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Abstract

The presence of the dark energy allows both the acceleration and the expan-
sion of the universe. In the case of a constant equation of state for dark ener-
gy we derived an analytical solution for the Hubble radius in terms of the
hypergeometric function. An approximate Taylor expansion of order seven is
derived for both the constant and the variable equation of state for dark
energy. In the case of the Cardassian cosmology, we also derived an analytical
solution for the Hubble radius in terms of the hypergeometric function. The
astronomical samples of the distance modulus for Supernova (SN) of type Ia
allows the derivation of the involved cosmological in the case of constant eq-
uation of state, variable equation of state and Cardassian cosmology.
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1. Introduction

The name dark energy started to be used by [1] in order to explain both the
expansion and both the acceleration of the universe. In a few years the dark
energy was widely used as a cosmological model to be tested. Many review
papers have been written; we select among others a general review by [2] and a
theoretical review by [3]. The term wCDM has been introduced to classify the
case of constant equation of state and we will use in the following wzCDM to
classify the variable equation of state. The Cardassian cosmology started with [4]

and was introduced in order to model both the expansion and the acceleration of
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the universe, the name from a humanoid race in Star Trek. As an example [5]
derived the cosmological parameters for the original Cardassian expansion and
the modified polytropic Cardassian expansion. The cosmological theories can be
tested on the samples of Supernova (SN) of type Ia. The first sample to be used
to derive the cosmological parameters contained 7 SNs, see [6], the second one
contained 34 SN, see [7] and the third one contained 42 SN, see [8]. The above
historical samples allowed to derive the cosmological parameters for the
expanding and accelerating universe. At the moment of writing the astronomical
research is focused on value of the distance modulus versus the redshift: the
Union 2.1 compilation contains 580 SNs, see [9], and the joint light-curve
analysis (JLA) contains 740 SNs, see [10]. The above observations can be done
up to a limited value in redshift z~1.7, we, therefore, speak of evaluation of
the distance modulus at low redshift. This limited range can be extended up
z ~ 8, the high redshift region, analyzing the Gamma-Ray Burst (GRB) and, as
an example, [11] has derived the distance modulus for 59 calibrated high-
redshift GRBs, the so-called “Hymnium” GRBs sample. This paper reviews in
Section 2.1. The ACDM cosmology evaluates the basic integral of wCDM
cosmology in Section 3, introduces a Taylor expansion for the basic integral of
wzCDM cosmology in Section 4 and analyzes the Cardassian model in Section 5.
The parameters which characterize the three cosmologies are derived via the

Levenberg-Marquardt method in Section 6.

2. Preliminaries

This section reviews the ACDM cosmology and the adopted statistics.

2.1. The Standard Cosmology

In ACDM cosmology the Hubble distance D,; is defined as

c
D, =—. 1
" (1)
The first parameter is Q,,
8nGp,
Q, = ’, 2
T )

where G is the Newtonian gravitational constant, H, is the Hubble constant
and p, isthe mass density at the present time. The second parameter is Q,
Ac’

=—, 3
T 3)

A

where A is the cosmological constant, see [12]. These two parameters are con-
nected with the curvature Q, by
Qu+Q, +Q, =1. (4)

The comoving distance, D is

(5
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where FE (Z) is the “Hubble function”

2) =0 (1+2) +Q (142) +Q, . (6)
In the case of ), , we have the flat case.

2.2. The Statistics

The adopted statistical parameters are the percent error, ¢ , between theoretical
value and approximated value, the merit function y* evaluated as

2
N . - .
ZZ — Z|:yl,theo yl,()h&‘ :| (7)

i=1 J[

where y, . and o; represent the observed value and its error at position 7
and y,,, the theoretical value at position 4 the reduced merit function 2o
the Akaike information criterion (AIC), the number of degrees of freedom
NF =n—k where nis the number of bins and k is the number of parameters
and the goodness of the fit as expressed by the probability Q.

3. Constant Equation of State

In dark matter cosmology, wCDM, the Hubble radius is
1

J1+2) 0y +Q,, (1+2)

where wparametrizes the dark energy and is constant, see Equation (3.4) in [13]

d, (29, mQ), ) = (8)

33w

or Equation (18) in [14] for the luminosity distance.
In flat cosmology
Qu+Q,, =1, 9)

and the Hubble radius becomes
1

d, (z; QM,W) = - —. (10)
J1+2) @ +(1-0y ) (1+2)
The indefinite integral in the variable z of the above Hubble radius, Iz, is
IzzQ W jd ZQ w (11)
3.1. The Analytical Solution
In order to solve the indefinite integral we perform a change of variable
l+z=1"
Iz(t;QM,w):lj ! dt. (12)
3 \/—t((—l + Q)" - )i
The indefinite integral is
" —(1-Q
-2,F, l’_lwfl;l_lwfl;_M
27 6 6 Q,
I(5;Qy, w) = (13)
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where ,F (a,b;c;z) is the regularized hypergeometric function, see Appendix
B. This dependence of the above integral upon the hypergeometric function has
been recognized but not developed by [15].

We now return to the variable z the redshift, and the indefinite integral

becomes

1 1 1 (—z3+322+3z+1)w(1—QM)
2" 6 -Q,
Iz(z;Q,,w) = . (14)
( " ) 1/QM{’/Z3+322+32+1
We denote by F(z;Q,,,w) the definite integral
F(z;QM,w):Iz(z:z;QM,w)—Iz(z:O;QM,w). (15)

_22E

3.2. The Taylor Expansion

We evaluate the integrand of the integral (11) with a first series expansion, T,
about z=0, denoted by / and a second series expansion, 7, about z=1,
denoted by 7. The order of expansion for the two series is 7. The integration of

T, inzisdenoted by Iz, and gives
i=7 )
Iz, (2:Qy.w) =2 ¢,,7 (16)
i=1

and the coefficients, ¢, ;, are reported in Appendix A. The integral, Iz, of
the second Taylor expansion about z=1, 7, is complicated and we limit
ourselves to order 2, Iz, ,, see Appendix A. The two definite integrals,

F,(2:Qy,w) and F,,(zQy,w) are

F o (zQy,w)=Iz,; (2= z,Qy,w)— Iz, ; (2 = 0;Q,,, W), (17)
and

Fui(2:Qy,w) =1z, (2= QW)= Iz, , (2 = 0;Q,,,w). (18)

The percent error, &, between the analytical integral F and the two

approximations, F;, and £}, isevaluated as

F
5, =[1-—11x100 (19)

F
Sy =‘1— ;’7 x100. (20)

On inserting the astrophysical parameters as reported in Table 1 we have
0, =9, at z~0.58,see Figure 1.
The above value in z will, therefore, be the boundary between region I and

region II for the Taylor approximation of the definite integral

F, . (z;,Q,,w), 0.58<z<1.4
F(zQy,w) = 1 (258, w) (21)
F1,7 (z;Q2,w), 0<z<0.58
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Table 1. Numerical values from the Union 2.1 compilation of y*, y, and Q, where kstands for the number of parameters.

Cosmology SNs & parameters Ve 7 Q
ACDM 580 3 H,=69.81; O, =0239; Q =0.651 562.61 0975 0.658
wCDM

Hypergeometric ~ 580 3 H,=(70.02£0.35); Q, =(0.277£0.025); w=(-1.003+0.05) 562.21 0.974 0.662
solution

nCbM Tay,lor 580 3 H,=(70.02£047); Q, =(0282+0.07); w=(-1.01+0.2) 56221 0.974 0.662

approximation

weCDMTaylor o) 1y (70.08£031); Q, =(0284£0.01); w,=(~1.03£0031); w =(0.1£0018); 56221 0976 0.651

approximation

Cardassian ~ 58k0 3 H,=(70.15£0.38); Q, =(0.305+0.019); n=(-0.081+0.01) 562.35 0.974 0.661

10°3
10"
\ —_—
— — —
1021
L]
1027
107
101 : : : .

04 06 08 10 12 14
V4

Figure 1. Numerical values of ¢, (full red line) and ¢, (dashed blue line) as

function of the redshift, parameters as in Table 1.

4. Variable Equation of State

The dark energy as function of the redshift is assumed to be

w(z)=w, +w, ﬁ (22)

where w, and w, are two parameters to be fixed by the fit. The Hubble radius

in wzCDM cosmology is

1
dH(z;QM,WO,wl): (23)

wz

\/(1 + 2)3 Q, +(1_QM )(1+Z)3W0+3W]+3 e_SE

which is the same as Equation (20) in [14]. The above integral does not yet have
an analytical expression and we evaluate the integrand with a first series
expansion about z=0 and a second series expansion about z=1. Also here
the order of the two series expansion is 7. The integration in z is denoted by

Iwz, ; and gives
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i=7
Iz, (2:Qy, Wy w ) =D ¢, 2" (24)
i=1

and the first five coefficients, ¢, ,, are reported in Appendix C. The integral,
Iwz,, ; of the second Taylor expansion about z=1 is complicated and we limit
ourselves to order 2, Iwz,,, see Appendix C. The two definite integrals,

FWZM(Z;QM,WO,WI) and FWZHJ(Z;QM,WO,WI) are

Fwz, 5 (29, we, W, ) = Iwz, 5 (2= Q1 wo, wy ) = Iwz, 5 (2= 0;Qy, Wy, W), (25)
and
FWZ”j(Z;QM,WO,Wl)ZIWZ”J(Z=Z;QM,WO,W])—[WZ”J(Z:O;QM,WO,WI).(26)

Finally the definite integral, Fwz, is

Fwz), , (Z;QM,WO,W1 ), 0.58<z<1.4

F ;L W, = 27
WZ7(Z Mo Wl) {FWZ,J(Z;QM,WO,W]), 0<z<0.58 27)

The above definite integral can also be evaluated in a numerical way,

Fwz,,,, (2;Q, we, W)

5. Cardassian Cosmology

In flat Cardassian cosmology the Hubble radius is

1
J+2) 0, +(1-0,) (142"

where 11 is a variable parameter, n = 0 means ACDM cosmology, see Equation
(17) in [14]. The indefinite integral in the variable z of the above Hubble radius,

dy (z:Qy,w,n) = (28)

Iz, 1is
Iz(z;QM,n):JdH (z:Qy,n)dz. (29)
Also here in order to solve the indefinite integral we perform a change of
variable 14z =¢"
1 1
I2(t;Qy,n) == dt (30)
" 3I\/—t"QM +Q t+1"1
The indefinite integral is
o o6n=7 " (Qy -1
~2,F [ 1/2,~(6n-6) 16n=7, (©u-1)
6n-6 Qy
Iz(t;Qy,n) = (31)

where ,F (a,b;c;z) is the regularized hypergeometric function. We now return

to the original variable zas function of zwhich is

n-1
L ((+2)) (@, -1
—22F1 1/2,—(6}1—6)_1 ,Zn 7’(( ) ) ( M )
n—6 Qy

Iz(z;Qy,n) = . (32)

Jo, {(1+:2)
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We denote by F,(z;Q,,n) the definite integral
FC(Z;QM,n):Iz(zZZ;QM,n)—IZ(z:O;QM,n). (33)

6. The Distance Modulus

The luminosity distance, d, , for wCDM cosmology in the case of the analytical

solution is
d, (z:¢,Hy, QW) :HL(HZ)F(z;QM,w), (34)
0

where F (Z;QM,W) is given by Equation (15) and in the case of the Taylor

approximation is
d, (Z;C,HO,QM,W)=L(1+Z)F7(Z;QM,W), (35)
0

where F,(z;Qy,w) is given by Equation (21). The distance modulus in the

case of the analytical solution for wCDM is

(m—M)=25+5log,, (d, (z:¢,H,,Qy,w)), (36)
and in the case of the Taylor approximation

(m—=M), =25+5log,,(d,, (z:¢c. Hy,Qy, w)). (37)

In the case of variable equation of state, wzCDAM, the numerical luminosity

distance is

d (Z;C,HO,QM,WO,Wl)ZHL(I-FZ)FWZ

0

L,num num (Z;QM7W0’W1)3 (38)

where Fwz,,, (2;Q,,w,,w) is the definite numerical integral and the Taylor

num

approximation for the luminosity distance is

dy;(z50,Hy, Qp, wo, ) = Hi(l +2) Fwz, (2:Qy, Wy, W, ) (39)
0

where Fwz, (z;Q,,,w,,w) is given by Equation (27). In wzCDJM, the numerical
distance modulus is

(m-M), =25+5log,(d

nun L,num

(z:6,H,y, Qw0 W), (40)
and the Taylor approximated distance modulus is
(m=M), =25+5log,, (d; (z:¢, Hy, Qy . wyw ) )- (41)

In the case of Cardassian cosmology the luminosity distance is

d, (z;c,HO,QM,n)=HL(1+2)FC(Z;QM,n), (42)
0

where F,(z;Q,,n) is given by Equation (33) and the distance modulus is

(m—M)=25+5log,,(d, (z:¢.Hy,Qy.1)). (43)

The cosmological parameters unknown are three, H,Q,, and w; in the case
of wCDM and four, H,,Q,,w, and w,, in the case of wzCDM. In flat
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Cardassian cosmology the number of parameters is three, H,,Q,, and n. In
the presence of a given sample for the distance modulus, we can map the
chi-square as given by Formula (7), see Figure 2 in the case of wCDM with
hypergeometric solution. The above cosmological parameters are obtained by a
fit of the astronomical data for the distance modulus of SNs via the
Levenberg-Marquardt method (subroutine MRQMIN in [16]) which minimizes
the chi-square as given by Formula (7). Table 1 presents the above cosmological
parameters for the Union 2.1 compilation of SNs and Figure 3 reports the best
fit. As a practical example of the utility of the cosmological parameters
determination, we report the distance modulus in an explicit form for the Union

2.1 compilation in wCDM.

| . ﬂ
1, 0.2 0.3 0.4

0

—~1.5 —1 -0.5

-2

Q

m

Figure 2. Map of the 7’ in wCDM cosmology when H, =(70.02+0.35).

45
T

40
T

35
T

Distance Modulus Union 2.1

1.5

Redshift
Figure 3. Hubble diagram for the Union 2.1 compilation. The solid line
represents the best fit for the exact distance modulus in wCDM cosmology as
represented by Equation (36). Parameters as in third line of Table 1; Union 2.1
compilation.
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(m—M)=5+5—"xIn| 4281.52(1+2)

In(10)
1 3 2 -1.003 (44)
,E O.1661,5;1.1661;—2.6101(2 +3z +3z+1)
x| —3.8 +3.4146
2/23+322+3z+1
when 0<z<14,
And in flat Cardassian cosmology
1
m—M)= 25In(10
( ) In(10) (10)
3 P —0.16666
+5In| —4273.59(1+ z)| 3.62142(2" +32° +3z+1) (45)

—-1.08

x,F (0.15417,1/2;1.1541;—2.2786(z3 +32° +3z+1) ' 1)—3.304)]

when 0<z<14.

Table 2 reports the cosmological parameters for the JLA compilation and
Figure 4 the connected fit.

The presence of the “Hymnium” GRBs sample allows to calibrate the distance
modulus in the high redshift region (see Table 3 and Figure 5).

The extension of the Hubble diagram to the GRBs, as an example, has been
implemented in [11] [17] [18] [19] [20].

40 45
T

35
T

Distance Modulus JLA 2014

30
T
1

— . ' 1.5
Redshift

Figure 4. Hubble diagram for the JLA compilation. The solid line represents the

best fit for the exact distance modulus in wCDM cosmology as represented by

Equation (36). Parameters as in the third line of Table 2; JLA compilation.
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Union 2.1+GRB

(m—M)

40 45 50

35

30

Redshift

Figure 5. Hubble diagram for the Union 2.1 compilation + the “Hymnium”
GRBs sample. The solid line represents the best fit for the exact distance

modulus in wCDM cosmology as represented by Equation (36). Parameters as in

second line of Table 3.

Table 2. Numerical values for the JLA compilation of y*, 2, and Q, where kstands for the number of parameters.

Cosmology SNs & parameters Ve 7 Q
ACDM 740 3 H,=6939; Q,=0.18; Q, =0.537 62574 0.849 0.9
wCDM

Hypergeometric ~ 740 3 H,=(69.71£0.5); Q, =(0.293£0.021); w=(-0.996+0.08) 627.908 0.851 0.998
solution

WCDM Taylor ), H,=(69.99+029); Q, =(0.133+0.13); w=(~0.709+0.18) 62569 0.848 0.998

approximation

weCDMTaylor o\ 4 i =(69.99£029) 5 ©, =(03£0.009); w, =(~1.0540.027); w,=(0.097+0.01); 62876 0.854 0.998

approximation

Cardassian 740 3 H,=(70.036+0.44); Q, =(0.301£0.019); n=(-0.055+0.0045) 628.73  0.863 0.999

Table 3. Numerical values from the Union 2.1 compilation + the “Hymnium” GRBs sample of >, z2, and Q where k stands

for the number of parameters.

Cosmology SNs
ACDM 639
wCDM

Hypergeometric 639
solution
wzCDM numerical

. . 639

integration

Cardassian 639

k

H,=(70.12£0.4); Q, =(0.294£0.024); w=(~1.04£0.04)

H,=(70£032); Q,=(0.3£0.011); w,

H,=(70.10% 0.42) ; Q,=(0299+0.019); n= (—0.063 + 0‘0095)

parameters

H,=69.80; Q,=0239; Q, =0.651

0

=(~1.05£0.033); w =(0.1£0.01);

2

7

586.08

585.42

585.59

585.43

2
Krea

0.921

0.92

0.922

0.92

Q

0.922

0.924

0.92

0.924
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7. Conclusions

Constant equation of state

In the case of wWCDM cosmology, we found a new analytical expression for the
Hubble distance in terms of the hypergeometric function, see Equation (13). As
a consequence an analytical expression for the luminosity distance and the
distance modulus is derived. Two approximate Taylor expansions for the
Hubble distance about z=0 and z=1 of order 7 are also derived. The
derivation of the value of w; Q,, and H,, here considered as a parameter to be
found, is given for the Union 2.1 compilation, the JLA compilation and the
Union 2.1 compilation plus the “Hymnium” GRBs sample, see Tables 1-3. As an
example, in the case of the Union 2.1 compilation, we have derived
H,=(70.02£0.35), Q,, =(0.277%0.025) and w=(-1.003%0.05).

Variable equation of state

In the case of wzCDM cosmology the Hubble distance, Equation (23) is
evaluated numerically and with a Taylor expansion of order 7, see Equation (24).
The four parameters w,, w,, Q, and H, are reported in Tables 1-3. As an
example, in the case of the Union 2.1 compilation, we have found
H,=(70.08+0.31), Q, =(0.284+0.01), w, =(-1.03£0.031), and
w, =(0.1£0.018).

High redshift

The inclusion of the “Hymnium” GRBs sample allows to extend the
calibration of the distance modulus up to z=8 (see Table 3). As an example,
the Union 2.1 compilation + the “Hymnium” GRBs sample gives
Hy=(70£0.32), Q,, =(0.3+0.011), w, =(-1.05£0.033), and
w, =(0.1£0.01).

Cardassian cosmology

A new solution for the Hubble radius for Cardassian cosmology is presented
in terms of the hypergeometric function, see Equation (reficardz). As an
example, in the case of the Union 2.1 compilation, we have derived
H,=(70.15£0.38), Q, =(0.305£0.019) and n=(-0.081%0.01).
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Appendix
A. Taylor Expansion When W Is Constant

The coefficients of the Taylor expansion of Iz, ,(z;Q,,,w) about z=0
¢ =1, (A.1)

¢, =3/4wQ, —3/4w-3/4, (A2)

9QZ 2
€3 ==3/2Qw —wQy, +3/8w +w+5/8+ %"W , (A.3)

C =
64 64 64 64 16 64 (Ad)
2430w +117QMW3 . 1350w’ LTy
64 64 64 64

>

93w 63 27w’ 27w' 309w’ 309Q,w  927Qw’
Cs=——+——+ + + - +
780 128 80 640 320 80 320
.\ 729Q,w'  351Q,w'  81Q, W . 234900 w*  27Q,w'
80 80 16 320 16
81w . 567Quw'  93wQ,,
8 128 80

(A.5)

E

6779560 512 2560 256 512 512
. 5103Q3w’ 301w’ N 301Q,w*  903Q3 w*
512 256 64 256
_ 3807Q5w’ | 18330, w’ L2 1503w 548103 w'
256 256 256 256
. 315Q,w* . 9450w 6615Quw*  2673Q% w’
64 32 512 256
3267Q,w’ . 688500, W’ | 3043nQ,,
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(A.6)

E
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(A.7)

The integral of the Taylor expansion of order 2 about z=1 is
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N
1211,2 = B’ (AS)
where
= (3x8"Qywz —6x8" WO, +3x8"Q,z - 3wz8" —14x8"Q
(A.9)
+6wB" —328" —30,,7+14x8" +14Q, )z
and
343w 343w 32
=(-27"Q, + 27 +80Q, ). (A.10)

B. The Hypergeometric Function

The regularized hypergeometric function, ,F (a,b;c;z), as defined by the Gauss
series, is

Fl(a,b;c;z)zi(a)s (b')é‘ s @Z+a(a+1)b(b+l)zz+

= (c)ss c c(c+1)2!

(B.1)
3 F(c) il“(a+s) (b+s) s
[(a)T(b)S  T(c+s)s!
where z=x+iy, (a)s is the Pochhammer symbol
(a)s :a(a+1)---(a+s—l), (B.2)
F(z) is the Gamma function defined as
= j: e e, (B.3)

z is a complex variable defined on the disk |Z|<l that should not be
confused with the redshift, see [21] [22] [23] [24] [25]. The following

relationship

F (a,b;c;x)=(1-x)" 2F1[a,c—b;c;ilj (B.4)
X—
connect the the hypergeometric function with x in (-1, 1) to one with x in

(—oo,%j , see more details in [26].

C. Taylor Expansion When W Is Variable

The coefficients of the Taylor expansion of Iwz, , (z;Q,,,w,,w) about z=0

¢ =1 (C.1)
3 3 3
C1)2 :ZWOQM —ZWO —Z, (C2)

992 2
Cry = 5/8+wy —1f4w, +1/4wQy, —wQ,, +3/8%F —3/20, +%W°, (C.3)

35 Thwy 17w 17wQy  ThnQy 45w; L 9ww

Cr4=—
64 64 32 32 64 64 32
. 45Qwp  135Q%w; 24304 w, N 17Q,,w; (C4)
16 64 64 64
. 135Q4w, 9w, 9Qy,wyw . 2703, wyw,
64 64 8 32 7
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The integral of the Taylor expansion of order 2 about z=1 in the case
wzLCDM cosmology
Nwz
Iwz, , =——, C.6
"2 Dwz (C6)
where
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