; however Equation (19) is 
more suitable for the factorization of the factor graph. 
The rule (20) represents a dynamical system controlled 
with stochastic perturbations of small amplitudes 2-Q 
which constitute the input signal. It is obvious that as: Q 
→+∞, the small amplitudes vanish and the output signal 
vector becomes the chaotic state.  

3.1. The Encoding Process  
 
The generalized mod-MAP function is written as: 

1 2. . modk k q x A x             (18) 

where xk is the input vector of size n and A is a n × n ma-
trix with elements belonging to alphabet: A = (0, 1,…, 
q-1) with q = 2m since we take here: q = 2m for the con-
sidered Galois-field GF(q). The encoding scheme is drawn 
on Figure 6. The binary streams b = (b1, b2,…, bk,…) are 
grouped into vector vector bk+i–Q of size: n.m = n.m with 
m denoting the spectral efficiency we want to use in  
the encoding-decoding process. Hence, we can write: 
bk+i–Q = (bk+i–Q

(1), bk+i–Q
(2),…, bk+i–Q

(nm-1), bk+i–Q
(nm))T. A 

It is important to note that the decoding of a LDPC 
over GF(q) implies that we use a systematic form for the 
encoding process. It’s the case here since b = (b1, b2,…, 
bk,…) is the systematic part and x = (x1, x2,…, xk,…) is 
the redundancy check part. We have of course a overall 
coding rate of 0.5 because the systematic part and the 
redundancy check part have the same dimension. 
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Figure 6. Coding Scheme with high dimensional LDPC based Mod-MAP mapping. 
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3.2. Factor Graphs 
 
To explain how the factorization can be efficiently im-
plemented it is convenient to represent a function with a 
factor graph. Once a factor graph has been found it is 
straightforward to use the BP (Belief Propagation) algo-
rithm to determine the marginal of a multivariate func-
tion. For linear block codes the factor graph of the code 
becomes a Tanner graph. Of course, in our case due to 
the use of a non-linear encoding process, finding this 
graph is a much more complicated task. In fact as Kozic 
demonstrated in [27], there are mainly two possible solu-
tions to obtain it here. The first one consists in using the 
party-check equation given by Equation (20). The second 
one is the consequence of the high-dimensional expan-
sion associated with Equation (19). The first solution is 
not appropriate since it would imply to obtain informa-
tion about bk from the soft information about the states xk  

which constitute the graph of variable and check nodes 
and dk is multiplied by a small value: 2-Q. Hence the re-
liability about information concerning bk would be small 
in this case. Hence, the second solution is the only trac-
table one. However, it is important to avoid the use of 
successive power of A in the graph factorization. This is 
due to the fact that short cycles of length four appear 
when we use for example A2 in a factor graph even if A 
does not exhibit short length cycles.  

The graph factorization may be expressed in the fol-
lowing way: it comprises mainly three steps. The first 
one is related directly to the scheme of Figure 6 and 
concerns the computation of xk given dk+i-Q it will be 
named high-order expansion graph. The second one 
concerns the LDPC code contained in each matrix A, it 
will be named GF(q) LDPC graph and finally the third 
one concerns the way the input bits slide to constitute a 
new vector to be encoded. This mechanism is related to 
the convolutional encoder behaviour and will be named 
convolutional graph.  

The high-order expansion graph constitutes the main 
original part and it can be obtained as follows. We con-
sider at first an indicator function of high dimensional 
q-ary expansion: 
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We can use then additional variables μi,j defined as:  
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Of course, we have the relationship: μi,j+1 = A. μi,j.mod 
q with: μi,0 = 2-(i+1) dk+i-Q. With these variables, function g 
becomes a function only of variables: μi,j. To keep on 

factorizing g we introduce functions gi,j+1 defined as :  
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and 0g :  

0 0, 1, 1
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The corresponding factorization of g is given by: 
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i j
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The factorization is drawn below on Figure 7. 
It is possible to further factorize the class of functions: 

gi,j+1. The variables at the left side of Equation (22) will 
be named the checks and the variables on the right side 
will be considered as the noisy symbols. We define 
similarly as in the case of LDPC codes: (l) = {m:alm ≠ 

0} the set of noisy symbols that participate in the check l. 
In the same way, we define: (m) = {l:alm ≠ 0} the set 

of checks that depend on the noisy symbol m. In this case 
(22) can be written as:  

( ) ( )
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m l

a q m l n
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Let: 
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0, otherwise
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a q
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The symbols on Figure 7 correspond either to variable 
nodes (circle on the figure) or check nodes (square on the 
figure). The symbolise decoding of the complete chaotic 
trajectory is given by: 
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 x y x
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  (26) 

The quantity ≈ dk+1-Q means summation over all com-
ponents except: dk+1-Q. Furthermore, the graph of matrix 
A is classically those of a LDPC code over GF(q) and is 
drawn on Figure 8. 

The shift register and the binary q-ary conversion set 
operation, which represent transition state from time j to 
time j + 1 can be given by the indicator function: gc = 
p(xj+1|xj,dj+1). The state at time j + 1 depends on the sym-
bol sequence: dj+1,…,dj+1-Q, and it can be computed using 
likelihoods of symbols dj,…,dj+1-Q and additional likely-  
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Figure 7. high-order expansion factor graph. 
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Figure 8. Factor graph for matrix A. 
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Figure 9. Factor graph of the complete chaotic code. 
 
about symbol: dj+1. Using together factorization gc and 
factorization of the high-order expansion of Figure 7, the 
decoding problem of (26) can be presented with the fac-
tor graph of Figure 9. This graph takes into account the 
shift register process which includes new incoming bits 
into the encoding process and consists of two recursions: 
forward and backward recursions as in the well known 
BCJR algorithm. 

The parameters αk, βk, γk and δk are defined in the same 
way as in [27] except that we work at symbol level for 
the computation of αk, βk, γk and δk. 

Note that since the main difference with the scheme 
proposed by Kozic, et al. in [27] consists in the use of a 
non-binary encoding scheme, we have to transform a 
priori probabilities on bits to a priori probabilities in 
symbols. This is done using the formula: 
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    (27) 
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)where  designs the log-likelihood ratio cor-

responding to bit: bk+i-Q
(j). For the complementary prob-

lem, i.e. when we have to express the log-likelihood ratio 
of bit bk+i-Q

(j) from the log-likelihood ratios of corre-
sponding symbols, we have: 
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where, obviously,  corresponds to the log- 

likelihood ratio of symbol: 

( )( j
e k i Qd  

( ) ( 1). 1 ( 1). 2 ( 1).[ , ,..., ]j j m j m j m
k i Q k i Q k i Q k i Qd b b b     
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3.3. Iterative Decoding 
 
The main steps of the iterative decoding are the same as 
those of [27] except for the use of a non-binary generator 
matrix A. The decoding of LDPC codes over GF(q) has 
been an extensive research topic recently. Among all the 
decoding algorithms, we choose the Extended Min-Sum 
(EMS) Algorithm in the log-domain proposed by De-
clercq and Fossorier [28] since it exhibits a good trade- 
off between performance and complexity. To explain the 
main principles we use the following notations. A parity 
node in a LDPC code over GF(q) with q = 2m represents 
the following parity equation:  

1

( ). ( ) 0 mod ( )
cd

k k
k

h x i x m x


        (29) 

where m(x) in the modulo operator is a degree m -1 
primitive polynomial of GF(q). Equation (29) expresses 
that the variable nodes needed to perform the BP algo-
rithm on a parity node are the codeword symbols multi-
plied by non-zeros values of the parity matrix H. The 
corresponding transformation of the graph is performed 
by adding variable nodes corresponding to the multipli-

cation of the codeword symbols ik(x) by their associated 
nonzero H values and is illustrated on Figure 10.  

The function node that connects the two variable 
nodes ik(x) and hk(x). ik(x) performs a permutation of the 
message values. The permutation that is used to update 
the message corresponds to the multiplication of the ten-
sor indices by hk(x).from node ik(x) to node hk(x). ik(x) 
and to the division of the indices by hk(x) the other way. 
With this transformation of the factor graph, the parity 
node update is indeed a convolution of all incoming 
messages as in the binary case.  

To express the EMS algorithm, we use the following 
notations for the messages in the graph. Let {Vpv} v = 
1,…,dv be the set of messages entering a variable node of 
degree dv, and {Uvp}v = 1,…,dv be the output messages 
for this variable node. The index ‘p.v’ indicates that the 
message comes from a permutation node to a variable 
node, and ‘v.p’ is for the other direction. We define 
similarly the messages {Upc} c = 1,…,dc (resp. {Vpc} c = 
1,…,dc) at the input (resp. output) of a degree dc check 
node. The EMS algorithm works in the log-domain and 
uses reduced configuration sets to simplify the computa-
tional task. We define then:  

1
1 1

[ ,..., ]
[ ... ] log ( ,..., ) {0,1}

[0,...,0]
mm

m m

U i i
U i i i i

U

 
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 
  (30) 

As the log-density-ratio (LDR) representations of the 
messages. In the considered q-ary case, the message is 
composed of q -1 nonzero LDR values. The purpose of 
the EMS algorithm is to simplify the parity check node 
update by selecting only the most probable configuration 
sets of q-ary symbols which get involved in the parity 
check equations. To do that, we start by selecting in each 
incoming message pcU  the nq largest values (we will 

take nq fixed in our simulation results for simplicity rea-

sons) that we denote: ( )ck
pcu , kc = 1,…,nq. We use the 

following notation for the associated field element: 
( ) ( )ck
c x , so that we have:
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Figure 10. Transformation of the factor graph for the nonzero values in the H. 
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With these largest values, we build the following set 
of configurations: 

  11

1

1( )( )
1 1 1

Conf ( )

[ ( ),..., ( )] : [ ,..., ] 1,...,
cdc

cdc

q

dkk T
k d

n

x x k k n  









    k q

 (32)  

any vector of dc-1 field elements in this set is called a 
configuration. The set Conf(nq) corresponds to the set of 
configurations built from the nq largest probabilities in 
each incoming message. Its cardinality is: 

1Conf ( ) cd
q qn n  . 

we need to assign a reliability to each configuration; we 
take as in [28]: 

( )

1... 1

( ) c
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k
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c d

L u
 

  . 

The initialization of the decoder is achieved with the 
channel log-likelihoods defined as: L[i1,…,im]. 

The EMS proceeds in three steps as given below: 
Sum-step: variable node update for a degree dv node: 
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Permutation-step: from variable to check nodes: 
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The permutation step from check to variable nodes is 
performed using: .  1

( )h xP

Message update: for a degree dc check node: 
From the dc-1 incoming messages pcU , build the sets:  
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Post-processing: 
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3.4. Simulation Results 
 
We give here some simulation results to show the per-
formance of the proposed scheme. Since the target com-
parison is the work of Kozic & al [27], we use their re-
sults as benchmark for our proposed system. In his work, 
Kozic plots the obtained BER results for n = 512 and 
1024 as the size of the vector input bits together with Q = 
2 or 3 and a random sparse matrix with weight ρ = 3 or 6 
on each column. We take each time the best perform-
ances he obtained.  

Using the same size of input blocks, we have to 
choose the desired spectral efficiency. Due to the heavy 
computational task, we only take here: q = 4 and q = 8; 
i.e.; we work with GF(4) and GF(8) with spectral effi-
ciencies respectively equal to 2 and 3 bits/s/Hz. The ob-
tained results are drawn on Figure 11 for block size 512 
and on Figure 12 with block size 1024.  

One notices that the performances of our GF(q) LDPC 
codes of size 512 are quite similar to those of Vucetic & 
al for size 1024 and, using block size of length 1024, our 
designs outperform clearly those of Vucetic & al. The 
SNR gain for block size 1024 is approximately equal to 
0.5 dB for Q = 2 and for GF(8) and becomes 0.75 dB for 
Q = 2 and for GF(4). The improvement is slightly better 
in the case Q = 3 since we obtain gains of 1.0 dB for 
GF(8) and 1.5 dB for GF(4). This result is not really 
surprising since many authors have shown that LDPC 
codes over GF(q) exhibit better performances than their 
counterparts on GF(2). One can notice that the slopes i.e.; 
the diversity gain are the same each time in the waterfall 
region. A more detailed study should be done to deter-
mine the starting point SNR of the waterfall region with 
the EXIT-CHART curves. 

4. Conclusions 
 
In this paper we have proposed new insights of the work 
of Kozic et al. in the field of channel coding using 
chaos-based encoding process. First, using non-linear 
MOD-MAP mapping with matrices of small dimension, 
we are able, thanks to an original EM based guessing 
algorithm, to optimize the distance spectrum of the cor-
responding Chaos Coded Modulation (CCM) schemes and 
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Figure 11. BER performances for chaos based LDPC codes over GF(q); block-length size equal to: 512. 

 
Figure 12. BER performances for chaos based LDPC codes over GF(q); block-length size equal to: 1024. 

 
hence we can optimize the BER performances of such 
schemes. In the case where we use high dimensional 
sparse matrices for the MOD-MAP mapping, we can 
use a decoding process similar to those of LDPC codes. 
When we compare our obtained results with those of the 
former literature we noticed that, working on GF(q) en-
ables to obtain significant gains of approximately 1. dB. 
This encouraging result entails the necessity to further 
optimize the design to reduce the hardware complexity. 
In fact, despite the use of the Extended Min-Sum algo-
rithm, the obtained coding structure remains of prohibi-
tive complexity. 
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