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Abstract 
Selecting a proper initial input for Iterative Learning Control (ILC) algorithms 
has been shown to offer faster learning speed compared to the same theories if 
a system starts from blind. Iterative Learning Control is a control technique 
that uses previous successive projections to update the following execu-
tion/trial input such that a reference is followed to a high precision. In ILC, 
convergence of the error is generally highly dependent on the initial choice of 
input applied to the plant, thus a good choice of initial start would make 
learning faster and as a consequence the error tends to zero faster as well. 
Here in this paper, an upper limit to the initial choice construction for the 
input signal for trial 1 is set such that the system would not tend to respond 
aggressively due to the uncertainty that lies in high frequencies. The provided 
limit is found in term of singular values and simulation results obtained illu-
strate the theory behind.  
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1. Introduction 

Iterative Learning Control (ILC) [1] is a control method that uses information 
obtained from previous executions/trials to update the next trial control input to 
enhance the performance of a repetitive system and accommodate periodic 
disturbances from trial-to-trial. ILC is adequate to repetitive systems where the 
reference trajectory has to be followed to a high level of accuracy infinite 
number of times.  

Repetitive systems are those where the reference to follow, ( )r t , has fixed 
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time duration, 0 t T≤ ≤  and has to be repeated large number of times which in 
turn tends to set the mathematical modelling expression outside the 
conventional control representation to a 2D system representation [2]. The idea 
of ILC came up as a consequence of human learning mechanism; for example, if 
a tennis player wants to learn how to hit a tennis ball with excellence, then he 
has to perform a large number of repetitions until he reaches perfection. This is 
ideally the learning principle of ILC where a system performs a successful 
operation in term of system stability within the operation time, measures the 
input ( )u t , output ( ( )y t ) and calculates the error signal ( ( )e t ) and uses those 
information to update the next trial control input to enhance the performance in 
term of error norm trial-to-trial. The ILC control technique has a direct 
reflection on the industry and its applications; it can be seen in applications of 
pick and place such as robot arm, chemical batch processes, automated 
manufacturing plants and operations as such [3] [4] [5] [6] [7]. 

The error signal ( ( )ke t ) is the forcing part to update the upcoming control 
input. After each trial, a system has to be reset to its initial position to start the 
next one. The resetting time, known as the stoppage time, is the time required 
for a system to do all the needed computations to update the next trial control 
input signal to start the next trial. One approach of ILC is of the form 

1k k ku u Le+ = + , where ku  is the trial k input; L is the learning gain and ke  is 
the trial k error signal. One good starting point for rich information about ILC 
Theory and applications is [8] [9]. 

Repetitive control (RC) [10] is another control tool used to accommodate 
periodic disturbances through the use of previous trial informations. One major 
difference between ILC and RC is that in repetitive control, the initial 
conditions/states of a trial 1k +  is the final states of trial k, while in ILC the 
initial states are kept the same for all trials. This leads to a different application 
paradigm where RC is used to systems of continuous repetitive operations such 
as disc drives [11] [12]. 

Most of the literature suggest that the initial input can be an array of zeros 
such that the error for the first trial is the reference it self. This assures that the 
learning gain in the design theory is totally responsible for building up the 
control signal from the beginning, but if it could be possible to predict a better 
starting point that assures faster learning process it would be better in term of 
learning speed. This idea lead to several reported works in the literature such as 
those in [13] [14] where the prediction depends on running several tests, 
recording the best solution and manipulate the recorded control input signal 
such that the new trajectory is followed from trial 1 with better error norm. The 
method used picks the k-nearest neighbour from the stored data which are so 
close to the new trajectory. Those points are then used to construct the new 
input signal for trial 1. Another reported work [15] [16] introduced a better 
solution to construct an initial input for iterative learning control theories for 
linear systems based on stored data with better performance compared to those 
introduced in [13] [14]. This solution created is based on finding the optimum 



N. Alajmi et al. 
 

156 

selection that combines each stored data with its weight to form the new input 
signal. Also [15] ￥ introduced another form of solution based on the presence 
of system model. This solutions directly depends on inverting the frequency 
component of the reference trajectory convoluted with the frequency component 
of the system model and sum as much as it is possible of the provided 
information to form the initial input signal. This theory does not give the limit at 
which a designer should stop in summing the frequency components. Every 
system representation is an approximate to the system behaviour, thus taking 
the inverse is critical in this issue due to system uncertainty and model 
mismatching. There are also several reported works regarding predicting trial 
information such as [17]. 

This paper sets an upper limit condition in constructing the initial input using 
singular values based on system presence. It is required in input construction 
that it would not generate a high effort at the beginning to assure safe operation. 
This development is highly required in most industrial applications such as in 
robot arms and chemical patch processes. In parallel it speeds up learning 
process compared to the same method when the initial input construction 
omitted. In order to do so, the upper limit condition guarantees safe construction 
for such input to fulfill the operation requirements.  

The following section reintroduces the work presented in [15] [16] that shows 
the relationship between the output required to obtain versus the initial input 
selection based on the presence of the system model. The new boundary 
condition that governs the initial input construction is introduced in Section 3. 
An examples of the use of the initial input on system learning process on a 
gantry robot arm is illustrated through simulation results is given in Section 4. 
Conclusion and future work are discussed in Section 5. 

2. Initial Input Construction Based on System Knowledge:  
Revisited 

In term of understanding the initial input construction reported in [16], a brief 
introduction to Discrete Fourier Transform (DFT) is introduced as: 

Let ( ) ( ) ( ) T
0 1 1 Nu u u u N= − ∈     be an array of N elements, then 

(under the necessary assumption relating to existence) the DFT of this array, 
denoted by û , is defined as  

1
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where ˆ Nu∈  and { }0,1, , 1i N= − . As mentioned earlier, ILC trajectory 
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Given g as the finite impulse response of an linear time-invariant (LTI) system, 
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then the convolution between g and u produces the output sequence  

( ) ( ) ( )
0

, 0,1, , 1
q

i
y q g q i u q q N

=

= − = −∑ 

             
(3) 

The DFT of y can then be calculated using  
ˆ ˆ ˆy g u=                             (4) 

where   is the component-wise multiplication. 
Now, given a reference trajectory dy  of length N and it is required to 

construct an initial input vector *
0u  such that learning speed is improved when 

used with suitable ILC controller. In this paper an ILC law of the form  

1k k ku u Le+ = +                          (5) 

will be considered where L is chosen to be the adjoint of the process matrix G, 
with ( ) ( ) ( ) T

0 1 1k k k ku u u u N= −   , and  
( ) ( ) ( ) ( ) ( ) ( ) T
0 0 1 1 1 1k d k d k d ke y u y u y N u N= − − − − −   . Let the associated 

LTI plant be given in state-space form of the following form  

( ) ( ) ( )1x q Ax q Bu q+ = +  

( ) ( ) , 0,1, , 1y q Cx q q N= = −                  (6) 

where the sample time has been set at unity for notational simplicity, ( ) nx ⋅ ∈ , 
( )0 0x = , and the operators A, B and C are of appropriate dimensions. Then 

using the plant model k ky Gu=  [18], where  
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with ( ) ( ) ( ) T
0 1 1k k k ky y y y N= −   , is the lift form, then the error 

evolution equation can be driven easily to be  

( )1k ke I GL e+ = −                        (8) 

Taking the DFT of both sides of (5) now gives  

1
ˆˆ ˆ ˆk k ku u l e+ = +                          (9) 

and likewise for (8)  

( )1
ˆˆˆ ˆ ˆk ke I g l e+ = −  

                     
(10) 

where ˆ NI ∈  and has each entry equal to unity. Repeated application leads to  

( )1 0
ˆˆˆ ˆ ˆ

k
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(11) 

where the power operation is applied in component-wise fashion. Now consider 
the error progression starting from an arbitrary initial input, 0u ,  
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This is minimized with respect to the initial input by setting 0û  equal to  

,*
0,

ˆ
ˆ , 0,1, , 1

ˆ
d i

i
i

y
u i N

g
= = −

                  
(13) 

This effectively generates a steady-state inverse (over the duration of the trial). 
The above derivation is found in [16] where more detailed description can be 
found there for cases that include system uncertainty for example. In (13), there 
is a lack in considering the maximum number of frequency components to 
include in constructing the initial input for trial 1. This was an open question 
and had been pointed as a possible area for further investigation. In the next 
section, and based on a submitted work by the author, a new condition is found 
that contains the number of frequency components to include in constructing 
the initial input based on the plant model presence. The new condition gives the 
upper limit of the initial input in term of singular values properties. 

3. Setting an Upper limit to Constructing an Initial Input to  
ILC 

This section represents the novelty of this paper where a new condition is found 
that sets the maximum number of frequency components to include in 
constructing the initial input for trial 1 in any selected ILC method based on the 
presence of the plant model. This construction is as pointed out earlier includes 
system model presence. The key start was to consider the ILC design given in 
[19], where part of the given design was discussed and load disturbances were 
added to form the new presented work in [20]. The major finding of that work 
was the load disturbance limitation such that the system will perform well and 
error will tend to low value based on the singular values as follows 

( ) ( ) ( ) ( ) ( )
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= = = =
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(14) 

where d is the load disturbance, Ψ  is the system output with the presence of 
load disturbances given by [20] and ( ).  and ( ).  represent the maximum and 
minimum singular values respectively  

( ) ( ) ( ) ( ) ,k k kt G q u t d tδΨ + = +                  (15) 

( ) ( ) ( ) , 0,1, , 1.k k ky t t n t t n= Ψ + = −               (16) 

G  is the process matrix and 0u  is the initial input for the first trial. Here in 
this argument, two cases are to consider where the first is to assume that 
disturbances influence is still acting on the system while starting the operation; 
and this is a very small possibility in term of quality production. The second case 
is to consider system operation after the disturbances influence is vanished. 
Thus, in this case we can assume 1 2 0k k kd d d d− −= = = . Now, we go through the 
following to find the upper limit to the initial input for the first trial 
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Breaking up the last equation leads to  
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where ( )0Guσ , and ( )( )1
0

k
hhσ −

=
Ψ∑  are assumed to be zero for simplicity. 

Thus, the result obtained in (20) says that for a linear repetitive system to start 
its operation with better performance, a designer can use the above inequality as 
a guide or reference when constructing the initial input such that the condition 
above is met. This condition says if a designer has the performance of first three 
trials in any previous operation, those information can be used to set the initial 
input according to (20).  

4. Simulation Results 

Simulation results presented in this section are obtained for a gantry robot 
Z-axis. The gantry robot shown in Figure 1 has been the benchmark for several 
ILC developed methods either in simulation or experimentally. The gantry robot 
represents a robot arm that is used in several industrial applications especially 
those of pick and place operations. The gantry performance accuracy, error 
convergence rate and robustness are important issues to a manufacturer, 
therefore its initial start represent an important issue for enhancing the 
performance and reducing the error convergence for the first trials. The gantry is 
constructed of three orthogonal axes where the Z-axis is the shortes axis fixed 
over the X and Y horizontal parts of the gantry and it consists of a ball-screw 
stage driven by a rotary brushless linear DC motor. The Z-axis of a 3rd order  

 

 
Figure 1. Gantry robot as a test facility [21]. 
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representation and given as in [21] 

( ) ( )
( )( )

15.8869 850.3
353.81 461.03 353.81 431.03X

s
G z

s s j s j
+

=
+ + + −        

(21) 

For enhancing system performance, stability and disturbance rejection, the 
gantry system is fitted in a feedback loop with a PID controller whose 
parameters can be found in [15]. 

One common ILC method is the adjoint method addressed in; for example, 
[22], where the equation that governs the new control input is of the form 

1
T

k k ku u G eβ+ = + , where TG  is the adjoint operator, and β  is the step size. 
This algorithm had been proven to result a monotonic convergence along the 
trial domain [18].  

In this paper, the step size is chosen to be 0.5 and the system is operated for 10 
trials; to show the advantage of using input prediction over the unpredicted case. 
The input is constructed using (13) for the first 5 frequency components and it 
showed an advantage of using an input with such construction method. In this 
example, the model given is treated as an exact model due to the fact that those 
results are obtained in simulation, but for the case of experimental implementation, 
it would be very sensitive in constructing the input and (20) should be 
considered since all models are an approximation to the exact behaviour.  

Figure 2 shows reconstruction of the reference signal using the frequency 
components 1, 2, and 3 individually and a reconstruction using the first 5 
frequency components summed together. The more the frequency components 
used, the more accurate the reconstruction is. This idea had been projected over 
the initial input construction using (13) to form 0u  for first trial operation.  

Applying (20) as an upper limit to the construction of 0u  leads us to next 
table where the first column represents the frequency component while the 
second represents the result of applying (20). It can be seen that for the first 5 
frequency component and the sum of the first 5 frequency components, the 
norm of 0u  is still less than 1, thus there is no harm to use the sum of the first 5 
frequency components to construct 0u  according to (20). 

  

Frequency # 
Frequency Components Input construction  

0u  using Equation (20) with 10% uncertainty 

1 0.6233 0.6925 

2 0.0631 0.0701 

3 0.0671 0.0745 

4 0.0534 0.0593 

5 0.0575 0.0639 

Sum of first 5 0.8643 0.9603 

 
Figure 3 shows the error ration of each trial for the input prediction case over 

the unpredicted case and it clearly shows the advantage of using more frequency 
components to construct better initial input with better starting error norm. The  
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Figure 2. Reference construction from frequency components. 

 

 
Figure 3. Error norms ratio plot for the predicted case over the unpredicted case. 

 
error norm here is for an array of 1500 points representing the reference length; 
T Ts , where T  is the length of the reference in seconds (3 s) and Ts  is the 
sampling period which is 1/500 s. 

Overall the initial input construction provides better error start which in turn 
speeds up learning process depending on the ILC method chosen and enhances 
the repetitive system performance. Notice the uncertainty effect where it clearly 
shows an increase in the control effort as the number of frequency components 
increases in constructing 0u . Thus the condition given in (20) minimizes the 
effect of the uncertainty depending on limiting the first trial control effort by not 
exceeding the limit in (20). 

5. Conclusions and Future Work 

This paper uses the design model used to set the upper limit of load disturbances 
acting on a system [20] as a guidance for developing conditions for setting the 
upper limit of an initial input for iterative learning control strategies. There was 
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a lack of setting an upper limit for the initial input construction reported in [19] 
such that the system operation starts from the optimum choice of 0u . Here the 
upper limit derived sets the number of frequency components to consider to 
construct the initial input according to design given there. The condition found 
is based on the principles of the singular values and remedies the lack of setting 
the upper limit. Simulation results show the advantage of using initial input over 
the case where the initial input construction is omitted. 

In future, verifying the proposed work experimentally over the gantry is under 
consideration. Checking the validity of the proposed condition over different types 
of systems such as minimum-phase plants will be investigated experimentally in the 
future. 
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