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Abstract 
Q-learning is a popular temporal-difference reinforcement learning algorithm which 
often explicitly stores state values using lookup tables. This implementation has been 
proven to converge to the optimal solution, but it is often beneficial to use a func-
tion-approximation system, such as deep neural networks, to estimate state values. It 
has been previously observed that Q-learning can be unstable when using value func-
tion approximation or when operating in a stochastic environment. This instability 
can adversely affect the algorithm’s ability to maximize its returns. In this paper, we 
present a new algorithm called Multi Q-learning to attempt to overcome the instabil-
ity seen in Q-learning. We test our algorithm on a 4 × 4 grid-world with different 
stochastic reward functions using various deep neural networks and convolutional 
networks. Our results show that in most cases, Multi Q-learning outperforms Q- 
learning, achieving average returns up to 2.5 times higher than Q-learning and hav-
ing a standard deviation of state values as low as 0.58. 
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1. Introduction 

Reinforcement learning is a form of machine learning in which an agent attempts to 
learn a policy that maximizes a numeric reward signal [1]. In reinforcement learning, 
an agent learns by trial and error and discovers optimal actions through its own expe-
riences. Unlike supervised learning, the agent does not learn by comparing its own ac-
tions to those of an expert; everything it learns is from its own interactions with the en-
vironment. Reinforcement learning attempts to solve optimization problems that are 
defined by a Markov Decision Process (MDP) [1]. A Markov Decision Process defines 
the behavior of the environment by mathematically defining the environment’s one- 
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step dynamics. There are three main categories of reinforcement learning algorithms: 
dynamic programming, Monte Carlo, and temporal-difference (TD) [1]. Temporal- 
difference learning algorithms are central to the domain of reinforcement learning and 
will be the focus of this paper.  

Q-learning is one of the most popular TD algorithms [1]. Like many other rein-
forcement learning algorithms, Q-learning is model-free, which means it learns a con-
troller without learning a model. To learn this controller, Q-learning trains an ac-
tion-value function that returns the expected value for taking action a in state s. The 
agent will use this function to form a policy which will maximize returns. The Q-value 
for a state-action pair is given by the Bellman equation 

( ) ( )*, max ,
a

Q s a E r Q s aγ
′

 ′ ′= +  
                 (1) 

where r is the observed reward after performing a in s, γ  is a constant discount factor 
0 1γ≤ ≤ , and s′  is the transition state after performing a in s. Q-learning updates its 
Q-values by comparing its new estimates to its existing estimates; the new estimate 
(target) for Q-learning is 

( )1 1max ,t ta
r Q s aγ+ ++                        (2) 

where t is the current time-step during training. Thus, the update for the Q-value of the 
state-action pair ( ),t ts a  becomes 

( ) ( ) ( ) ( )1 1, , max , ,t t t t t t t ta
Q s a Q s a r Q s a Q s aα γ+ +

 ← + + −  
       (3) 

where α  is the learning rate. 
Q-learning is a critical algorithm in reinforcement learning and has been successfully 

applied to a large number of tasks, but it has also been observed that the algorithm will 
sometimes overestimate the optimal Q-values. This overestimation occurs when the 
reward function of the MDP is stochastic. Double Q-learning is a variation to Q- 
learning that addresses this problem [2]. The overestimation is due to Q-learning’s use 
of the max operator to select and evaluate the actions of the next state. Double 
Q-learning attempts to fix this issue by using two Q functions, AQ  and BQ  to de-
couple the selection and evaluation of the action in the next state. To accomplish this, 
Double Q-learning uses the value of BQ  to update AQ , so the update for AQ  be-
comes  

( ) ( ) ( ) ( ), , , argmax , ,A A B A A

a
Q s a Q s a r Q s Q s a Q s aα γ  ′ ′← + + −    

   (4) 

The roles of AQ  and BQ  are switched when updating BQ . Double Q-learning of-
ten develops better value estimates and achieves greater performance compared to 
Q-learning on certain stochastic tasks [2]. 

Often times, the Q-values of Q-learning and Double Q-learning are stored in a loo-
kup table. It has been proven that Q-learning will converge to the optimal value when 
the Q-values are stored in this manner [3]. These lookup tables perform well when 
faced with an environment that has a finite number of states and actions, but due to the 
curse of dimensionality, they do not scale well for MPDs with continuous states and ac-
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tions. In the case of a high-dimensional MDP, function approximation is generally used. 
Q-learning, as well as other off-policy TD algorithms, can be unstable with linear/ 
non-linear function approximation [4] [5] [6] [7]. 

Artificial neural networks are one effective method of function approximation. These 
neural networks are mathematical models made up of parameters that are tuned using 
back-propagation. Deep learning is a variety of artificial neural networks and has seen 
great success in learning from high-dimensional data, specifically image recognition [8], 
Natural Language Processing [9], and facial recognition [10]. The artificial neural net-
works used in deep learning have many layers of parameters which can be either fully 
connected, convolutional, or recurrent layers [11]. Coupling deep learning with rein-
forcement learning allows agents to find optimal policies for complex, high-dimen- 
sional tasks. This has enabled agents to learn using raw pixels as input, which allows for 
the agents to learn a variety of tasks without needing to tune parameters or adjust the 
state representation for each individual task. Deep neural networks have brought us 
closer to the goal of creating a general purpose artificial intelligence. 

AlphaGo is a computer program developed by Deep Mind that utilized deep learning 
along with a Monte Carlo search tree to play Go [12]. Go is an ancient Chinese game 
where the number of possible board configurations is 2.08168199382 × 10170. Without 
the use of deep learning AlphaGo would never have been so successful at playing such a 
complex game. Apart from AlphaGo, two of most widely-known successes of rein-
forcement learning are TD-gammon; a program that learned how to play backgammon 
at a super-human level [13], and DQN; a Q-learning algorithm that used a deep neural 
network to achieve a super-human level of play at several Atari 2600 games [14]. Both 
of these algorithms demonstrated the benefits of using artificial neural networks as val-
ue functions. 

Deep reinforcement learning has also been successfully applied to continuous control 
problems. By combining deep neural networks with the actor-critic algorithm [1], the 
Deep DPG algorithm was able to learn competitive policies for a variety of physics tasks 
including cart-pole swing-up, car driving, legged locomotion, and others [15]. The ad-
vantages of using deep learning with reinforcement learning are great, which is why it is 
important to have an algorithm that is capable of remaining stable when using deep 
neural networks as value functions. 

As mention earlier, the instability of value estimates is one of the biggest challenges 
to overcome when using linear/nonlinear value function approximation. To combat 
this instability issue, algorithms that use neural networks as their Q functions often 
train using ( ), , ,s a r s′  experiences randomly sampled from an experience replay buf-
fer [15]. By randomly sampling experiences from memory, the behavior distribution is 
averaged out over the previous states, there by breaking up the correlation between the 
samples and thus reducing the variance of the updates [16]. Double Q-learning also 
uses a target Q network to improve stability. The target network is copied from the on-
line Q network after an arbitrary number of steps and is used to give consistent targets 
during training. There are additional ways to make the Q network more robust, but 
most depend on adjusting parameters. 
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Instead of using any of the previously mentioned techniques, we attempt to achieve 
robust value estimates by introducing a new TD algorithm called Multi Q-learning. Our 
algorithm outperforms Q-learning and Double Q-learning in our tests and provides 
more stable Q-values throughout the training process. Multi Q-learning also works well 
with a diverse range of neural network implementation, making the algorithms benefi-
cial when the ideal network structure is unknown. We find the Multi Q-learning algo-
rithm to be an effective alternative to Q-learning due to its robustness and stability. 

2. Methods 

In this paper we discuss a new TD algorithm that extends upon Q-learning and Double 
Q-learning called Multi Q-learning. The main idea behind this new algorithm comes 
from Double Q-learning’s use of two estimators to find the maximum expected value 
for each action. Instead of simply using two Q functions: QA and QB, Multi Q-learning 
uses an arbitrary number of Q functions to estimate the action values. The algorithm 
updates one Q function at each time-step using the average value of all the other Q 
functions. So when Multi Q-learning contains a list of n Q-functions, and { }1, 2, ,A n∈   
then the update for QA becomes 

( ) ( ) ( )1
1,

1, , arg max , ,
1

n
A A b A A

t t t t t
ab b A

Q Q s a r Q s Q s a Q s a
n

α γ+
= ≠

  ′ ′= + + −  −   
∑    (5) 

The purpose of using multiple Q functions is to better stabilize the target value. 
Double Q-learning uncouples the selection and evaluation of an action, creating an un-
biased estimate for the value of that action. But any drastic change in one Q function 
will greatly affect the other. Multi Q-learning addresses this problem by using the aver-
age action-value of many Q functions to update a specific Q function. If there is a dras-
tic change in an action-value of one Q function, its effect on the other Q functions will 
be minimal. This helps when a substantial amount of noise exists in the environment, 
specifically in the environment’s reward function. Our Multi Q-learning algorithm is 
presented in Algorithm 1 below. 
 
Algorithm 1. Multi Q-learning. 

1: Initialize 1 2 ,, , nQ Q Q

 arbitrarily 
2: for episode = 1, M do 
3: Initialize s 
4: Repeat 

5: Choose AQ  where { }1,2, ,A n∈   using probability 
1
n

 

6: Choose a from s using policy derived from AQ  (e.g., ε-greedy) 

7: Take action a, observe ,r s′  

8: ( )* arg max ,A

a
a Q s a′=  

9: ( ) ( ) ( )*

1,

1, , ,
1

n
A A b A

b b A

Q Q s a r Q s a Q s a
n

α γ
= ≠

 ′← + + − − 
∑  

10: s s′←  
11: until𝑠𝑠 is terminal 
12: end for 
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The algorithm for Multi Q-learning is quite similar to Double Q-learning. The key 
difference is the use of n Q functions opposed to only two. At each step in a training  

episode, we choose a single Q function to update based on the probability 1
n

 so that  

each Q function is chosen to be updated with an equal probability. After the training is 
finished, the Q-value for each state-action pair becomes the average Q-value of all the Q 
functions. 

Similarly to Q-learning and Double Q-learning’s extension to DQN and Double 
DQN [17], Multi Q-learning can naturally be extended to utilize deep neural networks. 
The benefits of deep reinforcement learning have been realized by many studies [11]. 
Pairing deep neural networks with Multi Q-learning allows for stability while learning 
complex relationships between the features of a state. 

In the original Double DQN algorithm, the weights of a target network tθ
−  were 

used to estimate the value of the greedy-policy and update the weights of the online 
network tθ . The target network weights were simply copied from the online network 
every τ  steps. The target used by Double DQN is 

( )Double DQN
1 1 1, arg max , ; ,t t t t t t

a
Y r Q s Q s aγ θ θ −

+ + +
≡ + 
 
 

          (6) 

For the Deep Multi Q-learning algorithm, we created an independent neural network 
for each Q. This fully decouples the selection and evaluation of an action, unlike Double 
DQN which only was partially decoupled. The target used by the Deep Multi Q-learning 
algorithm for a network characterized by weights Aθ  where { }1, 2, ,A n∈   is 

( )Deep Multi Q
1 1 1

1,

1 , argmax , ; ;
1

n
A b

t t t t t t
ab i A

Y r Q s Q s a
n

γ θ θ+ + +
= ≠

≡  
 


+
− ∑       (7) 

For our Deep Multi Q-learning algorithm, show in Algorithm 2 below: 
 

Algorithm 2. Deep Multi Q-learning. 

1: Initialize 1 1, , ,n nθ θ θ−


 arbitrarily 

2: for episode = 1, M do 
3: Initialize s 
4: Repeat 

5: Choose Aθ  where { }1,2, ,A n∈   using probability 
1
n

 

6: Choose a from s using policy derived from ( ), ; AQ s a θ  (e.g., ε-greedy) 

7: Take action a, observe ,r s′  

8: ( )* arg max , ; A

a
a Q s a θ′=  

9: ( )*

1,

1 , ;
1

n
A b

b b A

y r Q s a
n

γ θ
= ≠

′= +
− ∑  

10 Train network using , ,A Ay sθ  

11: s s′←  
12: until𝑠𝑠 is terminal 
13: end for 
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3. Results 

In this section, we analyze the performance of Q-learning, Double Q-learning, and 
Multi Q-learning. The metrics we focus on are the value estimates, the average returns, 
and the success rates. Our results show the robustness of Multi Q-learning when faced 
with stochastic rewards and that this robustness increases the performance of the algo-
rithm. We also show the instability of Q-learning and Double Q-learning and how that 
instability can negatively affect the overall performance of the algorithm. 

A 4 × 4 grid world (Figure 1) was used to evaluate the algorithms. Each state has 4 
actions, corresponding to the directions the agent can move. The world has 2 terminal 
states, a pit and a goal, which return rewards of −10 and 10 respectively. A wall was 
added to the grid which blocks the movement of the agent into that location. If the 
agent took an invalid action, such as moving into the boundary or wall, the agent did 
not move and simply remained in the same position. The objective of the agent was to 
navigate from its starting position to the goal in the shortest amount of moves without 
falling into the pit. Every non-terminal state returned an average reward µ  with 
standard deviation σ . To compare, we show the difference between algorithms for 
rewards with deterministic distribution ( )| 1p sµ = , and stochastic distribution of two 
values ( ) ( )| | 0.5p s p sµ σ µ σ+ = − =  where { }7,9,11, ,19σ ∈  . We also trained 
the algorithms using two different behavior policies. One policy was strictly exploratory 
while the other was ε-greedy. For the ε-greedy policy, ε was initialized to 1 and reduce 
by 1/100,000 at the end of each episode until ε = 0.1.  

The grid world was initialized to the same state at the start of every game. A training 
episode ends when the agent reaches a terminal state, whether it is the goal or the pit. 
The algorithms trained for 100,000 episodes and at the end of each episode, we ran the 
learned policy on the task and recorded the total return and the number of steps taken. 
If the agent fell into the pit, or took more than 10 steps, a 0 was record for the number 
of steps taken. The results were averaged over every 100 episodes in order to smooth 
the graphs. 

3.1. Neural Network Results 

In the following section, we evaluate our algorithm using a neural network with two 
hidden layers for the value function. One-hot encoding was used to represent the state 
as a 64 vector where the position of each object corresponded to a 16 element slice of  
 

 
Figure 1. A 4 × 4 grid world used to test the algorithms discussed in this paper. The grid is initia-
lized in the same state at the start of every epoch. A is the agent, P is the pit, W is the wall, and G 
is the goal. 



E. Duryea et al. 
 

135 

that vector. The vector representation of the state was used as the input to our neural 
network. Both hidden layers were fully connected and consisted of 150 rectifier units. 
The output layer was a fully connected linear layer with an output for each move. We 
used the RMSProp gradient descent algorithm [18] to optimize the network and trained 
after each time-step. 

Figure 2(a) and Figure 2(b) show the value estimates of both Double Q-learning 
and Q-learning. These values estimates are for the initial state of the grid world and 
were averaged out over every 100 episodes in order to smooth the graph. Both Double Q- 
learning and Q-learning converged toward the true value of 3.1 quickly when the re-
ward function was deterministic (Figure 2(a)). But when faced with a stochastic reward 
( 7σ = ), the value estimates contain a substantial amount of oscillation (Figure 2(b)). 
When using the ε-greedy behavior policy, the oscillation of the value estimates was re- 

 

 
(a)                                                                (b) 

 
(c)                                                                (d) 

Figure 2. Value estimate for Q-learning, Double Q-learning, and Multi Q-learning. (a) The value estimate of the initial state where 
1µ = − , 0σ =  and the behavior policy is random; (b) Value estimate of the initial state where 1µ = − , 7σ =  and the behavior policy 

is random; (c) Value estimate of the initial state where 1µ = − , 7σ =  and the behavior policy is ε-greedy; (d) Value estimate of 3 Multi 
Q-learning algorithms of the initial state where 1µ = − , 7σ =  and the behavior policy is random. 
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duced as the training progressed (Figure 2(c)) due to the decreased amount of explo-
ratory moves taken. Figure 2(d) shows the value estimates of three Multi Q-learning 
algorithms using the same environment parameters as Figure 2(c). It is easy to see the 
stability in the value estimates of the Multi Q-learning algorithm; the value estimates 
quickly converge to the true value of the state, 3.1, and have small amount of oscillation. 
In the early stages of learning, Figure 2(c) shows the significant amount of oscillation 
in Q-learning’s value estimates. This oscillation is due to the stochastic reward function. 
Like Multi Q-learning, Double Q-learning’s value estimate converges quickly to the 
true value and remains relatively stable throughout the training process. Unlike Multi 
Q-learning, Double Q-learning’s value estimate starts to decline at around 900 episodes. 
While this is just a slight oscillation and the value estimate eventually rises back to the 
true value, it does show that Multi Q-learning has an advantage over Double Q-learn- 
ing in stability. 

When the standard deviation of the reward function was increased, the deviation in 
the value estimate increased for each algorithm. When using an 𝜀𝜀-greedy behavior pol-
icy, Q-learning and Double Q-learning eventually converged to the true value, but with 
more oscillation compared to Multi Q, especially within the early stages of learning. 
When actions were completely exploratory, the variance in the value estimates of Q- 
learning and Double Q-learning greatly increased which caused both algorithms to 
struggle in approximating the true value. Multi Q-learning’s estimates steadily con-
verged toward the true value and eventually stabilized even when faced with a greater 
range of rewards (Figure 3(c) and Figure 3(d)). This stability increase can clearly be 
seen in the decrease of standard deviation in the value estimates after 50,000 episodes 
(Figure 3(e) and Figure 3(f)). The increase of estimators slowed the convergence rate; 
this is due to only one network being trained at a time, so with the addition of more es-
timators the less frequent their respective network gets updated. 

It is interesting to compare the graphs of Multi Q-learning with those of Double 
Q-learning and Q-learning. The graphs in Figure 3(a) and Figure 3(c) were attained 
by using the same behavior policy and reward function, the key difference between the 
two were the algorithms that were used; Q-learning and Double Q-learning were used 
in Figure 3(a) and Multi Q-learning were used in Figure 3(c). The Multi Q-learning 
algorithms used in Figure 3(c) are clearly more stable than Double Q-learning and 
Q-learning. In Figure 3(a), Double Q-learning suffers from two plummets in value es-
timates between 800 and 1000 episodes. These errors in estimation do not occur in the 
Multi Q-learning algorithms tested on the same grid world environment. The bar chart 
in Figure 3(e) also shows how little Multi Q-learning deviates after 500 training epi-
sodes compared to Double Q-learning and Q-learning, which both have high amounts 
of deviation. Q-learning’s value estimates suffer from a standard deviation of 1.56 and 
Double Q-learning’s values estimates have a standard deviation of 2.90. All of the Multi 
Q-learning algorithms have value estimates with standard deviations of less than 1. 
These graphs show that Multi Q-learning has more stable value estimates that approx-
imate the true value of a specific state more effectively than Double Q-learning and 
Q-learning. 
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(a)                                                                (b) 

 
(c)                                                                (d) 

 
(e)                                                                (f) 

Figure 3. Value estimates and their respective standard deviation of Single Q-learning, Double Q-learning, and Multi Q-learning. (a) (b) 
Value estimates of Q-learning and Double Q-learning of the initial state where the behavior policy is ε-greedy, 1µ = −  and 13,15σ =  
for the respective figures. (c) (d) Value estimates of 3 Multi Q-learning algorithms of the initial state where the behavior policy is ε-greedy, 

1µ = − , and 13,15σ =  for the respective figures. (e) (f) The standard deviation of each algorithm’s value estimate where the behavior 
policy for each algorithm was ε-greedy, 1µ = − , and 13,15σ =  for the respective figures. 
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The oscillation in the value estimates had quite an effect on Q-learning and Double 
Q-learning’s performance. Figure 4 shows the average return curve of all three algo-
rithms. When the standard deviation of the reward function was 7 and the policy was 
exclusively exploratory, Q-learning and Double Q-learning both performed poorly. 
Figure 4(b) shows the return curves of each algorithm when using the ε-greedy policy.  
 

 
(a) 

 
(b) 

Figure 4. Average return curves for Q-learning, Double Q-learning, and Multi Q-learning. (a) 
The average return curve for each algorithm where the behavior policy was random, 1µ = −  
and 7σ = ; (b) The average return curve for each algorithm where the behavior policy was 
ε-greedy, 1µ = −  and 7σ = . 
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There was no noticeable difference between Double Q and Multi Q while Q-learning 
clearly performed the worst. Multi Q-learning performed noticeably better when a 
random action was always taken. Q-learning had an average return of 1.1, Double Q’s 
average return was 2.4, and all the Multi Q algorithms had average returns above 3.5 
when the behavior policy always choose a random action. This demonstrates Multi Q’s 
stability regardless its behavior policy. 

The high returns are due to Multi Q’s ability to consistently reach the goal through-
out its training. The success rates shown in Table 1 indicate Multi Q-learning per-
formed better than Q-learning and Double Q-learning. For a reward function with 

7σ =  and a strictly exploratory behavior policy, Q-learning failed to reach the goal 
over 50% of the time. Double Q-learning did not fare much better and only succeeded 
65.5% of the time, while 8 Q performed very well with a success rate of 94.2%. As stated 
before, when using an ε-greedy policy, there was no noticeable difference between 
Double Q-learning and Multi Q-learning. But when σ  was increased, the success 
rates of Q-learning, Double Q-learning, and Multi Q-learning became clearly different. 
At the highest reward function deviation we trained on, 19σ = , Q-learning’s success 
rate was 60.8%, Double Q-learning’s was 75.8%, and 3 Q-learning’s was 88.1%. We also 
see that as σ  increased, Multi Q-learning’s success rate decreased at a lower rate than 
both Q-learning and Double Q-learning. This shows that Multi Q’s stable value esti-
mates result in more successful agents. 

It is also interesting to note the smoothness of the return curve as the number of es-
timators increase. Using 4 or more estimators creates a much smoother curve than us-
ing 1, 2, or even 3. This smoothness can again be attributed to the stability of Multi Q’s 
value function approximation. The algorithm steadily converges to the optimal value 
estimate and has very little fluctuation. 

In addition to the neural networks used above, we used three other network archi-
tectures to approximate each algorithm’s value function. We demonstrate the benefit of 
adding convolutional layers to improve value approximation. The first architecture we 
used had two fully connected hidden layers, both of size ten. The next network replaced 
the first hidden layer with a convolutional layer. This convolutional layer had ten filters  
 
Table 1. Success rates for each algorithm with different reward function standard deviations. 

𝜎𝜎 
Algorithm 

1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 

7 82.4% 93.3% 94.6% 95.4% 95.3% 93.2% 96.3% 94.6% 

9 75.2% 88.3% 94.9% 94.8% 92.7% 93.2% 92.7% 92.6% 

11 70.7% 85.9% 92.3% 90.1% 89.1% 92.5% 90.0% 91.4% 

13 68.4% 81.3% 87.6% 93.4% 92.6% 93.1% 89.8% 91.0% 

15 57.9% 81.7% 85.6% 87.3% 87.3% 90.9% 87.5% 84.7% 

17 65.8% 77.9% 87.0% 83.7% 85.6% 87.5% 85.8% 81.2% 

19 60.8% 75.8% 88.1% 86.0% 84.0% 80.5% 80.1% 88.0% 
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all with a length of five. The addition of a convolutional layer slightly improved upon 
the network’s value estimates, leading to higher average returns. The final neural net-
work had three hidden layers. These hidden layers were all fully connected and had a 
size of ten. Having three hidden layers did not improve upon any of the algorithms’ av-
erage returns. In fact, the addition of another layer actually performed worse than hav-
ing only two hidden layers. Figure 5 shows the comparison of the different network 
architectures’ average returns. 

The average returns of the algorithms demonstrate an important advantage Multi 
Q-learning has over both Double Q-learning and Q-learning. The average returns of 
both Double Q-learning and Q-learning decreased steadily with the different neural 
network structures used. In our grid world environment, these two algorithms per-
formed the best with two fully connected layers. Using this structure, Q-learning had an 
average return of 0.59 and Double Q-learning had an average return of 3.19. The algo-
rithms’ performances dropped when a network structure of one convolutional layer 
and one fully connected layer was used. In this case, Q-learning had an average return 
of 0.52 and Double Q-learning had an average return of 2.79. The algorithms perform 
the worst when the network structure was made up of three fully connected layers. 
With this structure, Q-learning’s average return was 0.02 and Double Q-learning’s av-
erage return was 1.86. The decrease in average returns of Q-learning and Double 
Q-learning is in contrast Multi Q-learning. The Multi Q-learning algorithms did not 
see any major decrease in average returns when faced with different neural networks. 
This is a clear advantage of Multi Q-learning compared to Double Q-learning and Q- 
learning. The Multi Q algorithm is not as easily effected by the type of network struc-
ture or function approximator used to estimate the value function. 

To further demonstrate the robustness of the Multi Q-learning algorithm, we show 
the average return of the algorithms with neural networks of increasing depth. Figure 6  
 

 
Figure 5. The average return of each algorithm while using different neural network structures. 
Four different network structures where use, two of which had convolutional layers. The first 
network had 2 fully connected layers with 10 rectified linear units in each. The second network 
contained a convolutional layer with 10 filters with lengths of 5. The final neural network had 
three fully connected hidden layers. 
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Figure 6. The average return of each algorithm using a neural network to approximate the value 
function. Each layer of the neural network contains 85 rectified linear units and increases in 
depth. This graph shows the stability of the Multi Q-learning algorithm regardless of the depth of 
the network. 
 
shows the average returns of each algorithm as the number of hidden layers in the net-
work increased. The behavior policy during these tests was exclusively random, so the 
agent always took a random action throughout training. The performance of both 
Q-learning and Double Q-learning declined as the number of layers in the network in-
creased. Contrarily, the performance of 6 Q, 7 Q and 8 Q remained relatively stable re-
gardless of the number of layers. The returns for 6 Q, 7 Q, and 8 Q began to decrease 
once the network reached a depth of 5 hidden layers. This poor performance can likely 
be attributed to the vanishing gradient problem with neural networks. This again shows 
the stability and robustness of the Multi Q-learning algorithm; despite the depth of the 
network, Multi Q-learning is still able to solve the problem and achieve high returns. 

3.2. Tabular Results 

We also ran the Multi Q-learning algorithm using Q-tables in addition to neural net-
works. The results of using Q-tables were less drastic then those found with the neural 
networks, but we did find a slight advantage of Multi Q-learning. In the early stages of 
training, Multi Q-learning appeared to have developed better policies than Q-learning 
and Double Q-learning. Figure 7(a) shows the average return of each algorithm after 
2000 episodes. At 2000 episodes, Q-learning had an average return of −1, meaning that 
it has failed to reach the goal even once up to this point. Double Q-learning did much 
better with an average return of 2.2. The performance of 5 Q was the best, having an 
average return of 3.6 at 2000 episodes. 

4. Conclusion 

The paper presents and evaluates a new temporal-difference learning algorithm, Multi 
Q-learning. Multi Q-learning attempts to increase value estimate stability by using 
multiple action-value function approximations. We tested our algorithm on a grid 
world environment and have shown the stability of Multi Q-learning compared to  
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(a) 

 
(b) 

Figure 7. The average return of Q-learning, Double Q-learning, and Multi Q-learning when us-
ing Q-tables. (a) Average return after 2000 episodes of each algorithm using Q-tables. In this ex-
periment 1, 11µ σ= − =  and the behavior policy was random; (b) Average return curves of each 
algorithm from the same experiment as (a). 
 
Q-learning. In our tests, Multi Q-learning achieved better average returns compared to 
Q-learning, reaching returns up to 2.6 times higher than Q-learning. We also ran Multi 
Q-learning on various neural network structures, including deep, shallow, and convo-
lutional networks, demonstrating the algorithms ability to remain effective despite its 
implementation. While Double Q-learning and Q-learning performance decreased with 
ineffective implementation, Multi Q-learning was still able to retain good returns. We 
see Multi Q-learning being most useful when the dynamics of a reinforcement learning 
task are not well known. Multi Q-learning’s improved stability over Q-learning makes 
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it a more generalize algorithm, being able to solve a variety of tasks without the need to 
tune its parameters.  
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