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ABSTRACT 

We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uni-
formly rotating neutron stars. This method manages the problem by performing all numerical integrations, required 
within the framework of Hartle’s perturbation method, in the complex plane. We give emphasis on computing correc-
tions up to third order in the angular velocity, and the mass-shedding limit. We also compute the angular momentum, 
moment of inertia, rotational kinetic energy, and gravitational potential energy of the models considered. 
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Mass-Shedding Limit 

1. Introduction 

In a recent paper [1], we have applied the so-called 
“complex-plane strategy” (CPS), originally developed 
and used for computing classical polytropic models in 
rapid rotation (see e.g. [2,3]), to compute rapidly rotating 
neutron stars simulated by general-relativistic polytropic 
models, i.e. neutron stars obeying the well-known poly-
tropic “equation of state” (EOS) (see e.g. [1], Section 2.1, 
Equations (5)-(9)). In this study, we implement Hartle’s 
perturbation method ([4-6]) in order to compute 1) the 
structure of a rotating neutron star up to terms of third 
order in the angular velocity  , and 2) the mass-shed-
ding limit, i.e. the angular velocity above which the 
gravitational attraction, compared to the centrifugal force, 
is not sufficient to keep matter bound to the surface ([7], 
Section 6.5.2; [8], Section 5.2.2; [9], Section 5). Here, we 
will try to avoid, as much as possible, rewriting and re-
peating issues from papers referred in the text; readers 
interested in this subject can find full details in the par-
ticular references. 

The third-order corrections involve the functions 1  
and 3  ([6], Equations (3.1) and (3.2); [10], Equations 
(1)-(5)). The function 1  represents a third-order con-
tribution to the angular momentum 

w
w

w
J , moment of iner-

tia I , rotational kinetic energy T , and gravitational 
potential energy . The function 3  affects the mass- 
shedding velocity and, accordingly, the mass-shedding 
limit ([10], Section 2A; see also [11], Section 3). Both 

1  and  contribute to the dragging of the inertial 
frames. 

W w

w 3w

w

Unless stated otherwise, the physical quantities in-
volved in this study are expressed in gravitational units 
(see e.g. [1], Section 1.2). 

2. The Perturbed Metric and the  
Mass-Shedding Limit 

The perturbation of the metric due to rotation, up to 
third-order terms in the angular velocity , is given in 
[10] (Equation (1); see also [12], Equation (25)). The 
functions 1  and 3 , involved in this perturbation, 
satisfy the second-order differential equations (A29) and 
(A41) of [10], respectively. The third-order correction 



w

J  to the angular momentum is given in [10] (Equation 
(28)); the third-order correction I  to the moment of 
inertia is given in [10] (Equation (31)); the third-order 
correction T  to the rotational kinetic energy is given 
in [12] (Equation (60)); and the third-order correction 

W  to the gravitational potential energy is given in [12] 
(Equation (61)). 

Hartle’s perturbation method has been developed for 
treating slowly rotating neutron stars, in the sense that 
the angular velocity   is considered to be small when 
compared to the “maximum angular velocity”  

3Mc R  , also called “critical angular velocity”, at 
which mass shedding occurs at the equator (see e.g. [5], 
Equation (2); see also [13], Equation (86). The quantities 
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M  and  are the mass and radius of the nonrotating 
model. c  corresponds to the Newtonian balance of 
centrifugal and gravitational forces. This Newtonian up-
per bound of the angular velocity is a significantly over-
estimated limit as far as neutron stars are concerned. 

R


An absolute upper bound on neutron star uniform rota-
tion is given by the “Keplerian angular velocity” K  or, 
equivalently, “mass-shedding limit” MS , which is the 
maximum allowed angular velocity of a particle in Ke-
plerian orbit at the equator. If the angular velocity will be 
slightly greater than 



MS , then mass shedding would 
occur at the equator of a neutron star. So, 


MS  is the 

relativistic analog of c . Computing MS  has at-
tracted the attention of several investigators, and several 
numerical methods have been developed towards this 
task (for a discussion on this matter, see [13], Section 3.7). 



3. The System of Differential Equations in  
the Framework of Hartle’s Perturbation  
Method 

The main target of this investigation—which is in fact 
the continuation of the numerical treatment presented in 
[1]—is to solve numerically in the complex plane the 
system of the differential equations arising in the frame-
work of Hartle’s perturbation method when taking into 
account up to third-order terms in the angular velocity 
and then to compute the mass-shedding limit. 

The system under consideration consists of the fol-
lowing differential equations. 

(01)-(02) The two first-order “Oppenheimer-Volkoff” 
(OV) equations of hydrostatic equilibrium and of mass- 
energy ([1], Equations (8) and (9) with initial conditions 
(15) and (16)). 

(03) The first-order differential equation governing the 
gravitational potential  ([1], Equation (29) with 
boundary condition (30); see also the discussion follow-
ing this equation). 



(04)-(05) The second-order “frame dragging equation”, 
which can be reformulated as an equivalent system of 
two first-order differential equations for the angular ve-
locity   in the local inertial frame and its derivative   
([1], Equations (32) and (33) with initial conditions (35a) 
and (35b); see also the discussion following Equation 
(33)). 

(06)-(07) The two first-order differential equations for 
the mass perturbation function 0  and the pressure 
perturbation function 0  describing the spherical de-
formation of the star ([1], Equations (37) and (38) with 
initial conditions (39a) and (39b)). 

m
p

(08)-(09) The two first-order differential equations for 
the functions 2  and 2h   describing the quadrupole 
deformation of the star ([1], Equations (42) and (43) with 
initial conditions (44a) and (44b)). 

(10)-(11) The two first-order homogeneous differential 
equations for the functions 2

Hh  and 2
H  ([1], Equa-

tions (47) and (48) with initial conditions (49a) and 
(49b)). 

(12)-(15) The two second-order differential equations 
for the functions 1  and 3  ([10], Equations (A29) 
and (A41)) describing the third-order perturbative cor-
rections, which can be reformulated as two equivalent 
systems, each consisting of two first-order differential 
equations ([10], Equations (A32a)-(A32b) with zero ini-
tial conditions, and (A43a)-(A43b) with zero initial con-
ditions; details are given in [10], Appendix 3). 

w w

(16)-(19) The two second-order homogeneous differ-
ential equations for the functions 1

Hw  and 3
Hw
D

 ([10], 
Equations (A29) and (A41) with 0 , 20D 0 ), 
which can be reformulated as two equivalent systems, 
each consisting of two first-order homogeneous differen-
tial equations ([10], Equations (A32a)-(A32b) with 

0 0D  , 2 0D   and initial conditions (A34a)-(A34b), 
and (A43a)-(A43b) with 2  and initial conditions 
(A45a)-(A45b), respectively). 

0D 

Thus, from the point of view of numerical analysis, 
our task is to solve numerically in the complex plane an 
“initial value problem” (IVP) defined on the system of 
the 19 first-order “ordinary differential equations” (ODE, 
ODEs) referred above. 

4. Solving the IVP with the ATOMFT  
System 

To solve the IVP discussed in Section 3, we use the 
ATOMFT System ([14-20]; details on this software 
package are given in [1], Section 3.4). To avoid any sin-
gularities and/or indeterminate forms in the real axis , 
especially at the points  and , we apply 

. The numerical integration is performed along a 
contour (i.e. a complex path) , lying in the complex 
plane , being parallel to the real axis , and dis-
tancing a small imaginary distance 


0r 

C

r R


1i




  from it, i.e. 

along the straight line 




1 1 1 1 1 max

max max max 1          ,

r r ir i r

r ir i





      

    




C

        (1) 

joining the points 1  and max  in . For convenience, 
we use the abbreviations 

r r 
r
r

 for the real part of the com-
plex radial coordinate   C , and  for the 
imaginary part of . In this study, for the parameters 

r


r

1 , 1 , and max  we use the values , 
, and max . For the initial 

condition 

310 cm
1 

10 c

1

1 5 1  m 510 cm15  
  of the complex rest-mass density  , 

     1 11 1 ,re im re ci i              (2) 

we use the relation .  
As ATOMFT advances the solution of the ODEs on 

2
1 10 re c 
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successive points along the complex path C , the nu-
merical output of this method is used to construct the 
table SOL  (i.e. the table (57) of [1], now extended with 
all the third-order functions ), 



   1 3, ,P H
re imx u
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(3) 

Then, using standard numerical methods, we interpolate 
the real variables    3  of this table in terms of 
the real variable 

, , H
re imu 

r . Thus we construct by numerical 
interpolation an extended family of real-valued functions 
of a real variable, which can be used in the place of the 
original complex-valued functions of a complex variable 
for various purposes. 

5. The Numerical Procedure after Having  
Solved the IVP 

ATOMFT produces an output file containing the solution 
of the complex IVP. Next, a Mathematica  program 
takes control over this file and performs the following 
tasks. 

1) Reads the output file, composes the extended table 

SOL , and constructs by numerical interpolation the ex-
tended family of real-valued functions of the real vari-
able 



r . 
2) Calculates the radius  of the star as the first root 

of the algebraic equation  

R
  0re r   ([1], Equation 

(22)), the gravitational mass  ([1], Equation (24)), 
the baryonic mass 



B  ([1], Equation (108)), and the 
proper mass p  ([1], Equation (109)). 

3) Calculates the angular momentum , moment of 
inertia , rotational kinetic energy  , and gravita-
tional potential energy  ([12], Equations (21)-(23), 
and (24), respectively). 






4) Calculates the changes SDR  in the radius, SD  
in the gravitational mass, BSD  in the baryonic mass, 
and PSD  in the proper mass ([12], Equation (43), 
(44), (48), and (49), respectively), all due to spherical 
deformation ([12], Section 3.3). 

5) Calculates the third-order correction   to the 
angular momentum [10], Equation (28)), the third-order 
correction    to the moment of inertia ([12], Equation 
(59)), the third-order correction   to the rotational 
kinetic energy ([12], Equation (60)), and the third-order 
correction   to the gravitational potential energy 

([12], Equation (61)). 
Note that the real parts of the complex quantities re-

ferred in 2)-5) are interpreted as the corresponding fa-
miliar physical quantities. 

6. Computing the Mass-Shedding Limit 

In this study we use the procedure described in [10] 
(Section 2A) for calculating the mass-shedding limit. In 
particular, we consider a fluid element belonging to the 
star and located at the equatorial surface. This element 
moves with a velocity bound  given by Equation (15) of 
[10]. On the other hand, the velocity free  of a particle 
moving on circular orbit in the corotating direction just 
outside the equator is given by Equation (17) of [10]. 




In the framework of , the velocities  bound  and 

free  are complex-valued functions of the complex vari-
able , with real parts 




r

  bound bound free freeRe , Re .V V         (4) 

To compute the mass-shedding limit MS , we need to 
construct sequences of models with constant baryonic 
mass CB



M  and variable angular velocity (to be dis-
cussed at the end of this section). For a starting value  

1

1

8 c  , the velocities boundV  and  calculated at  freeV

the equatorial radius er  are different, 

   free 1 bound 1 1, , , , 0.e CB e CBV r M V r M V    

1

   (5) 

For a second selected value , we have 2  

   free 2 bound 2 2, , , , 0e CB e CBV r M V r M V .         (6) 

We find, however, that 2 1V V   ; thus these two ve-
locities converge to a limit as the selected   gets in-
creasing, i.e. 1 2 3      . So, we gradually in-
crease   in order to calculate this limit. Eventually, for 
a value f  for which 0 fV     where   is a 
prescribed tolerance, the fluid element on the surface will 
not be bound anymore and the model will start losing 
matter from its equator. The value f  is the mass- 
shedding limit within the prescribed accuracy  , i.e. 

MS f   . 
In this study, we generate sequences of constant bary-

onic mass by using the procedure described in [10] (Sec 
IIB), with just a few slight changes due to the use of both 
the polytropic EOS and the method . This proce-
dure is as follows. 



Step 1. For each value of the polytropic index  and 
for the central mass-energy density c  of the corre-
sponding “nonrotating model of maximum mass”, we 
calculate the central rest-mass density 

n
E

c  of this model 
([1], Equation (7)), 

    ,c c c c cE E nP E E nP      c     (7) 
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and we solve the OV equations ([1], Equations (8) and 
(9)) to find the radius  of the star ([1], Equations (17) 
and (22)). 

R
Keplerian angular velocities K ; in this study, we take 
as “reference values” of K  those computed by the 
well-known RNS package [21]. 

Step 2. We calculate the baryonic mass B  by 
solving numerically the integral (108) of [1]. Thus each 
model is identified by a constant baryonic mass 

Next, we calculate the angular momentum J , mo-
ment of inertia I , rotational kinetic energy , gravita-
tional potential energy , mass spherical deformation 

SD

T
W

M , baryonic mass spherical deformation BSDM , 
proper mass spherical deformation PSDM , and radius 
spherical deformation SDR . Table 5 lists the percent-
age differences, 

 Re .CB B BM M             (8) 

Step 3. For an assigned value 1 , we solve the IVP 
of Sec. 3 for a sufficiently large number of values c ; in 
fact, for the corresponding values of the central rest-mass 
density 


E % 100 pre ref , be-

tween the results of the present investigation, 
preXX  X X 

preX , and 
the corresponding ones, refX , in Tables 3 and 7 of [12]. 
Furthermore, we calculate the third-order corrections 
  ,  ,   and  . Knowing the real parts of 
these quantities, we then find the corresponding total 
quantities, 

c  obtained by Equation 7. 
Step 4. For each rest-mass density c , we calculate 

the correction BSD  to the baryonic mass ([12], 
Equation (48)) and the total baryonic mass  of the 
corresponding model, 

TOT
B

.TOT
B B BS    D            (9) ,TOTI I I                 (11) 

Step 5. Among all these rotating models, we select the 
one with baryonic mass CBM , 

,TOTJ J J                (12) 

 Re . ,TOTT T T                (13) TOT
B CBM              (10) 

.TOTW W W               (14) Step 6. Having computed the model with angular 
velocity 1  and total baryonic mass  CBM , we proceed 
with the calculation of the velocities  bound

We give indicative numerical results in Tables 1-4 for 
1.0, 1.5, 2.0, 2.5n  , respectively. Comparison of the 

results in Tables 2 and 4 with corresponding ones in Ta-
bles 3 and 7 of [12] shows that they are compatible nu-
merical results. The corresponding percentage differ-
ences are listed in Table 5. Note that the numerical re-
sults for the 2.0n   model, listed in Table 3, have been 
computed with c  different to that used in Table 5 of 
[12]; thus these two sets of results are not comparable. 

1, ,e CBV r M   
and  free 1, ,e CBV r M  . 

To achieve convergence, we repeat Steps 3-6 with 
gradually increasing angular velocities  up 
to a value 

2 3, , ,  
f  fulfilling the condition 0 fV    . 

7. Numerical Results 

We compute general-relativistic polytropic models of 
maximum mass simulating neutron stars in rapid uniform 
rotation (on models of maximum mass, see [9], Section 4; 
[12], Section 6; [13], Section 5.2). The procedure fol-
lowed to compute such models is described in [1] (Sec-
tion 4). We then compute the corresponding uniformly 
rotating models with angular velocities equal to their  

Finally, Tables 6-8 give the values of the constant 
baryonic mass CBM , equatorial radius er , velocity 

bound freeV V V  , mass-shedding limit MS , mass- 
shedding limit calculated by the RNS package  MS RNS , 
and the percentage differences between the results of 

MS  and  MS RNS .  
 
Table 1. Numerical results for the n = 1.0 polytropic model of maximum mass; uniform rotation with Keplerian angular ve-
locity, ΩK = 3.333 × 10−7 cm−1. 

 Gravitational units Polytropic units CGS units 

Nonrotating conguration    

Polytropic constant, K 1.499 (+12) 1.000 (+00) 1.000 (+05) 

Central mass-energy density, E(re)c 2.816 (−13) 4.220 (−01) 3.793 (+15) 

Central rest-mass density, ρ(re)c 2.134 (−13) 3.198 (−01) 2.874 (+15) 

Radius, R 9.334 (+05) 7.625 (−01) 9.334 (+05) 

Gravitational mass, M 2.004 (+05) 1.637 (−01) 2.699 (+33) 

Baryonic mass, MB 2.202 (+05) 1.799 (−01) 2.966 (+33) 

Proper mass, MP 2.506 (+05) 2.047 (−01) 3.376 (+33) 

Third-order corrections    



I. SFAELOS, V. GEROYANNIS 214 

Continued 

Angular momentum, δJ 5.953 (+09) 3.972 (−03) 2.404 (+48) 

Moment of inertia, δI 1.786 (+16) 9.736 (−03) 2.405 (+44) 

Rotational kinetic energy, δT 9.921 (+02) 8.104 (−04) 1.201 (+52) 

Gravitational potential energy, |δW| 4.722 (+03) 3.857 (−03) 5.716 (+52) 

Total quantities    

Radius, R + δRSD 9.705 (+05) 7.928 (−01) 9.705 (+05) 

Gravitational mass, M + δM 2.190 (+05) 1.789 (−01) 2.950 (+33) 

Baryonic mass, MB + δMB 2.405 (+05) 1.965 (−01) 3.240 (+33) 

Proper mass, MP + δMP 2.730 (+05) 2.230 (−01) 3.677 (+33) 

Angular momentum, JTOT = J + δJ 2.550 (+10) 1.702 (−02) 1.030 (+49) 

Moment of inertia, ITOT = I + δI 7.650 (+16) 4.170 (−02) 1.030 (+45) 

Rotational kinetic energy, TTOT = T + δT 4.249 (+03) 3.471 (−03) 5.144 (+52) 

Gravitational potential energy, |WTOT| = |W + δW| 5.818 (+04) 4.753 (−02) 7.043 (+53) 

Ratio TTOT/|WTOT| 7.073 (−02) 7.073 (−02) 7.073 (−02) 

 
Table 2. Numerical results for the n = 1.5 polytropic model of maximum mass; uniform rotation with Keplerian angular ve-
locity, ΩK = 2.658 × 10−7 cm−1. 

 Gravitational units Polytropic units CGS units 

Nonrotating conguration    

Polytropic constant, K 3.389 (+07) 1.000 (+00) 5.380 (+09) 

Central mass-energy density, E(re)c 3.631 (−13) 7.163 (−02) 4.890 (+15) 

Central rest-mass density, ρ(re)c 2.962 (−13) 5.840 (−02) 3.989 (+15) 

Radius, R 8.725 (+05) 1.964 (+00) 8.725 (+05) 

Gravitational mass, M 1.175 (+05) 2.645 (−01) 1.582 (+33) 

Baryonic mass, MB 1.228 (+05) 2.764 (−01) 1.654 (+33) 

Proper mass, MP 1.363 (+05) 3.069 (−01) 1.836 (+33) 

Third-order corrections    

Angular momentum, δJ 1.327 (+09) 6.728 (−03) 5.359 (+47) 

Moment of inertia, δI 4.994 (+15) 5.700 (−02) 6.726 (+43) 

Rotational kinetic energy, δT 1.764 (+02) 3.971 (−04) 2.135 (+51) 

Gravitational potential energy, |δW| 1.470 (+03) 3.310 (−03) 1.779 (+52) 

Total quantities    

Radius, R + δRSD 9.217 (+05) 2.075 (+00) 9.217 (+05) 

Gravitational mass, M + δM 1.260 (+05) 1.836 (−01) 1.696 (+33) 

Baryonic mass, MB + δMB 1.319 (+05) 2.968 (−01) 1.776(+33) 

Proper mass, MP + δMP 1.461 (+05) 3.289 (−01) 1.967 (+33) 

Angular momentum, JTOT = J + δJ 6.808 (+09) 3.451 (−02) 2.749 (+48) 

Moment of inertia, ITOT = I + δI 2.562 (+16) 2.924 (−01) 3.450 (+44) 

Rotational kinetic energy, TTOT = T + δT 9.047 (+02) 2.037 (−03) 1.095 (+52) 

Gravitational potential energy, |WTOT| = |W + δW| 2.100 (+04) 4.729 (−02) 2.542 (+53) 

Ratio TTOT/|WTOT| 4.308 (−02) 4.308 (−02) 4.308 (−02) 
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Table 3. Numerical results for the n = 2.0 polytropic model of maximum mass; uniform rotation with Keplerian angular ve-
locity, ΩK = 1.844 × 10−7 cm−1. 

 Gravitational units Polytropic units CGS units 

Nonrotating conguration    

Polytropic constant, K 1.291 (+05) 1.000 (+00) 1.000 (+12) 

Central mass-energy density, E(re)c 3.458 (−13) 5.765 (−03) 4.657 (+15) 

Central rest-mass density, ρ(re)c 3.027 (−13) 5.000 (−03) 4.077 (+15) 

Radius, R 8.967 (+05) 6.944(+00) 8.967 (+05) 

Gravitational mass, M 6.668 (+04) 5.164 (−01) 8.980(+32) 

Baryonic mass, MB 6.788 (+04) 5.257 (−01) 9.143 (+32) 

Proper mass, MP 7.297 (+04) 5.651 (−01) 9.827 (+32) 

Third-order corrections    

Angular momentum, δJ 2.759 (+08) 1.655 (−02) 1.114 (+47) 

Moment of inertia, δI 1.496 (+15) 6.950(−01) 2.015 (+43) 

Rotational kinetic energy, δT 2.544 (+01) 1.970 (−04) 3.079(+50) 

Gravitational potential energy, |δW| 3.611 (+02) 2.797 (−03) 4.371 (+51) 

Total quantities    

Radius, R + δRSD 9.575 (+05) 7.415 (+00) 9.575 (+05) 

Gravitational mass, M + δM 7.021 (+04) 5.438 (−01) 9.456 (+32) 

Baryonic mass, MB + δMB 7.156 (+04) 5.542 (−01) 9.638 (+32) 

Proper mass, MP + δMP 7.684 (+05) 5.951 (−01) 1.035 (+33) 

Angular momentum, JTOT = J + δJ 1.852 (+09) 1.110 (−00) 7.476 (+47) 

Moment of inertia, ITOT = I + δI 1.004 (+16) 4.664 (+00) 1.352 (+44) 

Rotational kinetic energy, TTOT = T + δT 1.707 (+02) 1.322 (−03) 2.066 (+51) 

Gravitational potential energy, |WTOT| = |W + δW| 6.798 (+03) 5.265 (−02) 8.229 (+52) 

Ratio TTOT/|WTOT| 2.511 (−02) 2.511 (−02) 2.511 (−02) 

 
Table 4. Numerical results for the n = 2.5 polytropic model of maximum mass; uniform rotation with Keplerian angular ve-
locity, ΩK = 1.141 × 10−7 cm−1. 

 Gravitational units Polytropic units CGS units 

Nonrotating conguration    

Polytropic constant, K 2.980 (+03) 1.000 (+00) 1.500 (+13) 

Central mass-energy density, E(re)c 2.591 (−13) 1.256 (−04) 3.489 (+15) 

Central rest-mass density, ρ(re)c 2.428 (−13) 1.177 (−04) 3.270 (+15) 

Radius, R 8.997 (+05) 4.087 (+01) 8.997 (+05) 

Gravitational mass, M 2.744 (+04) 1.247 (+00) 3.696 (+32) 

Baryonic mass, MB 2.759 (+04) 1.253 (+00) 3.715 (+32) 

Proper mass, MP 2.862 (+04) 1.300 (+00) 3.854 (+32) 

Third-order corrections    

Angular momentum, δJ 3.832 (+07) 7.907 (−02) 1.547 (+46) 

Moment of inertia, δI 3.359 (+14) 3.148 (−01) 4.524 (+42) 

Rotational kinetic energy, δT 2.186(+00) 9.930 (−04) 2.646 (+49) 

Gravitational potential energy, |δW| 4.714 (+01) 2.141 (−03) 5.706 (+50) 

Total quantities    

Radius, R + δRSD 9.673 (+05) 4.394 (+01) 9.673 (+05) 

Gravitational mass, M + δM 2.846 (+04) 1.293 (+00) 3.834 (+32) 

Baryonic mass, MB + δMB 2.863 (+04) 1.300 (+00) 3.855 (+32) 

Proper mass, MP + δMP 2.969 (+04) 1.348 (+00) 3.998 (+33) 

Angular momentum, JTOT = J + δJ 3.178 (+08) 6.557 (−01) 1.283 (+47) 

Moment of inertia, ITOT = I + δI 2.786 (+15) 2.611 (+02) 3.752 (+43) 

Rotational kinetic energy, TTOT = T + δT 1.813 (+01) 8.235 (−04) 2.194 (+50) 

Gravitational potential energy, |WTOT| = |W + δW| 1.237 (+03) 5.620 (−02) 1.498 (+52) 

Ratio TTOT/|WTOT| 1.465 (−02) 1.465 (−02) 1.465 (−02) 
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Table 5. Percentage dierences between results of this investigation and the corresponding ones of Tables 3 and 7 in [12], for 
the n = 1.5 and n = 2.5 polytropic models. 

 %ΔJ %ΔI %ΔT %Δ|W| %ΔδMSD %ΔδMBSD %ΔδMPSD %ΔδRSD 

n = 1.5 0.18 0.24 0.15 0.31 0.31 0.41 0.40 0.20 

n = 2.5 0.68 0.69 0.63 3.69 1.08 1.25 1.22 0.65 

 
Table 6. Mass-shedding limit for the n = 1.0 polytropic model. 

 Gravitational units Polytropic units 

Constant baryonic mass, MCB 2.202 (+05) 1.799 (−01) 

Equatorial radius, er  1.352 (+06) 1.105 (+00) 

Velocity, Vbound = Vfree = V 3.840 (−01) 3.840 (−01) 

Mass-shedding limit, ΩMS 2.585 (−07) 3.164 (−01) 

Mass-shedding limit from RNS, ΩMS(RNS) 2.104 (−07) 2.575 (−01) 

100 × |ΩMS－ΩMS(RNS)|/ΩMS(RNS) 2.286 (+01) 2.286 (+01) 

 
Table 7. Mass-shedding limit for the n = 1.5 polytropic model. 

 Gravitational units Polytropic units 

Constant baryonic mass, MCB 1.228 (+05) 2.764 (−01) 

Equatorial radius, er  1.474 (+06) 3.318 (+00) 

Velocity, Vbound = Vfree = V 2.942 (−01) 2.942 (−01) 

Mass-shedding limit, ΩMS 1.892 (−07) 8.405 (−02) 

Mass-shedding limit from RNS, ΩMS(RNS) 1.553 (−07) 6.897 (−02) 

100 × |ΩMS－ΩMS(RNS)|/ΩMS(RNS) 2.183 (+01) 2.183 (+01) 

 
Table 8. Mass-shedding limit for the n = 2.5 polytropic model. 

 Gravitational units Polytropic units 

Constant baryonic mass, MCB 2.759 (+04) 1.253 (−01) 

Equatorial radius, er  9.719 (+06) 4.415 (+00) 

Velocity, Vbound = Vfree = V 1.694 (−01) 1.694 (−01) 

Mass-shedding limit, ΩMS 1.725 (−07) 3.798 (−02) 

Mass-shedding limit from RNS, ΩMS(RNS) 2.085 (−07) 4.590 (−02) 

100 × |ΩMS－ΩMS(RNS)|/ΩMS(RNS) 1.727 (+01) 1.727 (+01) 

 
8. Conclusion 9. Acknowledgements 

The numerical results of Tables 1-5 show that  
gives results compatible with those presented in [12], on 
the full extent of Hartle’s perturbation theory, i.e. up to 
terms of third order in the angular velocity. It seems 
therefore that  is an accurate and reliable numeri-
cal method for treating rapidly rotating neutron stars. On 
the other hand, for the mass-shedding limit(s) computed 
in this study, we have found that the differences with 
respect to corresponding results of a nonperturbative 
method like RNS, listed in Tables 6-8, are about 20%. 
As discussed in [10] (Section 3), such differences are 
eventually expected within the framework of Hartle’s 
perturbation method. 





The authors acknowledge the use of the ATOMFT Sys-
tem. 
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