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Abstract 
Background: Mammalian ovaries contain follicles containing an oocyte en-
closed by layers of granulosa cells (GC). Follicle growth and oocyte matura-
tion are largely dependent on GC numbers and viability, but there is no estab-
lished, reliable method for assessing the number of viable GC within an iso-
lated follicle. Methods: Centrifugation conditions and the Trypan Blue (TB) 
Exclusion assay were optimised for low cell densities compatible with the 
numbers of GC in follicles. Mouse ovarian follicles were disaggregated to 
produce a single cell suspension of GC which were examined by TB (n = 4), 
but also by crystal violet assay in a 96-well plate format after 24 h in vitro (n = 
3). GC viability in vitro was characterised further by using enzyme-linked 
immunoassays to quantify GC production of anti-Mullerian hormone (AMH) 
and estrogen. Results: The centrifugation and low cell density TB protocol 
could accurately measure the viability of 78 GC in 10 μL, with an intra-assay 
coefficient of variation (CoV) 22%, and inter-assay CoV 7%. The best follicle 
disaggregation method (30 min 37˚C exposure to 2 mg/mL collagenase prior 
to 30 min exposure to 0.025% hyaluronidase) yielded (656 ± 87) GC per antral 
follicle of which 82% ± 5% were viable. Culturing 312 - 20,000 GC per well for 
24 hours and assessing viability by crystal violet assay generated a linear cor-
relation between OD value and viable GC number (R2 = 0.98) and estrogen 
concentration per well (R2 = 0.92). 20,000 GC per well produced 143 ± 16 
pg/mL estrogen during 24 hours in vitro, but no detectable AMH. Conclusion: 
This is the first report describing the isolation of viable, estrogen-producing 
GC from murine follicles, and their subsequent culture. These procedures are 
transferrable to other species including humans and can be applied to screen-
ing the reproductive toxicity of pharmaceutical agents. 
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1. Introduction 

Follicles are isolated from ovarian tissue for many reasons [1]-[23] including in 
vitro maturation (IVM) to produce mature fertilizable oocytes [11] [20] [24] 
[25] [26] [27]. Isolated follicles are cultured in vitro in a number of different 
systems including 3D matrices [1] [24] [25] [28]-[36]. These methodologies of-
ten assess follicle growth in vitro, usually by measuring diameter, and occasio-
nally by assessing the number and viability of granulosa cells (GC) within the 
follicle [21] [24] [25] [29] [31] [35] [36] [37] [38] [39]. However, there are few 
reports describing reliable and accurate methods for assessing the number of vi-
able GC within an intact isolated follicle [39] [40] [41] [42], and the use of fluo-
rescent markers of cell viability such as Live-Dead stain or CMXRos [4] [15] [16] 
[17] [19] [43] [44] to accurately quantify GC numbers requires careful optimiza-
tion.  

Follicles are the functional unit of ovary and are comprised of an oocyte sur-
rounded by granulosa cells. The numbers of GC increase as the follicles grow 
and mature [45] [46] [47] [48]. Fixed haematoxylin and eosin-stained sections of 
murine ovaries were used to calculate the numbers of GC in primary (9 - 59), 
early to mid-secondary (60 - 185), late secondary to incipient antral (187 - 392) 
and antral (>395) follicles [42]. The basal laminae of murine follicles are com-
posed of laminins (α1, β2 and γ1), collagens, particularly type IV, nidogen and 
perlecan [20] [49] [50] [51]. In addition to these, the extra cellular matrix (ECM) 
within the follicle also contains hyaluronic acid [49]. The molecular structure of 
a follicle suggests that a single cell suspension of GC might be obtained by di-
gesting follicular basal lamina with collagenase IV, and the intra-follicular ECM 
with hyaluronidase.  

The Trypan Blue (TB) Exclusion assay is based on the principle that viable 
cells have intact membranes that prevent the uptake of the dye, whereas rup-
tured and non-functional cell membranes are permeable to the dye and hence 
non-viable cells stain blue [15] [17] [52] [53] [54] [55]. After staining with Try-
pan Blue, cells are assessed using an objective lens light microscope and a hae-
mocytometer [56]. The Trypan Blue Exclusion assay is an established and relia-
ble direct estimation technique for the differentiation and enumeration of live 
and dead cells and was reported to be more reliable than Live-Dead stain for es-
timating the viability of fresh and thawed follicles [44]. 

Piccinini F, Tesei A, Arienti C and Bevilacqua A [54] found no difference in 
viability when cells retrieved from two dimensional (2D) or three dimensional 
(3D) culture systems were assessed by TB. Cell viability and density measures 
varied by 5% and 20% respectively, with percent error in estimating cell num-
bers higher for 3D systems (21%) than for 2D systems (17%) [54]. Other studies 
reported coefficients of variation (CoV) for estimating cell numbers using TB 
from 4.5% [57] to 6.9% [58]. It has been noted that the viability of cells decreases 
as the time after adding the dye increases, and also after cells have been har-
vested using trypsin [59] [60] [61]. The TB assay does not differentiate between 
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metabolically active and non-active cells [62]. 
In general practice, an accurate and precise TB estimation requires 0.4 × 106 to 

1 × 106 cells per mL of cell suspension. Hence, suspensions with densities lower 
than 1 × 105 cells per mL cannot be assessed accurately using existing TB assay 
protocols [63] [64]. The number of granulosa cells in a single follicle, approx-
imately 400 in an incipient antral follicle [42] [45] [46] is too low for accurate 
assessment using TB.  

The aim of this study was to develop a technically simple and inexpensive 
method to disaggregate follicles and produce a single granulosa cell suspension 
which can be assessed in a modified Trypan Blue Exclusion assay. To do this, a 
preliminary study using human KGN, T47D and 184B5 cell lines was conducted 
to determine centrifugation conditions applicable to low cell densities, and to 
determine the limit of sensitivity of a standard TB Exclusion assay. Thereafter, 
the optimal centrifugation conditions were applied to the human granulosa 
KGN cell line to assess the reproducibility of the TB assay protocol. The result-
ing low cell-density TB Exclusion assay was then used to optimize follicle disag-
gregation methods before being applied to the characterization of granulosa cells 
obtained from disaggregated murine follicles. The TB evaluation was compared 
to follicle-derived GC that were cultured in a 96-well plate format before assess-
ing their viability by using a crystal violet assay [65]. 

2. Materials and Methods 

All the reagents used in this study were purchased from Sigma unless otherwise 
stated. 

2.1. Cell Lines and Culture Media 

184B5 (ATCC® CRL-8799™) and T47D (ATCC® HTB-133™) cell lines with pas-
sage numbers of 11 and 14 respectively were used for this experiment. The cells 
were cultured in RPMI with 10% foetal calf serum (FCS, DKSH, Melbourne, 
AUS) and 1% penicillin (10,000 units/mL) and streptomycin (10 mg/mL) at 
37˚C with 5% CO2, and sub-cultured when 80% confluent. The KGN granulosa 
cell line derived from a human granulosa cell carcinoma [66] [67] was main-
tained in Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 supplemented 
with 1% insulin (5 ug/mL), transferrin (5 ug/mL) and selenium (5 ng/mL, ITS) 
and 10% FCS and 1% penicillin (10,000 units/mL) and streptomycin (10 
mg/mL) and sub-cultured every 2 - 3 days as required using trypsin ethylene 
diamine tetra-acetic acid (EDTA) to detach cells. 

2.2. Effect of Centrifugation on Cell Retrieval 

A preliminary study used the KGN granulosa cell line to identify the optimal 
centrifugation conditions for maximizing the retrieval of viable cells. A 
low-density cell suspension containing 600 cells in 500 µL of media was distri-
buted to 12 centrifuge tubes (1.5 mL) which were centrifuged at room tempera-
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ture for 4, 5 or 6 minutes at 1306 g, 2040 g, 2938 g, or 4000 g. Supernatants were 
removed and the cells were re-suspended in 10 µL of media and 10 µL Trypan 
Blue. The numbers of viable and dead cells were determined in a Trypan Blue 
Exclusion assay. This experiment was repeated on four separate occasions (n = 
4). 

2.3. Trypan Blue Exclusion Assay Protocol 

Cell suspensions were diluted 1:1 with Trypan Blue (2 mg/ml Trypan Blue in 
phosphate buffered saline; PBS) and 10 µL added to each side of a haemocyto-
meter, i.e. onto each of two grids. Cells were viewed using an objective lens mi-
croscope at 10× magnification (Leica, Leitz Wetzlar, Germany). The numbers of 
unstained viable and blue-stained dead cells in all 9 large squares of the haemo-
cytometer (Figure 1) were counted, and the average number of cells per large 
square determined. These were adjusted by the dilution factor and converted to 
reflect the number of cells in 10 µL cell suspension using the equations shown in 
Figure 1 [52] [68]. 

2.4. Accuracy of the Trypan Blue Assay  

The ability of the Trypan Blue assay to accurately quantify viable cells was ex-
amined using 184B5 and T47D cell lines. The number of viable cells in each 
parent cell suspension was determined in the Trypan Blue Exclusion assay, and 
the volumes of parent cell suspension that contained 1250 (184B5), 930 (T47D) 
or 953 (T47D) viable cells were added to centrifuge tubes and the volume made  

 

 
Figure 1. Haemocytometer chamber. 

Haemocytometer

One chamber of 
a Haemocytometer

Large Squares

Single Large Square

Total number of Live cells = (Total number of live cells in 9 large squares ÷ 9) X dilution 
factor X 104 X volume of cell suspension

Total number of Dead cells = (Total number of dead cells in 9 large squares ÷ 9) X 
dilution factor X 104 X volume of cell suspension
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up to 100 µL with media. Four 1 in 2 dilutions were performed, and three sepa-
rate dilution series were made from each parent cell suspension. Cells were cen-
trifuged at 2040 g for 5 minutes and the supernatant removed before re-suspending 
the cells in 10 µL of media and 10 µL of Trypan Blue. The numbers of cells re-
trieved were determined in the Trypan Blue Exclusion assay. 

2.5. Coefficient of Variation (CoV) of the Trypan Blue Assay 

Three single cell suspensions of KGN granulosa cells containing 2500, 1250 and 
156 cells per mL of media were produced on four separate occasions (n = 4). 500 
µL of each cell suspension were added to 10 separate centrifuge tubes, so that 
they contained 1250, 625 or 78 KGN cells per tube. These were centrifuged at 
2040 g for 5 minutes at room temperature and the supernatants removed before 
re-suspending the cells in 10 µL of media and 10 µL of Trypan Blue. The num-
bers of viable and dead cells were determined in a Trypan Blue Exclusion assay. 
Coefficients of variation (CoV) were calculated by dividing the standard devia-
tion (SD) by the mean of viable cell numbers for each of the cell densities within 
each of the experimental replicates (intra-assay CoV) and between the experi-
ments (inter-assay CoV, n = 4) and presented as a percentage; CoV (%) = 
(SD/mean) × 100 [69].  

2.6. Mouse Ovary Collection 

Female mice that were surplus to the College of Medicine and Public Health 
Animal Facility breeding colony needs were allocated to routine culling proce-
dures. The Flinders Animal Welfare Committee approved our use of cull ani-
mals on condition that no requests were made for specific strains or ages. Swiss 
mice (n = 13) aged 6 - 8 weeks as calculated by their weight (20 - 25 grams) were 
used in these studies. Mice were killed by cervical dislocation and the ovaries 
were isolated by dissection. The ovaries and attached oviducts were placed in 
warm Hanks Balanced Salt Solution (HBSS) and transported to the laboratory at 
37˚C. Whole ovaries were dissected free of attached tissues, blotted dry, cut in 
half and weighed.  

2.7. Follicle Isolation from Ovarian Tissue 

Follicles were isolated from ovarian tissue by disaggregation with 0.5 mL of 2 
mg/mL collagenase IV (Worthington, 295 units/mg) in DMEM/F12 for 30 mi-
nutes at 37˚C in a humidified 5% CO2 incubator. After incubation 100 µL FCS 
were added [70] [71] and each half ovary was mechanically disaggregated with 
22 gauge needles for 5 minutes. All released follicles were collected and trans-
ferred to a 96-well plate containing DMEM/F12.  

2.8. Allocation of Follicles into Size Cohorts 

The diameters of follicles collected after ovarian tissue disaggregation were de-
termined by using a camera (Scientific C-Mount Camera, 9MPX) mounted on a 
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dissection microscope to take a microphotograph of the well containing all the 
follicles from one half ovary. The well diameter was provided by the manufac-
turer and used to calibrate the Image J software. The area in pixels of each fol-
licle in the well was determined by applying the circle tool to each follicle twice 
and calculating the average area. The area was used to calculate follicular diame-
ter. The diameters of the follicles were used to allocate follicles to primordial, 
primary, early to mid-secondary, late secondary to incipient antral, or antral 
stage cohorts, according to the size ranges described by Griffin J, Emery BR, 
Huang I, Peterson CM and Carrell DT [42]. 

2.9. Follicle Disaggregation Using Hyaluronidase  

Follicles were disaggregated using 50 µL hyaluronidase (1228 units/mg) at two 
concentrations (0.01% and 0.025%). A group of three secondary follicles from 
one mouse were exposed to 0.01% and another group of 3 secondary follicles 
from the same mouse were exposed to 0.025% hyaluronidase, for 2 hours at 
room temperature. 50 µL of FCS were added and the granulosa cells isolated 
from each group of 3 follicles were centrifuged at 2040 g for 5 minutes. The su-
pernatants were discarded, and cells re-suspended in 20 µL DMEM/F12 with 
10% FBS, and 20 µL Trypan Blue. This experiment was repeated using secondary 
follicles from two more mice (n = 3, a total of 18 secondary follicles). 

2.10. Follicle Disaggregation Using Combinations of Collagenase  
IV and Hyaluronidase 

Three antral follicles from each half ovary from four mice (n = 4) were isolated 
(i.e. 48 follicles with mean diameter of 303 ± 65 µm from 8 ovaries). Four groups 
of three antral follicles from each mouse were exposed to collagenase IV (2 
mg/mL) in a 96-well plate for 15, 30 or 45 minutes before adding 0.025% hyalu-
ronidase. No hyaluronidase was added to the 4th group of follicles which were 
incubated in collagenase IV for 60 minutes. Follicles in all the treatment groups 
were incubated at 37˚C with one minute shaking every 15 minutes. After 60 mi-
nutes incubation, 50 µL of FCS were added and all the contents of each well were 
transferred to 1.5 mL centrifuge tubes. Each well was washed with 1X PBS and 
this was used to make the final volume in the centrifuge tubes up to 500 µL. The 
granulosa cells were centrifuged at 2040 g for 5 minutes. The supernatants were 
discarded, and the isolated cells were re-suspended in 10 µL of DMEM with 10% 
FCS. The numbers of viable cells were then determined in a Trypan Blue Exclu-
sion assay as described previously. 

2.11. Crystal Violet (CV) Assay Assessment of GC Viability 

Granulosa cells were obtained from 250 - 265 disaggregated follicles from two 
mice on each of three separate occasions (n = 3). Aliquots from each of the three 
single GC suspensions were assessed in a Trypan Blue Exclusion assay to deter-
mine the numbers of viable cells. These primary-derived murine GC were added 
to sterile 96-well flat bottom plates in a final volume of 0.1 mL per well of 
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DMEM/F12 at densities of 0 to 20,000 cells per well, with each cell density in 
triplicate wells. The primary-derived murine GC were incubated at 37˚C with 
5% CO2 for 24 h to allow cell adherence [72]. The non-adherent, non-viable cells 
were removed by withdrawing supernatant from the wells. The supernatant was 
stored (−20˚C) for the later measurement of anti-Mullerian hormone (AMH) 
and estradiol by Enzyme-linked Immunoassay (EIA). The adherent viable cells 
in the wells were rinsed with sterile phosphate buffered saline (PBS) before add-
ing 50 μL of 0.5% crystal violet in 50% methanol for 10 minutes, followed by the 
addition of 50 μL of 33% acetic acid and measurement of the absorbance at 570 
nm with correction at 630 nm [65] [73].  

2.12. Estradiol Enzyme Immunoassay (EIA) 

The conditioned media were examined in a competitive Estradiol (E2) EIA 
(Cayman Chemical ELISA, Ann Arbor, MI, USA) that uses a mouse anti-rabbit 
IgG, and an acetylcholinesterase estradiol tracer. The manufacturer reports a 
detection range from 6.6 to 4000 pg/mL, and an intra-assay coefficient of varia-
tion (CoV) of 7.8% to 18.8%. For this study, the estradiol standard was diluted in 
the DMEM/F12 cell culture medium to give concentrations that ranged from 6.6 
to 4000 pg/mL. All supernatants from three separate primary-derived GC cul-
ture experiments were examined in one EIA, in which the standard curve R2 
value was 0.98. 

2.13. Anti-Mullerian Hormone (AMH) Enzyme Immunoassay (EIA) 

Conditioned media were examined in a two-immunological step sandwich type 
EIA (Immunotech, Marseille Cedex, France) that uses an anti-AMH monoclonal 
antibody for capturing AMH, and a biotinylated monoclonal antibody together 
with streptavidin-peroxidase for detecting bound AMH in the wells. The manu-
facturer reports a detection limit of 1 pg/mL, an intra-assay CoV of 12%, and an 
inter-assay CoV of 14.2%. For this study, the AMH standards were diluted in 
DMEM/F12 cell culture medium to give concentrations that ranged from 0 to 
150 pM. All supernatants from three separate primary-derived GC culture ex-
periments were examined in one EIA, in which the standard curve R2 value was 
0.99. 

2.14. Statistical Analysis 

The effect of centrifugation on viable cell retrieval was analysed by 2-way 
ANOVA with Bonferroni post-test. The expected numbers of T47D, 184B5 and 
KGN cells were compared to the numbers counted in the Trypan Blue Exclusion 
assay in a Chi Square analysis. 

The numbers of GC obtained by follicle disaggregation using 0.01% or 0.05% 
hyaluronidase were compared in a Students Paired T-test. The numbers of GC 
obtained after follicle disaggregation using a combination of Collagenase IV and 
Hyaluronidase were compared to disaggregation using 0.05% hyaluronidase 
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alone by applying a two-way ANOVA with Bonferroni post-test. Statistical sig-
nificance was assigned at p < 0.05. 

3. Results 
3.1. Effect of Centrifugation on Viable Cell Retrieval 

The centrifugal force significantly affected cell retrieval (p = 0.0012 overall effect 
in a 2-way ANOVA) but the duration of centrifugation had no effect (p = 0.11). 
Centrifugation at 2040 g for five minutes retrieved the highest number of viable 
cells (583 ± 14, p > 0.05) and the highest total number of cells 608 ± 14 (p > 0.05, 
Figure 2). Under these conditions, 96% of the cells were viable.  

3.2. Accuracy of the Trypan Blue Assay  

There was no significant difference between the numbers of cells calculated to be 
in a dilution series, and the number of cells counted directly in a Trypan Blue 
assay (Figure 3). 

3.3. Coefficients of Variation of the Trypan Blue Exclusion Assay 

The intra-assay co-efficient of variation decreased from 22.3% to 5.4% as the 
number of cells in the cell suspension increased, and so did the inter-assay CoV 
(Table 1). 

3.4. Follicle Disaggregation Using Hyaluronidase  

There was no significant difference in the number or viability of GC obtained  
 

 
Figure 2. Effect of centrifugation on viable cell retrieval. KGN cells (600 cells in 500 µL of 
media) were centrifuged (1306 g, 2040 g, 2938 g and 4000 g) for 4, 5 or 6 minutes on four 
separate occasions (n = 4). Supernatants were removed and cells resuspended in 10 µL 
culture media and 10 µL of Trypan Blue before counting dead and viable cells using a 
haemocytometer and 10x objective lens microscope. Mean ± SD of cells in each cell 
suspension shown. Data were analysed by 2-way ANOVA with Bonferroni post-test, 
significance was assigned at p < 0.05. 
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(a) 

 
(b) 

Figure 3. Accuracy of the Trypan Blue Assay. Three parent cell suspensions of the human 
cancer cell lines; T47D, 184B5, (a) and KGN (b) were assessed using a standard Trypan 
Blue Exclusion assay. The volumes of cell suspension that contained 1250 viable 184B5 
and KGN cells, or 930 viable T47D cells were made up to 100 µL, then subjected to four 
1:2 dilutions. The numbers of cells calculated to be in each preparation were designated 
“Expected”. The cells were centrifuged at 2040 g for 5 minutes, then re-suspended in 10 
µL of media and 10 µL of Trypan Blue was added. Each stained cell preparation was as-
sessed twice using a haemocytometer and 10× objective lens microscope, and the num-
bers of viable cells in the original 100 µL cell suspension determined. The experiment was 
repeated on three separate occasions (n = 3) and the mean ± SD shown. Data was ana-
lyzed with Chi Square test. 
 
Table 1. Intra and inter assay Coefficients of Variation (CoV). 1250, 625 or 78 KGN cells 
per 500 µL of media, with each cell density examined in 10 separate centrifuge tubes, were 
centrifuged at 2040 g for 5 minutes. Supernatants were removed before re-suspending the 
cells in 10 µL of media and 10 µL of Trypan Blue. The experiment was repeated on four 
separate occasions (n = 4). The numbers of viable and dead cells were determined in a 
Trypan Blue Exclusion assay. CoV (%) = (SD/mean) × 100. 

% CoV 78 cells 625 cells 1250 cells 

Intra-assay 22.27 7.57 5.38 

Inter-assay 6.97 4.14 1.57 

 
from secondary follicles disaggregated with 0.01% or 0.025% hyaluronidase 
(Figure 4). The numbers of viable GC collected after disaggregation with 0.025% 
hyaluronidase however, were closer to those enumerated previously in H & E 
stained sections of mouse ovaries [42]. 
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Figure 4. Follicle disaggregation using hyaluronidase. Groups of three secondary follicles 
were disaggregated with 0.01% or 0.025% hyaluronidase in DMEM/F12 for 2 h. The iso-
lated cells were centrifuged at 2040 g for 5 minutes then re-suspended in 20 µL DMEM 
with 10% FBS before viable cell numbers were counted by Trypan Blue Exclusion assay. 
The experiment was repeated with 3 follicles for each hyaluronidase concentration from 
one mouse on three separate occasions (n = 3) and mean ± SD total cells and % viable 
cells per secondary follicle shown. Data were analysed using a students’ T-test. 

3.5. Follicle Disaggregation Using Combinations of Hyaluronidase  
and Collagenase IV 

Antral follicles that were incubated with 2 mg/mL collagenase IV for 30 minutes 
then with 0.025% hyaluronidase for 30 minutes yielded the highest total number 
of granulosa cells per follicle (656 ± 87, p < 0.05) and the highest number of via-
ble granulosa cells (542 ± 95, p < 0.05, Figure 5). The percent viability of granu-
losa cells was 82% ± 5% under these conditions, higher than when follicles were 
disaggregated with hyaluronidase alone (Figure 4). Follicular disaggregation 
using only collagenase (without hyaluronidase) resulted in isolation of the lowest 
number of GC (341 ± 69), and 76% of these were viable. 

3.6. Primary-Derived Granulosa Cell Viability and Hormone  
Production in Vitro 

Primary-derived GC obtained from disaggregated mouse follicles generated a li-
near correlation (R2 = 0.98) (Figure 6(a)) between cell density per well and 
crystal violet absorbance (570 nm) after 24 h in vitro (Figure 6). Prima-
ry-derived granulosa cells did not produce any detectable AMH even at 20,000 
viable GCs per well, but there was a density-dependent increase in basal estrogen 
(E2) production (R2 = 0.92) (Figure 6(b)).  

4. Discussion 
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Figure 5. Collagenase IV and hyaluronidase disaggregation of murine follicles. Four 
groups of three antral follicles (348 ± 26 µm) were incubated in collagenase IV (2 mg/mL) 
for 15, 30, 45 and 60 minutes (shown on x-axis) before the addition of Hyaluronidase 
(0.025%) to the 15 - 45 minute groups. The isolated granulosa cells were assessed in a 
Trypan Blue Exclusion Assay. The experiment was repeated using follicles from four mice 
(n = 4). Data analysed by two-way ANOVA with Bonferroni post-test. Mean ± SD 
granulosa cells per follicle shown. P < 0.05 * compared to same cell category. 
 
enumerating the number of viable and dead GC in an isolated ovarian follicle. 
To our knowledge, this is the first report of a straightforward process for disag-
gregating isolated follicles to produce a suspension of primary-derived GC from 
naturally cycling unstimulated adult mice, the in vitro culture of these GCs in a 
96-well plate format, and their production of E2 and AMH. 

The standard Trypan Blue protocol requires more than 1 × 105 cells per mL in 
the parent cell suspension, or a minimum of 100 cells counted on each grid [63] 
[64]. This limitation directed the development of our protocol. After allowing 
for dilution of a cell suspension with Trypan Blue dye, a minimum volume of 20 
uL of cell suspension containing a minimum of 200 cells was required to allow 
the duplicate assessment of a GC preparation. Primary to mid-secondary fol-
licles only contain 9 - 185 GC [42], therefore follicles were disaggregated in 
groups of three, to generate sufficient GC for an accurate assessment. The accu-
racy of this protocol is expected to decrease when applied to small primary fol-
licles, which might only contain 9 GC, and we therefore recommend that the fol-
licle disaggregation group size should be increased accordingly.  

Previous reports describing the enumeration of granulosa cells in fixed ova-
rian sections [42] [45] [46] were comparable to the numbers of GC counted in 
this study after follicle disaggregation using 30 minute exposure to collagenase 
IV followed by 30 minute exposure to hyaluronidase. Under these conditions 
82% of the GCs were viable. The loss of 18% viability may be attributed to the 
enzymes used to disaggregate the follicle [74], or to the disruption of the tight 
junctions between GC [28], or to mechanical sheer force during centrifugation.  
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(a) 

 
(b) 

Figure 6. Estrogen produced by primary-derived granulosa cells. Primary-derived 
granulosa cells isolated from disaggregated murine follicles were cultured for 24 hours at 
37˚C with 5% CO2 at densities of 0 to 20,000 cells per well in a 96-well flat bottom plate 
on three separate occasions (n = 3). After 24 h, the numbers of viable cells in each well 
were determined in a crystal violet assay. Mean ± SD (n = 3) OD570 nm (with correction 
at 630 nm) was plotted against cell densities and fitted to a linear trendline (a). Condi-
tioned media after 24 h culture were examined in a competitive estradiol immunoassay 
and E2 plotted against cell density (b). 
 
However, others have reported that approximately 80% of granulosa cells in in-
tact follicles were viable when assessed by whole follicle Live-Dead staining [4] 
[15] [16] [17] [32], which suggests that our follicle collection and disaggregation 
procedure had no adverse effects on the viability of the GC. 

The Trypan Blue Exclusion assay is notorious for low accuracy, poor reprodu-
cibility and high variation between counts of the same preparation of cells, 
thought to be caused by non-specific binding of the TB dye to cellular artifacts 
[54]. Our optimized TB assay has coefficients of variation similar to, or lower 
than those reported previously [54] [57] [58]. In the present study, when prepa-
rations containing 625 granulosa cells were counted on four separate occasions, 
the intra-assay CoV of 7.6%, and the inter-assay CoV was 4%. Since the GC were 
isolated from groups of three follicles, this meant that when there was an average 
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of 209 GCs per follicle (equivalent to a late secondary stage follicle [42], the 
CoVs for the TB assay were of the same order of magnitude as those reported by 
the manufacturers of commercially available EIA kits, and the CoVs for cell 
numbers corresponding to groups of three small primary follicles were within 
the ranges previously found acceptable for other cell-based assays [75]. From 
this we conclude that we developed an assay protocol with relatively high preci-
sion and accuracy.  

Although there are numerous reports of primary-derived human granulosa 
cells being cultured in vitro [76]-[82] and many instances in which GC obtained 
from the follicles of larger mammals have been cultured [83] [84] [85] [86] [87], 
as far as we know this is the first report describing the in vitro culture of GC ob-
tained from the follicles of naturally cycling adult mice in a 96-well format. Cell 
viability assays that use the high throughput 96-well plate formats benefit from 
the application of control standard plots, in which known cell densities are re-
lated to optical density values [88] [89] [90]. Previously granulosa cells have 
been reported as having a doubling rate of 46.4 hours [67], hence we considered 
it likely that the murine GC would not proliferate in the first 24 h, but would 
only adhere to the floor of the wells [82]. Since this is the first study to examine 
primary-derived murine GC in vitro, we established baseline control conditions, 
which can be referred to in future studies to examine the effects of gonadotro-
phins such as follicle stimulating hormone (FSH), and other reproductive para-
meters, during longer culture periods.  

Murine follicles cultured in vitro increase E2 production when stimulated by 
Follicle Stimulating Hormone (FSH) [33] [91] [92], and Adriaens I, Cortvrindt R 
and Smitz J [92] found that intact follicles containing approximately 20,000 GC 
produced the equivalent of 125 pg/mL E2 every 48 h. We found that 20,000 mu-
rine GC in a monolayer in vitro produced 143 pg/mL E2 in the first 24-h of cul-
ture. The difference may be because only 80% of the GC may have been viable in 
the follicles in vitro, whereas it was more likely that all the primary-derived GC 
were viable in the monolayer. On the other hand, the GC monolayer did not 
produce any detectable AMH, even though Kevenaar ME, Meerasahib MF, 
Kramer P, van de Lang-Born BM, de Jong FH, Groome NP, Themmen AP and 
Visser JA [93] reported data suggesting that a follicle containing approximately 
100 GC may produce 1.3 pM AMH in vivo. Since the analytical sensitivity of the 
AMH kit was 1 pM, we were therefore surprised that no AMH was produced by 
20,000 GC in vitro. There are two key differences between our in vitro system 
and the in vivo situation; the in vitro system did not include FSH and hence the 
GC were not stimulated to proliferate [94] [95], and follicle disaggregation de-
taches GC from other GCs and the oocyte which interfered with the intercellular 
communication essential for the production of AMH [28] [32] [96] [97]. 

5. Conclusion 

Although the Trypan Blue Exclusion assay is the standard laboratory workhorse 
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for assessing cell viability, it has not previously been applicable to suspensions 
with low cell densities. This study presents a straightforward and simple method 
to assess the viability of suspensions with cell densities as low as 7800 cells per 
mL (less than 10 cells/µL). There are few reports of follicles isolated from ova-
rian tissue being disaggregated to produce a single cell suspension [19] [98], but 
the ability to obtain GC from pools of follicles of defined size cohorts will allow 
examination of reproductive parameters that are affected by follicular develop-
ment, such as AMH regulation or sensitivity to chemotherapeutics. 
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