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Abstract 
The existence and stability of stationary solutions of the restricted three body problem under the 
effect of the dissipative force, Stokes drag, are investigated. It is observed that there exist two non 
collinear stationary solutions. Further, it is also found that these stationary solutions are unstable 
for all values of the parameters. 
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1. Introduction 
Two finite masses, called primaries, are moving in circular orbits around their common centre of mass, and an 
infinitesimal mass is moving in the plane of motion of the primaries. To study the motion of the infinitesimal 
mass is called the restricted three body problem. [1] proved that there existed five points of equilibrium, or 
points of libration (often denoted by L1, ….. L5), which were the stationary solutions of the restricted problem. 
Out of them, three are collinear and two are non collinear. The collinear libration points are unstable for all val-
ues of mass parameter µ  and the triangular libration points are stable for 0 cµ µ< < , where 0.03852cµ = �  
is a critical value of mass parameter [2]. 

As we know, dissipative forces are those where there is a loss of energy such as friction and one of the most 
important mechanisms of dissipation is the Stokes drag which is a force experienced by a particle moving in a 
gas, due to the collisions of the particle with the molecules of the gas. 

[3] has determined some results on the global dynamics of the regularized restricted three body problem with 
dissipative forces. Their investigations have motivated us to study the motion of the restricted three body prob-
lem under dissipative forces such as Stokes drag. In the synodic frame, Stokes drag force is defined by [4]: 
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( ) ( ), ,x y y xF F k x y y xα α= − − + Ω + − Ω� �  

where ( )0,1k ∈  is the dissipative constant, depending on several physical parameters like the viscosity of the 
gas, the radius and mass of the particle. Here  

( )
3

2r r
−

Ω = Ω ≡  

is the keplerian angular velocity at distance 2 2r x y= +  from the origin of the synodic frame and ( )0,1α ∈  
is the ratio between the gas and keplerian velocities. 

A number of authors have investigated the location and stability of the equilibrium point in the presence of 
specific dissipative forces. [5] has used the Jacobi constant to investigate the effect of an external drag force 
proportional to the velocity in the rotating frame and has concluded that L4 and L5 are unstable to this type of 
drag force. In their studies of the motion of dust particles in the vicinity of the Earth, [6] has analyzed the stabil-
ity of the equilibrium points in the presence of radiation pressure which includes the Poynting Robertson drag 
terms. They have shown that the libration points are unstable to such a drag force. The effects of radiation pres-
sure and Poynting Robertson light drag on the classical equilibrium points are analyzed by [7] and [8]. [9] has 
systematically discussed the dynamical effect of general drag in the planar circular restricted three body problem 
and has found that L4 and L5 are asymptotically stable with this kind of dissipation. It has been shown by [10], 
[11], [12] and [13] that, in the case of Stokes drags, exterior resonances may compensate the decrease of the 
semi major axis and that stationary solutions still exist. A numerical analysis of 1:1 resonance, taking into ac-
count the effect of the inclination and the eccentricity, has been studied by [14]. An analytical study of the linea-
rised stability of L4 and L5 is provided in [4]. 

Furthermore, [15] has examined the linear stability of triangular equilibrium points in the generalized photo 
gravitational restricted three body problem with Poynting Robertson drag. They have considered the smaller 
primary as an oblate body and bigger one as radiating and they have concluded that the triangular equilibrium 
points are unstable in linear sense. [16] has discussed the nonlinear stability in the generalized restricted three 
body problem with Poynting Robertson drag considering smaller primary as an oblate body and bigger one ra-
diating. They have proved that the triangular points are stable in nonlinear sense. [17] has discussed the stability 
of triangular equilibrium points in photo gravitational circular restricted three body problem with Poynting Ro-
bertson drag and a smaller triaxial primary. They proved that the parameters involved in the problem (radiation 
pressure, oblateness and Poynting Robertson drag) influenced the position and linear stability of triangular 
points. In the presence of Poynting Robertson drag, triangular points are unstable, and in the absence of Poynt-
ing Robertson drag, these points are conditionally stable. In a series of papers, [18] has performed an analysis in 
the restricted three body problem with Poynting Robertson drag effect. They found that there existed two non-
collinear stationary solutions which were linearly unstable. 

In the present paper, we study the same problem but with the effects of stokes drag instead Poynting Robert-
son drag on noncollinear libration points L4 and L5 in the restricted three body problem.  

2. Equations of Motion 

Suppose 1m  and 2m  are the primaries revolving with angular velocity n in circular orbits about their centre of 
mass O, an infinitesimal mass 3m  is moving in the plane of motion of 1m  and 2m . The line joining 1m  and 

2m  is taken as X-axis and “O” their center of mass as origin and the line passing through O and perpendicular 
to OX and lying in the plane of motion of 1m  and 2m  is the Y-axis. We consider a synodic system of coordi-
nates O (xyz); initially coincident with the inertial system O (XYZ), rotating with the angular velocity n about 
Z-axis; (the z-axis is coincident with Z-axis) (Figure 1). 

In the synodic axes the equation of motion of 3m  in the restricted three body problem with Stokes drag S is 

( )
2

3 2 2m
t tt

 ∂ ∂ ∂
+ × + × + × × = ∂ ∂∂ 

r r ωω r ω r ω F                       (1) 

where 

1 2 ,= + +F F F S  
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Figure 1. Configuration of the restricted three body problem with Stokes drag S.                

 

1F  = Gravitational Force acting on 3m  due to 3 1
1 12

1

ˆ ,
m m

m G r
r

=  

2F  = Gravitational Force acting on 3m  due to 3 2
2 22

2

ˆ ,
m m

m G r
r

=  

S  = Stokes drags Force acting on 3m  due to 1m  along AP . 
Its components along the synodic axes (x, y) are ( )x yS k x y Sα ′= − +�  and ( ) .y xS k y x Sα ′= + −�  

where  

( )
3

2 ,S S r r
−

′ ′= =  

,OP xi yj= = +r  

n= Κ =ω  Angular velocity of the axes ( )O x y  = const. 

The equations of motion of 3m  in Cartesian coordinates (x, y) are 

( ) ( ) ( )
1 2

1 22
1 23 32 ,y

x x x x
x ny n x Gm Gm Gk x y S

r r
α

− −
′− − = − − − − +�� � �

 

( )
1 2

2
1 23 32 x

y yy nx n y Gm Gm Gk y x S
r r

α ′+ − = − − − + −�� � � , 

where 
n = Mean motion, G = Gravitational constant, 
( )1,0x  and ( )2 ,0x  = coordinates of A and B in the synodic system. 
Using [2] terminology, the distance between primaries is unchanged and same is taken equal to one; the sum 

of the masses of the primaries is also taken as one. The unit of time is chosen so as to make the gravitational 
constant unity. The equations of motion of the infinitesimal mass 3m  in the synodic coordinate system (x, y) 
and dimensionless variables are 

( )2 ,x yx y k x y Sα ′− = Ω − − +�� � �                               (2) 

O X

x

P (x, y)

Y

r

F2

m3

F1

nt

S
�

)( 1mA

)( 2mB

2r

1r



M. Jain, R. Aggarwal 
 

 
98 

( )2 y xy x k y x Sα ′+ = Ω − + −�� � �                                 (3) 

where 

( ) ( )2 2

1 2

11 ,
2

x y
r r
µ µ−

Ω = + + +  

( )
1

2 22 ,x yr µ= + +                                         (4) 

( )
2

2 22 1 ,x yr µ= + − +                                      (5) 

2
1 2

1 2

1 1 ; .
2

m m m
m m

µ µ µ= ≤ ⇒ = − =
+

 

The Stokes drag effect is of the order of 510 , 0.05k α−= =  (generally ( )0,1k ∈  and ( )0,1α ∈  as stated in 
the introduction). 

3. Stationary Solutions (Libration Points) 
The solutions (x, y) of Equations (2) and (3) with 0, 0, 0, 0x y x y= = = =�� �� � �  are given by 

( ) ( ) ( ) ( )3 3
1 2

1
1 0,y

x x
x k y S

r r
µ µ

µ µ α
+ + −

′− − − + + =                      (6) 

and 

( ) ( )
1 2
3 3

1
1 0xy k x S

r r

µ µ α
 −

′− − − − =  
 

.                                 (7) 

Here, if we take 0k = , then it will be the classical case of the restricted three body problem and the solutions 
of these equations are just the five classical Lagrangian equilibrium points Li (i = 1, 2, 3, 4, 5). The Li (i = 1, 2, 3) 
are three collinear libration points which lie along the x-axis and Li (i = 4, 5) are the two non collinear libration 
points which make the equilateral triangles with the primaries. Due to the presence of the Stokes drag force, it is 
clear from Equations (6) and (7) that collinear equilibrium solution does not exist. Since there is a possibility of 
non collinear libration points under the effect of drag forces, so we restrict our analysis to these points. Their lo-
cations when 0k = , are (see, e.g., [19]) 

4,5 0 0
1 3,
2 2

L x yµ
 

= − = ± 
 

. 

Now, we suppose that the solution of Equations (6) and (7) when 0k ≠  and 0y ≠  are given by 

0 1 0 2 1 2, , 1x x y yπ π π π= + = + �  

Making the above substitutions in Equations (6) and (7), and applying Taylors series expansion around the li-
bration points by using that ( )0 0,x y  is a solution of these equations when 0k = , we can get a linear set of 
equations. 

( ) ( )

( ){ } ( ){ }
( )

( ){ } ( ){ }

( ) ( )

( ){ }
( )

( ){ }
( )

2 2
0 0

1 5 3 5 3
2 2 2 22 2 2 22 2 2 2

0 0 0 0 0 0 0 0

7
0 0 0 0 2 2 4

2 0 0 0 05 5
2 22 22 2

0 0 0 0

3 3 11 11 1
1 1

3 3 1 31 0
2

1

x x

x y x y x y x y

x y x y
k y x y y

x y x y

µ µ
π µ µ

µ µ µ µ

µ µ
π µ µ α

µ µ

−

 
 + + −
 + − − + −
 

+ + + + + − + + − +  
 
 + + −  
 + − + + + + = 
   + + + − +  

   (8) 
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and 

( )
( ){ } ( ){ } ( ){ } ( ){ }

( ) ( )

( ){ }
( )

( ){ }
( )

2 2
0 0

2 5 3 5 3
2 2 2 22 2 2 22 2 2 2

0 0 0 0 0 0 0 0

7
0 0 0 0 2 2 4

1 0 0 0 05 5
2 22 22 2

0 0 0 0

3 31 11 1
1 1

3 3 1 31 0
2

1

y y

x y x y x y x y

x y x y
k x x y x

x y x y

π µ µ

µ µ µ µ

µ µ
π µ µ α

µ µ

−

 
 
 + − − + −
 

+ + + + + − + + − +  
 
 + + −  
 + − + − + + = 
   + + + − +  

   (9) 

After substituting the values of the constants 0x  and 0y  in the above equations and rejecting the second 
and higher order terms in 1π  and 2π , we get the values of 1π  and 2π  as 

( )1
1 2 3 ,

2 3
kπ α µ= − +  

( )2
5 2 3 .

18
kπ α µ= +  

Hence, putting the values of 1π  and 2π , the displaced equilibrium points are given by 

( ) ( )4, 5
1 1 3 52 3 , 2 3
2 2 182 3

x k yL kµ α µ α µ
 

= − − + = ± + + 
 

            (10) 

Here, the shifts in L4 and L5 are of ( )O k µ . If we calculate ( ),x y  numerically, taking 510 , 0.05k α−= =  
for different values of µ , we find that while using Stokes drag, as far as the values of µ  increase corres-
ponding x  values decrease and the y  values increase. 

4. Stability of L4, 5 
We write the variational equations by putting x x ξ= +  and y y η= + , ξ , 1η � , in the equations of mo-
tion (2) and (3), where ( ),x y  are the coordinates of the libration point. Therefore, expanding ( ),f x y  and
( ),g x y  by Taylors Theorem, we get 

( )
( )

( )
( )

( )( )
( )

( )
( )

( )

( )
( )

( )( )
( )

( ) ( )

2 2 11
2 2 4

3 5 5 3
2 2 1 1

7 11
2 2 2 2 24 4

5 5
2 1

2

3 1 3 1 1 21, 1
4

3 1 3 1 3 21 ,
2 4

x

x x x yx y k x y k
r r r r

y x y x
k x y k y x y k

r r

ξ η

µ µ µ µ µµ αξ

µ µ µ µ
η α α

−

− −

−

 + − − + −
= Ω + − + + − − − + 

  
 + − − +

+ + + + + − + 
  

�� �

   (11) 

( ) ( )
( )

( )( )
( )

( ) ( )

( ) ( )
( )
( )

( )
( )

( )

7 11
2 2 2 2 24 4

5 5
2 1

2 112
2 2 4

5 2 5 3
2 2 1 1

2

3 1 3 1 3 21,
2 4

3 1 13 211 .
4

y

y x y x
x y k x y k x x y k

r r

yy x yk x y k
r r r r

η ξ

µ µ µ µ
ξ α α

µ µµ µ αη

− −

−

+

 + − − +
= Ω + + − − + + + 

  
 − −

+ + − + − − + + 
  

���

   (12) 

Let us consider the trial solution of Equations (11) and (12), 

0 0e , et tλ λξ ξ η η= =  

where 0ξ  and 0η  are constants and λ  is a complex constant. Then we have 



M. Jain, R. Aggarwal 
 

 
100 

( )
( )
( )

( )( )
( )

( )
( )

( )

( )
( )

( )( )
( )

( ) ( )

2
0 0

2 2 11
2 2 4

0 3 5 5 3
2 2 1 1

7 11
2 2 2 2 24 4

0 5 5
2 1

e 2 e

3 1 3 1 1 21e 1
4

3 1 3 1 3 21e ,
2 4

t t

t

t

x x x yk x y k
r r r r

y x y x
k x y k y x y k

r r

λ λ

λ

λ

λ ξ λη

µ µ µ µ µµ αξ λ

µ µ µ µ
η λ α α

−

− −

−

 + − − + −
= − + + − + − + 

  
 + − − +

+ + + + + − + 
  

     (13) 

( )
( )

( )( )
( )

( ) ( )

( ) ( )
( )
( )

( )
( )

( )

2
0 0

7 11
2 2 2 2 24 4

0 5 5
2 1

2 112
2 2 4

0 5 2 5 3
2 2 1 1

e 2 e

3 1 3 1 3 21e
2 4

3 1 13 21e 1 .
4

t t

t

t

y x y x
k x y k x x y k

r r

yy x yk x y k
r r r r

λ λ

λ

λ

λ η λξ

µ µ µ µ
ξ λ α α

µ µµ µ αη λ

− −

−

+

 + − − +
= + − − + + + 

  
 − −

+ + − + − − + + 
  

       (14) 

Now, from Equations (13) and (14), we derive the following simultaneous linear equations  

( )
( )
( ) ( )

( )
( )

( )

( )
( )

( )( )
( )

( ) ( )

2 2 11
2 2 2 4

3 2 3 2
1 1 2 2

7 11
2 2 2 2 24 4

5 5
2 1

3 3 11 211 1 1
4

3 1 3 1 3 212 0
2 4

x x x yk x y k
r r r r

y x y x
k x y k y x y k

r r

µ µµ µ αξ λ λ

µ µ µ µ
η λ λ α α

−

− −

    + + −−    + − + − − − + +         
 + − − + + − − − − − + − + = 
  

  (15) 

and 

( )
( )

( )( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

7 11
2 2 2 2 24 4

5 5
2 1

112 2
2 2 2 4

3 2 3 2
1 1 2 1

3 1 3 1 3 212
2 4

1 3 3 211 1 1 0
4

y x y x
k x y k x x y k

r r

y y x yk x y k
r r r r

µ µ µ µ
ξ λ λ α α

µ µ αη λ λ

− −

−

 + − − + − − + + + − + 
  
    −    + + − + − − − − + =         

       (16) 

The simultaneous linear Equations (15) and (16) can be written as 

( ) ( )2
, , ,1 2 0x x x x x ye h k k g kξ λ λ η λ+ − − − − + − − − =�                    (17) 

( ) ( )2
, , ,2 1 0y x y y y yg k e f k kξ λ η λ λ− + + + − − − − =�                    (18) 

where 

( ) ( )3 3
1 2

1 ,e
r r
µ µ−

= +                                         (19) 

( ) ( )
2

5 5
1 2

13 ,f y
r r
µ µ −

= + 
  

                                   (20) 

( )( )
( )

( )
( )5 5

1 2

1 1
3 ,

x x
g y

r r

µ µ µ µ − + + −
= + 

  
                      (21) 

( )( )
( )

( )
( )

2 2

5 5
1 2

1 1
3 .

x x
h

r r

µ µ µ µ − + + −
= + 

  
                      (22) 

and 
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( )

( )

( )

11
2 2 4

, ,

11
2 2 2 4

,

11
2 2 2 4

, , ,

2
,

21 , ,
4

21 ,
4

210, , 0,
4

21
4

x x
x x x x

x
x y

y yx
x y y x y x

y
y y

S S
k x y x y k k k

x x

S
k k y x y k

y

S SS
k k k x x y k k

y x x

S
k x

y

α

α

α

α

−

− −

−

−

−

− − −

−

∂   = = + = =   ∂ ∂   

∂ 
= = − + + ∂ 

∂ ∂   ∂ 
= = = = + + = =    ∂ ∂ ∂     

∂ 
= = + ∂ 

�

� �

�

� �

( )
11

2 4
,, .y

y y

S
y x y k k k

y

−

−

∂ 
= = ∂ 

� �

          (23) 

Neglecting terms of ( )2O k , the condition for the determinant of the linear equations defined by the Equa-
tions (17) and (18) to be zero is 

( ) ( ) ( )
( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

4 3 2
, , , , , ,

, , , , , ,

2
, , , ,

2 1 2

1 1 2

1 1 1 1 0

x x y y x x x y y x y y

x x y y x y y x x y y x

x x y y x y y x

k k e f h k k k k

e f k e h k k k g k k

e h e f g e f k e h k g k k

λ λ λ

λ

 − + + + − − − + − − 
 + − + + − + + − − + 
 + − − − − − + − + + − + − + = 

� � � �

� � � �           (24) 

This quadratic Equation (24) has the general form 

( ) ( )4 3 2
3 20 2 1 00 0 0λ σ λ σ σ λ σ λ σ σ+ + + + + + =                        (25) 

where 

( ) ( ) ( )0 , , , ,1 1 ,x x y y x y y xe f k e h k f k kσ = − + + − + − +  

( ) ( ) ( )1 , , , ,1 1 2 ,x x y y x y y xe f k e h k k kσ = − + + − + + −� �  

2 , , ,y y x xk kσ = − −  

3 , , ,x x y yk kσ = − −� �  

( )20 2 1 ,e f hσ = + − −  

( )( ) 2
00 1 1 .e f e f gσ = − − − − −  

Here 00σ , 20σ  and ( )0,1,2,3i iσ =  can be derived by evaluating e, f, g and h defined earlier. The value of 
the coefficient in the zero drag case is denoted by adding additional subscript 0. If we neglect product of powers 
of µ  with any of the constants defined in Equation (23), we obtain 

( ) ( ) ( ) ( )

( ) ( )

( )

00

20

11 11 7 7
2 2 2 2 2 2 2 24 4 4 4

0

11 11
2 2 2 2 2 24 4

1

11
2 2 4

2

3

27 ,
4

1,

189 63 63 3 63 3 ,
16 16 16 8

21 211 ,
2 2

21 ,
2

2 .

x y x yx y k x y k x y x y k

x x y y x y k

x y x y k

k

σ µ

σ

α α α α µσ

σ α α

σ α

σ

− − − −

− −

−

=

=

 −
= + − + + + − + 

 
 

= − + + − + 
 

= − +

= −

 (26) 

By assuming iσ  to be small, we investigate the stability of the non zero drag case. We can use the classical 
solutions of the zero drag case (i.e. when k = 0). Equation (25) reduces to 
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4 2
20 00 0λ σ λ σ+ + =                                    (27) 

The four classical solutions for L4 and L5 to ( )O µ  are given by the pair of values 

4,5 1,2

3,4

27: 1
4

27
4

L λ µ

λ µ

= ± − +

= ± −

                                (28) 

Since we are primarily interested in the stability of L4 and L5 under the effects of a drag force, we restrict our 
analysis to these points. The four roots of the classical characteristic equation can be written as  

( 1, , 4)n i nλ = ±Τ = �                                 (29) 
where 

2
20 20 004

2
σ σ σ± −

Τ =                                  (30) 

is a real quantity for L4 and L5. Using the values of 00σ  and 20σ  given in Equations (26) we have 

2 227 271 or
4 4
µ µΤ = − Τ =                             (31) 

With the introduction of drag we assume a solution of the form 

( ) ( )1 1n i iλ λ ρ υ υ ρ= + + = ± + Τ  ∓                         (32) 

where ρ  and υ  are small real quantities. To lowest order we have 

( )2 21 2 2 iλ ρ υ= − + − Τ                                 (33) 

( )3 33 1 3 iλ υ ρ= ± + Τ  ∓                                (34) 

( )4 41 4 4 iλ ρ υ= + + Τ                                   (35) 

Substituting these in Equation (25), and neglecting products of ρ  or υ  with iσ , and solving the real and 
imaginary parts of the resulting simultaneous equations for ρ  or υ  we get 

( )
2

3 1
2

20

,
2 2

σ σ
υ

σ
± Τ

=
Τ Τ −

∓
                                    (36) 

( ) ( )
( )

2 4
00 0 20 2

2 2
20

.
2 2

σ σ σ σ
ρ

σ

+ − + Τ +Τ
=

Τ − Τ
                       (37) 

(i) The stability of 4L  
For 4L , we have 

( )
2

3 1
2

20

,
2 2
σ σ

υ
σ

Τ −
=

Τ Τ −
                                    (38) 

( ) ( )
( )

2 4
00 0 20 2

2 2
20

.
2 2

σ σ σ σ
ρ

σ

+ − + Τ +Τ
=

Τ − Τ
                       (39) 

On putting the values of iσ , in Equations (38) and (39) from Equation (26) and also taking, 2 27
4
µΤ = , we 

have 

27, .
8 1083 3

k µυ ρ
µµ

= =
−
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Now, putting these values of ρ  and υ  in Equation (35), and neglecting the terms of ( )O kµ , we get the 
characteristic equation as 

2
4 729 0

16 216
µλ

µ
− =

−
 

whose roots are 

( ) ( )

( ) ( )

1 23 31 1
4 44 4

3 43 31 1
4 44 4

3 3 3 3
, ,

2 2 27 2 2 27

3 3 3 3
, .

2 2 27 2 2 27

i

i

µ µ
λ λ

µ µ

µ µ
λ λ

µ µ

= − = −
− −

= =
− −

 

Also on taking 2 271
4
µΤ = −  in Equations (38) and (39) from Equation (26), we get the characteristic equa-

tion as 

( )( )
( )

4 4 27 4 81
0

8 2 27
ik

µ µ
λ

µ
− + − +

+ − =
− +

 

whose roots are 

( )

( )

( )

( )
( )

( )

( )
( )

1 23 31 1
4 44 4

2

3 43 31 1
4 44 4

16 432 16 16 432 16
, ,

2 2 27 2 2 27

16 432 1616 432 16
, .

2 2 27 2 2 27

i k i k

i ki k

µ µ
λ λ

µ µ

µµ
λ λ

µ µ

− + − − + +
= − = −

− + − +

− + −− + +
= =

− + − +

 

If 0,υ ≠  
According to [9], the resulting motion of a particle is asymptotically stable only when all the real parts of λ  

are negative and the condition for asymptotically stable under the arbitrary drag force is given by 

1 30 σ σ< <                                      (40) 

where 1σ  and 3σ  are defined in Equation (26). But we see that the linear stability of triangular equilibrium 
points does not depend on the value of ,x xk  and ,y yk . Therefore the condition 3 0σ >  can only be satisfied 
when k is positive and the drag force is a function of x�  and y� . 

But here in our case of Stokes drag 1 3, 2k kσ σ= − = −  and therefore 1 3σ σ>  and hence L4 is not asymp-
totically stable. Further one of the roots of λ  i.e. 4λ  has positive real root. Therefore L4 is not stable. Thus we 
conclude that L4 is neither stable nor asymptotically stable and hence linearly unstable. 
Similarly, we conclude that 5L  is neither stable nor asymptotically stable and hence linearly unstable. 

5. Conclusions 
We have studied the existence of the triangular libration points and their linear stability by using Stokes drag. 
We have shown that there exist two noncollinear stationary points ( )4 ,L x y  and ( )5 ,L x y−  (Equation (10)). 
If we put 0k = , these results agree with the classical restricted three body problem. 

In the classical case i.e. when 0k = , we observe that as the value of µ  increases, the abscissa x  of 4L  
decreases and the ordinate y  of 4L  remains constant, while in our case (i.e. Stokes drag), when 510k −= , we 
observe that the abscissa x  of 4L  decreases and the ordinate y  of 4L  changes slightly. In our previous 
paper ([18]) i.e. in the case of Poynting Robertson drag, the abscissa and the ordinate decrease with µ . As re-
gards, the stability of 4L  in both the cases (Poynting Robertson drag and Stokes drag) is always unstable for all 
values of µ . The result of stability is quite different when we compare with the classical case. In the classical 
case, 4L  is stable for µ , whereas in the case of drag forces, motion is unstable for all values of µ . 
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In the case of Stokes drag, we have derived a set of linear equations in terms of ξ  and η  (Equations (17) 
and (18)), which involve the components of the Stokes drag force evaluated at the libration points (Equations 
(19)-(23)). From these, we derive a characteristic equation having the general form (Equation (25)). 

Further, we have derived the approximate expressions for 0 1 2 3 00, , , ,σ σ σ σ σ  and 20σ  occurring in the above 
characteristic equation. These expressions are given in terms of the partial derivatives of the Stokes drag, eva-
luated at the libration points. 

Using the [9] terminology, in the case of drag force, we assume a solution of the form (Equation (32)), where 
υ  and ρ  are small real quantities and 

( )1, , 4n i nλ = ±Τ = �  

is a real quantity for L4 and L5 in the classical case. After substituting the values of λ , 2λ , 3λ  and 4λ  in the 
characteristic equation, we get the values of υ  and ρ  (Equations (36) and (37)). 

Further to investigate the stability of the shifted points, by using [9] terminology, the resulting motion of a 
particle is asymptotically stable only when all the real parts of λ  are negative. Also, the condition for asymp-
totical stability under the drag force is given by Equation (40). 

The condition 3 0σ >  can only be satisfied when k > 0. In the case of Stokes drag 1 kσ = −  and 3 2kσ = − , 
Equation (40) is not satisfied. Therefore, L4 and L5 are not asymptotically stable. Further, we have seen that one 
of the roots of λ  i.e. 4λ  has positive real root; thus, L4 and L5 are not stable. Hence, due to Stokes drag, L4 
and L5 are neither stable nor asymptotically stable but unstable whereas in the classical case L4 and L5 are stable 
for the mass ratio 0.03852µ <  [19]. 
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