
Intelligent Information Management, 2010, 2, 343-353
doi:10.4236/iim.2010.26042 Published Online June 2010 (http://www.SciRP.org/journal/iim)

Copyright © 2010 SciRes. IIM

343

Status of Developers’ Testing Process

Gudrun Jeppesen1, Mira Kajko-Mattsson2, Jason Murphy3
1Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden

2School of Information and Communication Technology, Royal Institute of Technology, Stockholm, Sweden
3Nomadic Software, Nomadic City, Sweden

E-mail: gudrun@dsv.su.se, mekm2@kth.se, jasonleemurphy@hotmail.com
Received March 12, 2010; revised April 15, 2010; accepted May 17, 2010

Abstract

Even if recent methodologies bring more recognition to developers’ testing process, we still have little in-
sight into its status within the industry. In this paper, we study the status of developers’ testing process at
Nomadic Software. Our results show that the process is not uniformly executed. The company suffers from
lack of control over the methods used, lack of formal communication on requirements, lack of static testing
practice, and lack of testing process documentation.

Keywords: Dynamic Testing, Static Testing, Peer Reviews, Inspections, Debugging, Test Cases, Testing

Techniques

1. Introduction

Despite its importance, the overall testing process has for
many years been neglected both within research and in-
dustry [1-3]. Most of the effort has been spent on creat-
ing testing processes on the system level. Hence, we
have fairly good understanding of system testing and its
industrial status. Regarding the other levels, such as unit
(developer level testing), integration and acceptance
testing, little, if almost nothing, has been done both
within the academia and industry.

Recently, developers’, integration and acceptance tests
have received more recognition thanks to the agile
methods [4-7]. Agile methods treat testing as an integral
part of their processes. In these methods, no modification
or refactoring of code is complete until 100% of unit
tests have run successfully, no story is complete until all
its acceptance tests have passed successfully, and addi-
tions and modifications to the code are integrated into the
system on at least a daily basis. Despite this, we still
have little insight into the status of these three types of
tests. This insight is pivotal for providing feedback for
process improvement and for making the overall devel-
opment process more cost-effective [8,9].

In this paper, we study developers’ testing process at
Nomadic Software. Our goal is to establish its status
within the company and identify areas for potential im-
provements. The study is based on a testing model [10],
developed for a traditional heavyweight development
context.

The remainder of this paper is as follows. Section 2
presents our research method and the organization stud-
ied. Section 3 describes the developers’ testing model.
Section 4 presents the status of the testing process and
Section 5 makes final remarks.

2. Method

This section describes the research method taken in this
study. Subsection 2.1 presents the company studied.
Subsection 2.2 describes our research steps. Subsection
2.3 presents the questionnaire used in this study. Finally,
Subsection 2.4 motivates the sampling method.

2.1. Nomadic Software

We have studied one large Swedish organization. Due to
the sensitivity of the results presented herein, the com-
pany does not wish to disclose its name. For this reason,
we call it Nomadic Software.

Nomadic Software is the IT provider of IT services
within a larger group of companies, which we call The
Nomad Group. This group serves the global market with
world-leading products, services and solutions ranging
from military defense to civil security products. It is op-
erating in more than 100 countries with its headquarters
in Sweden.

2.2. Research Steps

Our research consisted of three phases. As shown in Figure

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

344

1, these are 1) Prefatory Study, 2) Pilot Investigation,
and 3) Main Investigation. Each of the phases consisted
of three consecutive steps: Planning, Investigation and
Analysis. Below, we briefly describe these phases.

In the Prefatory Study phase, we acquainted ourselves
with Nomadic Software by investigating its processes
and the roles involved in them. For this purpose, we
studied the organization’s internal documentation and
made informal interviews with four developers. Our
main purpose was to get background information about
the company such as its employees, their working pat-
terns and problems, and their opinions about their testing
process. This helped us identify a preliminary status of
the developers’ testing process and generate questions to
be used in later research phases.

After having acquainted ourselves with the company
and its process, we decided to make a small survey in the
Pilot Investigation phase. Here, we created a multiple
choice questionnaire based on the results achieved in the
former phase. The questionnaire was answered by the
same four developers who participated in the Prefatory
Study phase. Our purpose was to test questions and ac-
quire feedback on their variability and expected answers.
This helped us determine the appropriateness of the
questions and their level of inquiry.

In the Main Investigation phase, we first designed a
comprehensive questionnaire to be distributed to all the
developers within Nomadic Software. Our purpose was
to achieve a detailed description of the AS - IS situation
of the company’s developers’ testing process, its inherent
activities, information managed within the process, roles
involved and the tools used.

Even if the questionnaire consisted of multiple choice
questions, it became very detailed, and of considerable
size. Nomadic Software estimated that it would take
about one hour for each developer to answer it. Having
as many as about eighty developers, it would be too ex-
pensive. For this reason, we had to cut out many of its
questions and/or redesign others. We also had to split
parts of the questionnaire into two sub-parts: one study-
ing static testing and the other one studying dynamic
testing. All in all, we received answers from fifteen de-
velopers, where seven developers answered the dynamic
part and twelve developers answered the static part.

Figure 1. Research steps taken in this study.

2.3. Questionnaire

The questionnaire consists of two main sections: Back-
ground and Testing Process. It is shown in Figure 2.

2.3.1. Background Section
The Background section inquires about the respondents
and the underlying testing conditions within the company
studied. It covers the following:

1) Developers’ Background: This part inquires about
the developers, their testing experience and current re-
sponsibilities. It covers Questions 1-3. Our aim is to get
to know the developers’ background and provide a basis
for analyzing the results of this study.

2) Methods Used: This part inquires about the devel-
opment methods defined and used within the company. It
covers Questions 4-6. Our goal is to find out whether the
developers use the methods defined within the company
and the reasons behind using or not using them.

3) Scope and Effort of Testing: This part inquires
about the scope of the developers’ testing activities and
the effort spent on them. It covers Questions 7 and 8. The
goal is to find out what testing levels and activities the
developers are involved in, what is the effort spent on
them, and its distribution on manual and automatic test-
ing.

2.3.2. Testing Process Section
In the Testing Process section, we inquire about the
status within the testing phases such as Preparatory,
Write Code/ Change Code, Testing, Debugging, Evalua-
tion and Sign-Off (see Figure 2).

1) Preparatory Phase: This part inquires about the
planning of the developers’ work. It includes the follow-
ing parts:
 Documentation Part: This part inquiring about the

documents providing input to the implementation
phase. It covers Questions 9-11. Our goal is to find
out what documents are studied before the imple-
mentation, what measures are taken in cases when
they are defective, and elicit examples of the defects.

 Testing Plan: This part inquiring about the develop-
ers’ test plans. It covers Questions 12 and 13. The
goal is to find out what activities are included in the
implementation and testing phases and when they are
carried out.

 Testing Environment: This part inquiring about the
activities the developers conduct to create a testing
environment. It covers Question 14. The goal is to
find out what activities that the developers create
when setting up their own testing environments.

2) Write Code/Change Code Phase: This part inquires
about the basic code implementation activities. It covers
Question 15. Our aim is to assure that all the respondents
write and/or change code, and test it.

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

345

Background Section

1) Does your current role entail programming of software?
2) Please state the number of years that you have been working with

testing in your current role (at your current employer and in total).
3) What type of activities are you currently involved in?

● Development of a completely new system;
● Development of a new feature in an existing system;
● Defect correction; ● Testing of your own code;
● Testing of other developers’ code; ● Writing your own test cas-
es; ● Writing other developers’ test cases; ● Other, please specify;

4) What test processes/methods do you follow?
● Rational Unified Process (RUP); ● Software Development
Process (NomadicRUP) in all your development; ● Software De-
velopment Process, not in your testing; ● Software Test Process (a
separate test process linked to NomadicRUP; ● Method that you
have brought in with you from your former company; ● An old
method that has been used earlier at Nomadic Software;
● Your own method; ● No method at all; ● Other, please specify;

5) If you use use the Software Development Process (Nomadi-
cRUP), does it contain enough information regarding unit and
unit integration test activities?

6) If you follow the Software Test Process, do you believe it to be
useful for increasing the code quality?

7) What is your weekly effort (in percentage) spent on manual and
dynamic testing?

8) Which types of testing are you involved in?
● Unit tests; ● Integrations test of you own units;
● Continuous integration of components; ● Functional tests;
● Security tests; Regression tests; ● Integrity tests;
● Other tests, please specify.

Testing Process Section

9) What documents do you study before coding and testing?
● Requirements specification; ● Design specification
● Program specification; ● Change request; ● Problem report;
● Nothing, everything is communicated orally;
● Other test, please specify;

10) If some of the documents have inconsistencies, need further clari-
fication or is missing information, do you report that it needs up-
dating?

11) Please, state which documents need updating and list some of the
problems identified in those documents.

12) Which of the activities do you include in your testing plan?
● Coding; ● Testing; ● Creating stubs and drivers;
● Preparing your testing environment; ● Modifying of your re-
gression test cases; ● Others, please specify;
● None, you do not create your own testing plan;

13) When exactly do you carry out those activities?
● Before coding; ● During coding; After coding;
● Never;

14) Do you create your own testing environment? If yes, what exactly
do you do?

15) Which activities do you perform in the Write Code/Change Code
phase?
● Write code; ● Change code; ●Link and compile code;
● Other, please specify;

Dynamic Testing Part

16) Which types of dynamic testing do you perform?
● Black-box tests; ● White-box tests; ● Grey-box tests;

17) Which role(s) does/do write your test cases?
● Another developer writes your test cases; ● An integrator writes
your test cases; ● A software architect writes your test cases,
● Other role writes your test cases, please specify which role it is;

18) Do your document your own test cases?
● Always; ● Very often; ● Half of them; ● Rarely;
● Never;

19) What are your testing coverage goals?
20) If you have not achieved your testing goals, what do you do?
21) Which method do you use when designing your input data?

● Equivalence partitioning; ● Boundary-value analysis;
● Cause-effect graphing; ● Error guessing; ● Statement coverage;
● Decision coverage; ● Conditions coverage;
● Decision/condition coverage; ● Multiple-condition coverage;

22) When comparing the received testing results with the expected
ones, what do you do when you find discrepancies?
● You make your own notes; ● You hand in a trouble report;
● Other, please specify.

23) Which roles do you get in contact with in the following situations?
● Who informs you about the functionality that you have to de-
velop? ● Who informs you about that you have to test other de-
veloper’s code? ● Who informs you about inconsistencies, needs
for clarification and missing information? ● Who do you inform
that you that you have updated your own test cases? ● Who do
your inform that requirements need to be updated? ● Who do you
inform about your testing results? ● Who do you inform that your
tests have been completed?

Debugging Part

24) If you are debugging code, what do you when you find discrep-
ancies
● Study the source code and correct it, if relevant;
● Study test cases(s) and correct it/them, if relevant;
● Study the requirements specification and take relevant measures,
if relevant; ● Study the design specification and take relevant
measures, if relevant; ● Others, please specify;

25) What tool(s) are you using for debugging?

Static Testing Part

26) Are you involved in reviews?
● You do reviews of your own code; ● You do walkthroughs (re-
view of a peer’s code); ● You do formal inspections; ● You do not
do any reviews, walkthroughs or inspections;

27) What is the purpose of your reviews?
● Code follows; ● Programming guidelines;
● Organizational standards; ● Other criteria, please specify;

28) Do you make notes documenting the results of the reviews?
29) Do you report discrepancies encountered during the reviews?

Sign-off Part

30) Do you sign-off your development and test results before deliv-
ering your code for integration or system testing?

31) Do you sign-off your development and test result, exactly which
artifacts do you sign-off?

Evaluation Part

32) If you look at how developer’s testing is being done today, please
state what can be improved and motivate your suggestions.

33) If you look at the way the developer’s testing is done today,
please state what is the best in today’s testing procedures and mo-
tivate way.

Figure 2. Our questionnaire.

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

346

3) Testing Phase: This part inquires about the status

within the test execution phase. It includes the following
parts:
 Dynamic Test Execution Phase: This part inquires

about the status of the dynamic testing process, its
timing and results. It covers Questions 16-23. Our
aim is to find out whether dynamic testing activities
are conducted, how and when they are conducted,
what is their outcome and how they are communi-
cated among the roles involved.

 Static Test Execution Phase: This part inquires about
the status of the static testing process and its results.
It covers Questions 26-29. Here, we wish to find out
whether static testing activities are conducted, how
and when they are conducted, and what their outcome
is.

4) Test debugging phase: This part inquires about the
practice of debugging. It covers Questions 24 and 25. Our
aim is to find out what is done when defects are discov-
ered and what tools are used for localizing these defects.

5) Sign-Off Phase: This part finds out whether the de-
velopers sign off their results. It covers Questions 30 and
31. Our aim is to hear about whether the developers
sign-off their code and what artifacts they sign-off.

6) Evaluation Phase: This part inquires about the de-
velopers’ opinion about the testing process and their sug-
gestions for the process improvement. Our aim is to elicit
the developer’s recommendations on how to improve
their testing process and/or how to preserve its good ele-
ments. It covers Questions 32 and 33.

2.4. Sampling Method

Initially, we intended to achieve a full sampling coverage
of our respondents. However, as already mentioned, this
was considered to be too expensive by the company’s
management. Hence, only fifteen developers were in-
volved in this study. These individuals belonged to dif-
ferent projects, and they were chosen by their respective
project managers. We had no opportunity to influence
their selection. For this reason, we have no other choice
than to classify the sampling method used in this study as
a convenience sampling method.

The convenience sampling method does not allow us
to generalize our results with respect to the status of the
organization studied. However, it provides an indication
of what the status of the developers’ testing process
looks like.

3. Testing Model

There are not so many process models delineating the
developers’ testing process. One of the current ones is
illustrated in Figure 3 [10]. It provides a framework for
developers’ testing phases and their constituent activities.

It was developed in a traditional heavyweight context.
However, it is even relevant in the context of agile de-
velopment. By framework, we mean that it covers most
of the activities necessary for conducting unit and unit
integration tests.

As shown in Figure 3, the phases of the developers’
testing process are 1) Preparatory Phase, 2) Write Code/
Change Code Phase, 3) Testing Phase, 4) Debugging
Phase, 5) Evaluation Phase and finally, 6) Sign-off
Phase.

1) Preparatory Phase
The Preparatory Phase consists of two alternative

phases. Their choice depends on whether one writes new
code or changes an existing one. The changes may con-
cern changes requested by external customers or changes
to be conducted due to discovered defects in any of the
testing process phases. The activities for these two
phases are almost the same. One makes a new low-level
design or checks whether or how to make changes to the
existing one. One plans for the next testing iteration, that
is, one creates/modifies test cases, specifies/checks in-
puts and expected outputs, and creates stubs and drivers,
if necessary. The only difference is that one revises re-
gression test case base in cases when the code is
changed.

2) Write Code/Change Code Phase
During the Write Code/Change Code Phase, develop-

ers write or change their code and compile it.
3) Testing Phase
The Testing Phase consists of unit and unit integration

testing which, in turn, may be conducted dynamically
and statically. Dynamic testing implies testing software
through executing it. One starts by checking if the test
cases fulfil the given requirements, one creates additional
test cases, if needed, links the units and tests them. The
test results are then documented and compared to the
expected ones. Static testing, on the other hand, implies
testing software through reading it. It ranges from infor-
mal code reviews conducted by the developers them-
selves, to reviews conducted by peers, to formal inspec-
tions performed by a group of dedicated roles.

4) Debugging Phase
The Debugging Phase is conducted in parallel with the

other testing phases. Using the testing results, one local-
izes defects and removes them. It partly overlaps with
the activities within problem management process.

5) Evaluation Phase
The Evaluation Phase is conducted on two levels. The

first level is performed by developers. They evaluate
code before sending it for system integration. The second
level evaluates the development and testing routines with
the purpose of providing feedback for process improve-
ment.

6) Sign-off Phase
Due to the importance of unit and unit integration tests,
the developers should sign off that all the components

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

347

Figure 3. Developers’ testing process.

delivered for integration have been successfully tested.
We consider the Sign-off Phase important because it fi-
nalizes the developers’ tests. It adds pressure on the de-
velopers and hinders them from delivering untested code.
It also promotes higher level of accountability among the
developers.

The framework does not impose any particular se-
quence. Developers are free to adapt it to their own con-
text. Usually, before sending their components for inte-
gration, they may have to repeat many of its phases or
their parts. This is illustrated with a non-bold line in Fig-
ure 3. In addition, the framework suggests that the de-
velopers evaluate the testing process in the Evaluation
phase and provide feedback for process improvement.
This is illustrated with a bold arrow line in Figure 3.

4. Status within Nomadic Software

In this section, we present the results of the survey.
When reporting on them, we follow the order of the
questionnaire as defined in Subsection 2.3.

4.1. Respondents and their Background

All the respondents (100% of response coverage) are
involved in programming. As illustrated in Figure 4, in
average, they have been working with programming and
testing for 3.2 ± 3.2 years at Nomadic Software and for
7.4 ± 7.1 years in their career lives.

The respondents are involved in various lifecycle
phases; 53.3% are involved in developing new systems,

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

348

93.3% enhance existing systems with new features and
86.7% attend to software problems. Irrespective of the
phase, all the respondents are involved in writing and
testing their own code. Out of them, 46.7% write their
own test cases and 13.3% write test cases to be used by
other developers. Some of them (6.7%) also conduct
other unspecified activities.

4.2. Method Used

Nomadic Software has defined and established their own
development method. This method is based on RUP [11]
and it is called NomadicRUP. All the developers are re-
quired to follow it either standalone or in combination
with the Software Test Process, a process that has been
defined and established by Nomadic Software. Despite
this, as shown in Figure 5, only 33.3% of the respon-
dents follow it within all their development activities
(including testing).

Figure 4. Experience in testing.

Figure 5. Process/method followed.

Regarding the remaining respondents, 33.3% of them,
follow NomadicRUP within development but not within
testing; 6.7% utilize the Software Test Process, 6.7% use
a method that they have brought with them from an ear-
lier employer, and 20.0% use an old Nomadic method.
As many as 60 % use their own method and as many as
20.0% do not use any method at all. Finally, 13.3% of
the respondents use methods such as Scrum, XP and
ITM Process [12-14].

It is easy to recognize in Figure 5 that the majority of
the respondents follow more than one method. This is
proved by calculating the accumulated frequency which
is 193.3%.

Our respondents have admitted that they conduct de-
velopers’ tests in an ad hoc manner. They mainly use
common sense when testing their code. However, they
claim that they are more disciplined when performing
higher-level tests with respect to planning, testing and
follow up.

There are many reasons to why NomadicRUP is not
used by all the developers. Some of: 1) the developers
have not even made an effort to get acquainted with the
method; hence, they do not use it, 2) the methods are too
general and it does not support their specific develop-
ment needs while the use of Scrum has substantially in-
creased progress and code quality, 3) the developers
have gone over to Scrum because they feel that by us-
ing NomadicRUP, they produce a lot of meaningless and
quickly outaging documentation instead of writing code,
4) the developers continue with the NomadicRUP’s
forerunner that was used to develop and that is still used
to maintain some of the existing applications, 5) the de-
velopers wish to decide by themselves on how to carry
out their own testing work.

As shown in Figure 5, 66.6% (33.3% + 33.3%) of the
respondents follow the NomadicRUP method but only
33.3% of them use it for testing purposes. Still, however,
63.7% of them are of the opinion that the method in-
cludes sufficient information about developers’ testing
process.

Regarding the Software Test Process, only 6.7% of the
respondents follow it (see Figure 5). Just as with the
NomadicRUP method, some of the respondents are of the
opinion that even this method includes sufficient infor-
mation about and guidelines for conducting developers’
tests and that it generates better code quality. Some other
respondents claim that the very abstract presentation
level of the method allows them to state that they follow
the method. In reality, however, they use common sense
when testing their components.

Irrespective of whether the developers follow the
software test process, some of them are of the opinion
that is it useful to have a formal testing process on a de-
velopers’ level. It forces the developers to create test
cases on different levels, imposes traceability among
them and facilitates future development and change.

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

349

However, the main obstacle hindering the developers to
do the testing is time. They have little time assigned to
do the unit and unit integration tests.

4.3. Scope and Effort of Testing

Testing is mainly done manually at Nomadic Software.
The respondents had difficulties to estimate the effort
spent on the manual and automatic testing. This is be-
cause the effort varies from week to week or it depends
on the complexity of code. In average, however, as
shown in Figure 6, the respondents spend 0 ≤ 30.9% ≤
69.2% of their weekly working time (40 hours) on doing
manual tests and only 0 ≤ 2.4% ≤ 9.1% of their time on
doing automatic tests.

Developers conduct various tests. As shown in Figure
7, their testing activities range from unit tests (92.9%),
through unit integration tests (92.9%), functional tests
(71.4%), system regression tests (42.9%), and testing of
other developers’ integrated components (50.0%). In
addition, some of them are involved in tests such as us-
ability tests (28.6%), integrity tests (21.4%), and security
tests (21.4%). It is worth mentioning that not all the re-
spondents were familiar with all the test types mentioned
in the question.

4.4. Preparatory Phase

Various documents provide basis for starting the coding
activity. As shown in Figure 8, our respondents mainly
use 1) requirement specifications (80.0%), 2) design
specifications (73.3%), 3) change requests (86.7%), 4)
program specifications (53.3%), and 5) problem reports
(60.0%). The use of problem reports supports developers
in recreating reported problems and in finding deficien-
cies in the development and maintenance. However, as
many as 13.3% of the respondents use oral communica-
tion as a basis for their coding activities. This is because
the above-mentioned documents do not always exist.
Another reason is the fact that many of the above-men-
tioned documents are not always of satisfactory quality.
Hence, the respondents find it easier to use oral commu-
nication as a basis for starting their coding activities.

Figure 6. Effort spent on testing.

Figure 7. Test conducted.

Figure 8. Document.

When studying the above-mentioned documents, the
respondents often discover various defects concerning
inconsistencies and/or uncertainties. As shown in Table
1, the respondents that have answered this question find
defects ranging from missing information in design
specification to missing or outdated information in vari-
ous documents. These defects are then reported for cor-
rective measures by 92.9% of the respondents. The re-
porting is done for the purpose of updating the docu-
ments and not for the purpose of providing a basis for
improving the testing process. The remaining respon-
dents (7.1%) do not do any reporting at all.

Some of the respondents have not provided any in-
formation on what documents they use as a basis for
starting their coding and testing activities. They have
however provided us with the following opinions: 1) when

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

350

Table 1. Defect examples.

Document name Defect

Requirement
specification

A conditions has to few exits
Use Cases are on a too high-level
Missing business rules

Design specification Missing information or documents

Change report Common functionality is not common

Problem report Outdated information

designing the system I do not add any descriptions about
how to conduct unit and integration tests since it is not
requested by the organization, 2) I cannot remember a
document that does not include inconsistencies and/or
uncertainties, and 3) documentation is generally a bad
way of communicating information to the implementa-
tion process and to keep information about how things
work. Therefore, documented tests are a lot better if they
are combined with documentation easily extractable
from code.

The respondents were asked to list the activities that
they included in their testing plans. Only 71.4% of the
respondents plan their implementation and testing. In
their plans, they include 1) coding (90.0% of the respon-
dents), 2) testing (100%), 3) preparation of their own
testing environments (80.0%), and 4) modification of
regression test cases (40.0%). Very few of the respon-
dents (20.0%) include creation of stubs and drivers in
their testing plans. These plans, however, are made on an
informal basis. This is because the organization does not
promote planning of and documenting tests.

Regarding the activities included in the testing plan,
we inquired about the point in time when they were con-
ducted. Our aim was to find out whether they were con-
ducted 1) before coding, 2) during coding, 3) after cod-
ing, or 4) never. As shown in Table 2, the timing of
these activities varies in the following:

1) Stubs and drivers are created before and during cod-
ing.

2) Regression test cases are modified during and after
coding. However, the greater majority of the respondents
(83.3%) modify them after they have finished coding.

3) New functionality test cases are written throughout
the whole implementation process. The majority of the
respondents (75%), however, create them after coding.

We also inquired whether the respondents created their
own testing environments and exactly what they did
when doing it. Eighty percent of the respondents do cre-
ate their own testing environments. When doing it they
(1) test project code and run functional testing of their
own components, (2) change test data by making a copy
of production data, (3) use remote automatic tests when-
ever they are checking something in, (4) create a number

Table 2. Timing of some testing activities in percentage.

When

Activity
Before
coding

During
coding

After
coding

Another
time

Stubs and drivers 33.3 66.7 33.3 0.0

New functionality
test cases

41.6 41.6 75.0 16.7

Regression test cases 0.0 16.7 83.3 0.0

of settings to point out the resources required to run and
execute a build. In addition, the respondents have com-
mented that they have three environments: development,
test, and production. However, they only use the devel-
opment environment when conducting developer’s tests
(unit tests).

4.5. Write Code/Change Code Phase

All the respondents (100%) write new code and change
an existing code. However, 61.6% of the respondents
have to compile their code manually. The remaining re-
spondents get it automatically done via tools which both
check syntax and compile the code.

4.6. Dynamic Testing

The respondents were requested to list the dynamic test-
ing practices they used. The majority of them (85.7%)
conduct black-box and white box tests. Although grey-box
testing is not promoted at Nomadic Software, 42.9% of
the respondents have answered that they conduct grey-box
tests as well.

We inquired whether the respondents wrote test cases
by themselves or whether they got them written by some
other role. We also inquired if they documented their
own test cases. Our results show that all the respondents
claim that they write their own test cases, but on some
occasions, 14.3% of them use test cases written by other
developers. No other role than a developer role is in-
volved in writing test cases for our respondents.

We inquired whether the respondents documented
their own test cases. Our results show that 42.9% of the
respondents always document their test cases, 28.6% do
it very often, 14.3% do it rarely, and 14.3% never do it.
Some of the respondents have pointed out that one
mainly puts effort into documenting the integration test
cases instead. Other respondents have mentioned that
documentation is only in JavaDoc but that they can gen-
erate a report on all tests when they run them.

Developers’ tests are the most efficient tests to con-
duct. Because the cost of coverage is low, one should
strive to set a testing coverage goal as high as possible.

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

351

We inquired about the developers’ coverage goals. Our
results are illustrated in Figure 9. As shown there, 1)
33.3% of the respondents test all main parts of code, 2)
50% test all code, 3) 16.7% test 60%-80% of all code 4)
16,7% test all features, and 5) 16.7% test all the archi-
tectural decisions. These results do not specify testing
coverage for any specific testing technique. This is be-
cause the coverage goals are not determined by the or-
ganization but by the developers themselves. However,
as Figure 10 shows, the white-box testing techniques
used by the respondents are 1) multiple-conditions cov-
erage, 2) decision/conditions coverage, 3) condition cov-
erage, 4) decision coverage, and 5) statement coverage.

Regarding the test cases involving input data, most of
the respondents (80% of them) use the boundary analysis
method, and 60% use error guessing. Some of them also
use equivalence partitioning (40%) and cause-effect
graphing technique (20%). In cases when the coverage
goals are not achieved, the respondents take measures
such as 1) discuss cost and revenue of further testing, 2)
ask the project manager for further measures, 3) decide
by themselves what to do next, or 4) they just checked in
code to the repository.

Figure 9. Test coverage goals.

Figure 10. Data input methods used.

Test results ought to be documented. For this reason,
we inquired whether the respondents recorded their test-
ing outcome and how they did it. Our results show that
57.1% of the respondents make their own informal notes
about the discrepancies between the expected and
achieved results and 28.6% hand in trouble reports, if
necessary. Some of the respondents (42.9%) not only
make notes or hand in trouble reports but also correct the
code by themselves. Finally, some of the respondents
just fix code without making either formal or informal
notes.

Developers come in contact with various roles in dif-
ferent situations. These are:

1) System Analysts and System Architects to discuss
new functionality to be developed, suggestions for their
updates and reports on inconsistencies in them, if any.

2) Business System Manager and End User to discuss
maintenance tasks and inconsistencies in them, if any.

3) Test Managers requiring that the respondents test
other developers’ tests. The respondents may also inform
the Test Managers about the completion of their tests and
their testing results.

4.7. Test debugging Phase

We inquired about how the developers tracked defects in
the Debugging phase and what tool support they used.
Our results show that all the respondents debug their
code, if needed. If they find defects, 100% of them cor-
rect them in source code and requirements, and 85.7%
correct them in design specifications and test cases. The
tools used during the Debugging phase are, for instance,
Visual Studio, IntelliJ, JProfiler and Jboss.

4.8. Static Testing

Given a set of static testing practices, the respondents
were requested to identify the ones they used. They had a
choice of 1) own reviews implying that they checked
their own code, 2) walkthroughs of peer code, and 3)
formal inspections. Our results show that 100% of the
respondents review their own code, 9.1% do walk-
throughs of peer code, and 18.1% are involved in inspec-
tions. The inspections, however, are very seldom per-
formed.

We inquired about the purpose of the reviewing activi-
ties. Irrespective of how the developers review their code
(own review or walkthroughs), at least 90.1% of the re-
spondents review it for the consistency with the require-
ments. When conducting own reviews, 63.6% of the re-
spondents also review for organizational standards, and
9.1% review for other criteria such as, for instance, in-
ternational standards. In the context of walkthroughs,
18.2% of the respondents review for organizational
standards only. In situations when the respondents con-

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

352

duct inspections, they only review for consistency with
requirements.

In static testing, it is imperative to document the test-
ing results. Hence, we inquired whether the respondents
recorded them. Our results show that very few respon-
dents, only 18.2% of all of them, document the results of
their own code reviews and no one documents walk-
through and inspection results.

We also inquired how the respondents documented the
discrepancies discovered during static testing. As illus-
trated in Table 3, the results span between 54.5% of the
respondents making own notes to 9.1% of the respon-
dents handing in trouble reports. The remaining discrep-
ancies are communicated on an oral basis.

4.9. Sign off

We asked the respondents whether they finalized their
implementation and testing activities in a formal or in-
formal way, for instance, by signing off their code. Only
9.1% of the respondents sign-off their work after they
have completed their tests. The artifact that is used for
signing-off is mainly a version management tool com-
plemented by an informal hand-shake among the deve-
lopers, testers and managers.

4.10. Evaluation

We also inquired about the best of the today’s testing
process. According to the respondents, the best parts of
the process are 1) the ability to conduct test review, 2)
freedom to use, for instance, Scrum/XP instead of, for
instance, NomadicRUP, 3) the ability to import produc-
tion data to be used as test data, 4) the ability to test your
own code, 5) automatic test framework, 6) the opportu-
nity to start testing early in the development cycle. Their
motivations are 1) system development using Scrum/XP
generates less defects, 2) test data can always be up to
date since it is possible to copy production data, 3) the
framework automatically conducts regression tests, 4) by
placing testing early in the development cycle, focus is
set on the actual problems and assures that test cases are
written, and finally, 5) the transfer of documents is sub-
stantially reduced.

Table 3. Recording Testing Results

Methods
I make

own notes

I hand in
trouble
reports

Other,
please
specify

I do not
document

Own Review 54.5 18.2 9.1 18.2

Walkthroughs 9.1 0 9.1 64.7

Inspections 27.2 9.1 9.1 45.5

5. Final Remarks

In this paper, we have studied developers’ testing process
at Nomadic Software. Our goal is to establish its status
within the company and identify areas for potential im-
provements. The study is based on a traditional testing
model elicited in [10]. The respondents involved in this
study are developers with solid programming back-
ground and experience.

Our results show that the developers’ testing process is
not uniformly performed within Nomadic Software.
Right now, the company suffers from the following
problems:

1) Lack of control over the methods used: Even if
Nomadic Software has put effort into defining and estab-
lishing a development and testing process, the majority
of the developers still use other methods and they con-
duct their tests in an ad hoc manner. Irrespective of the
reasons behind, Nomadic Software did not have insight
into what methods were used within the company before
this study. Neither did it have control over the status of
the developers’ testing process. Regarding the developers,
some of them are hardly acquainted with the company’s
testing method.

2) The organization does not assign enough time for
conducting developers’ tests. This leads to the fact that
developers’ tests get neglected. Developers are too much
in a hurry to deliver code for integration and system
tests.

3) Testing coverage goals are not clearly stated by the
organizations studied. Neither are they determined for
any specific testing technique. This implies that each
developer sets his own goals. This, in turn, may lead to
strongly varying code quality as delivered by various
developers.

4) Important requirements and defects in requirements
specifications are communicated orally: Quite a big por-
tion of requirements and problems are communicated
orally. These requirements and problems do not get
documented even after being implemented. This is a se-
vere problem that may substantially degrade the system
maintainability and contribute to quick software ageing
and lack of control over the development and mainte-
nance process [15].

5) Not all test cases get documented: This implies that
the company cannot determine whether the developers’
testing has been sufficiently performed. This also implies
that regression testing on the developers’ level practi-
cally does not exist.

6) Static testing is not practiced enough: Static testing
is performed on an informal basis. At its most, develop-
ers review their own code and sometimes their peers’
code. Formal inspections of critical code parts are con-
ducted very seldom.

7) Lack of testing guidelines: Lack of testing guide-

G. JEPPESEN ET AL.

Copyright © 2010 SciRes. IIM

353

lines makes developers decide by themselves on how to
conduct their testing activities. This, in turn, leads to the
non-uniformity of the testing process execution.

8) Insufficient education within testing: The employ-
ees at Nomadic Software get a very short education on
development method, where testing is one of its parts.
Hence, they have not acquired sufficient knowledge.
This is clearly evident from the fact that the respondents
are not acquainted with some basic testing terms such as
integrity tests or they use the terms differently. A similar
phenomenon has been observed in our former study in
[16].

9) Lack of testing strategy: Nomadic Software lacks a
strategy aiding them in defining how to test in a cost-
effective and qualitative manner and designating test
types to be part of the testing process.

Due to the sampling method used in this study, we
cannot generalize the results presented herein. However,
we may still claim that our results strongly indicate that
just as Nomadic Software, many software companies are
in great need to revise their developers’ testing process,
put it in the context of its overall testing process and
make effort into improving it.

When studying the developer’s testing process at No-
madic Software, we have identified several problem ar-
eas related to the education of developers and the man-
agement and execution of the testing process. Specific
pains that we have observed are lack of control over the
testing methods used, lack of testing strategies and lack
of directives of what is expected from the developers. To
attend to these problem areas is not an easy task. It re-
quires many different measures ranging from creating
appropriate overall testing strategies in which devel-
oper’s testing strategy is clearly identified and specified,
defining testing processes in which developers’ tests play
an essential role, and monitoring that they are followed
by the developers. To realize them can be a long and
complex process. However, as an initial step towards
improving the developers’ testing process, we suggest
the software community create guidelines providing in-
structions and recommendations specifying what and
how developers’ tests should be done and what sort of
actions should be taken in particular testing circum-
stances.

6. References

[1] J. W. Cangussu, R. A. DeCarlo and A. P. Mathur, “A

Formel Model of the Software Test Process,” IEEE
Transactions on Software Engineering, Vol. 28, No. 8,
2002, pp. 782-796.

[2] L. Groves, R. Nickson, G. Reeves, S. Revves and M.
Utting, “A Survey of Software Pratices in the New Zee-

land Software Industry,” Proceedings of Australian Soft-
ware Engineering Conference, Queensland, 28-29 April
2000, pp. 189-201.

[3] S. P. Ng, T. Murnane, K. Reed, D. Grant and T. Y. Chen,
“A Preliminary Survey on Software Practices in Austra-
lia,” Proceedings of Australian Software Engineering
Conference, Melbourne, 13-16 April 2004, pp. 116-125.

[4] “Agile Software Development,” 2009. http://en.wikipedia.
org/wiki/Agile_software_development

[5] H. Gallis, E. Arisholm and T. Dyka, “An Initial Fram-
work for Research on Pair Programming,” Proceedings of
ISESE International Symposium on Empirical Software
Engineering, Rome, 30 September-1 October 2003, pp.
132-142.

[6] E. M. Guerra and C. T. Fernandes, “Refactoring Test
Code Safely,” Proceedings of ICSEA International Con-
ference on Software Engineering Advances, Cap Esterel,
25-31 August 2007, p. 44.

[7] P. J. Schroeder and D. Rothe, “Teaching Unit Testing
using Test-Driven Development,” 2005. http://www.testing
education.org/conference/wtst4/pjs_wtst4.pdf

[8] S. Koroorian and M. Kajko-Matsson, “A Tale of Two
Daily Build Projects,” Proceedings of International Con-
ference on Software Engineering Advances, Porto, 20-25
September 2009, pp. 245-251.

[9] G. J. Meyers, T. Badgett, T. M. Thomas and C. Snadler,
“The Art of Software Testing,” 2nd Edition, John Wiley
& Sons, Inc., Hoboken, 2004.

[10] M. Kajko-Mattsson and T. Björnsson, “Outlining Devel-
oper’s Testing Mode,” Proceedings of EUROMICRO
Conference on Software Engineering and Advanced Ap-
plications, Lübeck, 27-31 August 2007, pp. 263-270.

[11] B. Henderson-Sellers, G. Collins and I. Graham, “UML-
Compatible Process,” Proceedings of 34th Annual Ha-
waii International Conference on System Sciences, Maui,
Vol. 3, 3-6 January 2001, p. 3050.

[12] “ITM Process (IT-Product Maintenance Process),” Inter-
nal Documentation at Nomadic Software, 2009.

[13] R. Juric, “Extreme Programming and its Development
Practices,” Proceedings of 22nd ITI International Con-
ference Information Technology Interfaces, Pula, 13-16
June 2000, pp. 97-104.

[14] L. Rising and N. S. Janoff, “The Scrum Development
Process for Small Teams,” 2000. http://members.cox.net/
risingl1/Articles/IEEEScrum.pdf

[15] M. Kajko-Matsson, “Corrective Maintenance Maturity
Model: Problem Management,” Ph.D. Dissertation, Stock-
holm University and Royal Institute of Technology,
Stockholm, 2001.

[16] M. Kajko-Mattsson, “Common Concept Apparatus within
Corrective Software Maintenance,” Proceedings of In-
ternational Conference on Software Maintenance, Los
Alamitos, 30 August-3 September 1999, pp. 287-297.

