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Abstract 
This paper proposes the continuous controller design method for quantum Shannon entropy, 
which can continuously drive the entropy to track a desired trajectory. We also analyzed the con-
trollability of Shannon entropy in very short time interval. Simulations are done on five dimen-
sional quantum system, which can verify the validation of the method. 
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1. Introduction 
Quantum control has become an important topic in quantum information [1] [2], molecular chemistry [3] and 
atom physics [4]. Several control methods, including optimal control [5], Lyapunov control [6], learning control 
[7], feedback control [8] and incoherent control [9] [10], have been used to controller design of quantum sys-
tems. Quantum entropy control is one of the twenty open problems in quantum control [11]. In the 2012 “Quan-
tum Characterization, Verification and Validation Workshop” in Bethesda, a group of scientists discussed about 
some typical questions like how to build a quantum device. The consensus at this workshop is that our common 
goal should be to somehow master a quantum system’s entropy, thereby enabling smooth sailing towards our 
final destination of full-scale quantum computers.  

For pure state in closed quantum systems, our previous work [12] proposed the discretized controller design 
method for Shannon entropy. This paper proposes the continuous Shannon entropy controller, which can 
achieve quite accurate control effect. In control theory, accurate tracking control is a very difficult question. And 
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for quantum systems, if the entropy can be tracked continuously, we can make the control effect more accurate. 
The discretized controller can be regarded as a simplified version of the continuous controller. The continuous 
controller can drive a quantum system’s entropy to accurately track a desired trajectory. The controllability of 
continuous control is hard to explore, and in this paper we briefly introduce the controllability analyzing me-
thods which give the necessary and sufficient conditions of controllability in very short time period. Such analy-
sis can overcome the weakness of previous discretized controller, and provide a new perspective of accurate 
tracking for both quantum and classical systems. 

This paper is organized as follows. Section 2 shows the definition of quantum Shannon entropy, and presents 
our control goal. Section 3 provides the continuous controller design methods. Section 4 shows the numerical 
simulation examples. Concluding remarks are given in Section 5. 

2. Preliminary 
In quantum control, the state of a closed quantum system is represented by a state vector (wave function) 
( ),x tψ  in a Hilbert space. Here for the space variable we only consider one dimensional position variable x. 

The evolution of the state obeys the Schrödinger equation 

( ) ( ) ( )
2 2

2, , ,
2

x t U x t x t
m x

ι ψ ψ
 ∂

= − + ∂ 




                           (1) 

where 1ι = − , and the external potential field ( ),U x t ∈R  is taken as the control term. For an infinite di-
mensional quantum system, the wave function ( ),x tψ  is the superposition of free Hamiltonian’s eigenstates 

( )i xψ : 

( ) ( ) ( )
1

, i i
i

x t c t xψ ψ
∞

=

= ∑                               (2) 

where both the wave function and the coefficients should be normalized: 

( ) ( )2 2

1
, d 1i

i
x t x c tψ

∞∞

−∞
=

= =∑∫                            (3) 

Defining the state of the system as 

( ) ( ) ( ) ( ) T
1 2, , , ,nC t c t c t c t=                               (4) 

we can get the state space control mode 

( ) ( ) ( )
1

k

i i
i

C t A BU t C t
=

 = +  
∑                            (5) 

where both A and iB  are skew-Hermitian matrices. If the case with only one controller ( )U t  can be well 
solved, it will be easier for multiple-controller cases. So this paper only considers the following case with one 
controller: 

( ) ( ) ( ) ( )C t AC t BU t C t= +                            (6) 

Assuming a system that consists of n states, in which the probability for the i-th state to happen is ip , the 
traditional Shannon entropy in information theory is defined as 

1
ln

n

i i
i

S p p
=

= −∑                                  (7) 

which shows the degree of randomness of the system. For example, when 1 2 1np p p n= = = = , every state 
happens in the equal probability, which is a random system. In this situation, the Shannon entropy takes its 
maximum value lnn . If 1 1p = , the system is completely predictable, i.e., the first state always happens and 
the entropy takes its minimum value 0. We can also regard the entropy as the superposition of the uncertainties 

( )ln 1 ip  because larger probability leads to smaller uncertainty. Similarly, the quantum Shannon entropy can 
be defined as 
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( ) ( ) ( )2 2

1
lni i

i
S t c t c t

∞

=

= −∑                              (8) 

where ( ) 2
ic t  is the probability that the superposition state collapses to the i-th eigenstate upon quantum mea-

surement. From definition (8) we know, the entropy satisfies ( ) 0S t ≥ . For n-level quantum systems, ( )S t   

reaches its maximum value ln n  when ( ) ( ) ( )2 2 2
1 2 1nc t c t c t n= = = = , and reaches its minimum value 0 

when 

( ) 2 1, for ,
0, for ,i

i k
c t

i k
=

=  ≠
                                (9) 

where k is a given integer. Here 0 ln 0  is defined as 0, which can be seen from 

( )

( )
( )

0 0 0 0

d lnln dlim ln lim lim lim 0d1 1
d

x x x x

xx xx x x
x x

x
→ → → →

= = = − =                    (10) 

Our control goal is to drive the entropy to track a desired trajectory. The control of ( )S t  can be realized by 

controlling the probability density ( ) 2
ic t . In Section 3 we provide the method which can directly drive the en-

tropy to track a desired trajectory.  

3. Continuous Controller Design 
Here we provide the continuous controller design method which can drive the entropy (8) to track a desired tra-
jectory. Such control task is called “temporal control”, which means not only the destiny should satisfy the re-
quirement, but also the entropy at any instant of the entire process should follow the pre-specified value.  

Here we only consider finite-dimensional quantum systems with dimension n. First we can get the time deriv-
ative of (8) as 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
2 2

1 1 1

d d d
ln 1 ln

d d d

n n n
i i i

i i
i i i

c t c t c t
S t c t c t

t t t= = =

 = − + = − −  ∑ ∑ ∑             (11) 

where 

( ) ( )
2

2

1 1

d d 0
d d

n n
i

i
i i

c t
c t

t t= =

 = ≡  
∑ ∑                            (12) 

because the sum of probabilities should always equal 1. So we have 

( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 *
2 2

1 1

2 2* * *

1 1

dd
ln ln

d d

ln 2 ln .

n n i ii
i i

i i
n n

i i i i i i i i
i i

c t c tc t
S t c t c t

t t

c t c t c t c t c t c t c t c t

= =

= =

  = − = −

   = − + = − ℜ   

∑ ∑

∑ ∑



  

          (13) 

Here we use ℜ  and ℑ  to denote real part and imaginary part, respectively. We can define a row vector 

( ) ( ) ( ) ( )2 2 2
1 2ln , ln , , ln nD t c t c t c t − − −  

                      (14) 

which leads to 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( )

T* * *
1 1 2 2

* *

* *

2 , , ,

2 2

2 2 .

n nS t D t c t c t c t c t c t c t

D t C t C t D t AC t BU t C t C t

D t AC t C t U t D t BC t C t

 = ℜ  
 = ℜ = ℜ +   
   = ℜ + ℜ   



  




 

 

          (15) 
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Here “  ” denotes the Hadamard product which means the corresponding elements are multiplied: 

1 1 1 1

2 2 2 2

n n n n

a b a b
a b a b

a b a b

     
     
     =
     
     
     



  

                                (16) 

Next we define 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *2 , 2 ,t D t AC t C t t D t BC t C tα β   ℜ ℜ                   (17) 

which gives 

( ) ( ) ( ) ( )S t t U t tα β= +                              (18) 

So we can get the controller 

( ) ( ) ( )
( )

S t t
U t

t
α

β
−

=


                               (19) 

If the desired trajectory of ( )S t  is known, then at any time we can use (19) to calculate the feedback con-
troller. We can combine (6) and (19) together to solve the controller out without measuring ( )C t , so such me-
thod belongs to open-loop control. When ( ) 0tβ ≠  holds, it is always easy to use (19) to make the entropy 
track the desired trajectory. When ( ) 0tβ = , there may not exist proper controller which can drive the entropy 
along the prescribed trajectory. Such singularity problem can be dealt with by the singularity managing ap-
proaches used in quantum tracking control. The singularities can be divided into two types: trivial and nontrivial. 
A trivial singularity refers to the case that ( )tβ  remains zero for a long time; a nontrivial singularity means 
that ( )tβ  is zero only at some isolated points on the tracking trajectory. The singularities can also be classi-
fied as removable and intrinsic according to their controllability characteristics. For removable singularities, the 
track passing through the singular points can still be followed and a finite control field can be determined by ap-
propriate numerical algorithms; for intrinsic singularities, the track can not be exactly followed. Note that the 
type of removable or intrinsic is irrelevant to triviality. A trivial (or nontrivial) singularity could be a removable 
or intrinsic type. For trivial but removable singularity which means the system is controllable, the field can be 
obtained by taking higher order time derivatives of (19) until the singularity is removed. For nontrivial singular 
points, the field could have the form of either (i) ( ) ( )0 0U t α α= ≠  or (ii) ( ) 0 0U t = . For case (i), the field 
does not have a finite value and the system is uncontrollable at those points (i.e., a nontrivial but intrinsic singu-
larity type). The occurrence of case (i) is most likely due to an overdemanding prescribed track. For case (ii), 
usually after applying L’Hopital’s rule, the field will have a finite value at the point and the system is still con-
trollable (i.e., a nontrivial but removable singularity type). However, if L’Hopital’s rule needs to be applied 
many times, or if the field has a very large value, in practice it could be very difficult to perform accurate track-
ing. For both cases, an attractive alternative would be an alteration of the originally prescribed track in an at-
tempt to circumvent or overcome the singular behavior while still meeting the target goal at the end of the track. 
We can use an alternative trajectory which can achieve satisfactory result in some particular example. For un-
controllable systems, such algorithm will trigger endless switching to different tracks without achieving good 
control. In order to avoid too strong control requirement which makes the tracking ill-posed, further study can be 
done on the controllability issue. Next we provide the necessary and sufficient conditions under which the en-
tropy can only increase (or decrease) in very short time, which can give helpful instruction to the prescribed 
track’s selection. 

When ( ) 0tβ = , there is possibility that in very short time, the entropy can only increase or decrease. In or-
der to analyze the controllability when ( ) 0tβ = , we first show the following proposition about the derivatives 
of both ( )tα  and ( )tβ .  

Proposition 1. When ( ) ( )2
0ic t i≠ ∀  holds, we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

1 2 ,

t t U t t

t t U t t

α α α

β β β

 = +


= +
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where 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( )

2 * * * * *
1

T* * * * *
2

T* * * * *
1

2 *
2

2 4

2 4

2 4

2

t D t A C t C t AC t A C t E t AC t C t AC t C t

t D t ABC t C t AC t B C t E t BC t C t AC t C t

t D t BAC t C t BC t A C t E t AC t C t BC t C t

t D t B C t C t

α

α

β

β

     = ℜ + + ℜ ℜ     

     = ℜ + + ℜ ℜ     

     = ℜ + + ℜ ℜ     

 = ℜ + 

    

    

    

 ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }* * * *4 ,BC t B C t E t BC t C t BC t C t








    + ℜ ℜ        

 

and ( )E t  is defined as 

( )
( ) ( ) ( )2 2 2

1 2

1 1 1

n

E t
c t c t c t

 − − − 
  

  . 

Proof. From (18) we can get 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

* *

* *

d2 2 ,
d
d2 2 ,
d

t D t AC t C t D t AC t C t
t

t D t BC t C t D t BC t C t
t

α

β

   = ℜ + ℜ   

   = ℜ + ℜ   




 

 

 

 

where ( )D t , ( ) ( )*d
d

AC t C t
t

 ℜ    and ( ) ( )*d
d

BC t C t
t

 ℜ    can be calculated as follows: 

( )
( )

( )
( )

( )
( )

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

2 2 2
1 2

2 2 2
1 2

2 2 2
1 2

2 2 2
1 2

T T* * *

TT* *

d d d1 1 1
d d d

d d d1 1 1
d d d

d
d

2 2

2

n

n

n

n

c t c t c t
D t

t t tc t c t c t

c t c t c t
t t tc t c t c t

E t C t C t E t C t C t C t C t
t

E t C t C t E t AC t BU t C t C t

 − − − =
 
 
   − − −   =
   
   

   = = +   

 = ℜ = ℜ +   

=



 

    

 

    



   

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

T T* *

* * * *

* * * * *

2 * * *

* * *

*

2 ,

d d
d d

,

d
d

E t AC t C t U t E t BC t C t

AC t C t AC t C t AC t C t AC t C t
t t

A AC t BU t C t C t AC t A C t U t B C t

A C t C t AC t A C t

U t ABC t C t AC t B C t

BC t C
t

   ℜ + ℜ   
      ℜ = ℜ = ℜ +       

 = ℜ + + +    

 = ℜ + 
 + ℜ + 

ℜ

   

 

   

 

 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * *

* * * * *

* * *

2 * * *

d
d

.

t BC t C t BC t C t BC t C t
t

B AC t BU t C t C t BC t A C t U t B C t

BAC t C t BC t A C t

U t B C t C t BC t B C t

      = ℜ = ℜ +       

 = ℜ + + +    

 = ℜ + 
 + ℜ + 

 

  

 

 

 

 

So we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){
( )

T T* * *

2 * * * * * *

2 * * * * *

* * *

2 2 2

2

2 4

2

4

t E t AC t C t U t E t BC t C t AC t C t

D t A C t C t AC t A C t U t ABC t C t AC t B C t

D t A C t C t AC t A C t E t AC t C t AC t C t

U t D t ABC t C t AC t B C t

E t BC

α      = ℜ + ℜ ℜ     

   + ℜ + + ℜ +   

     = ℜ + + ℜ ℜ     

 + ℜ + 

+ ℜ


    

   

    

 

 ( ) ( ){ } ( ) ( ) }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( )

T* *

T T* * *

* * * 2 * * *

T* * * * *

2

2 2 2

2

2 4

2

t C t AC t C t

t E t AC t C t U t E t BC t C t BC t C t

D t BAC t C t BC t A C t U t B C t C t BC t B C t

D t BAC t C t BC t A C t E t AC t C t BC t C t

U t D t B C t C

β

   ℜ   

     = ℜ + ℜ ℜ     

   + ℜ + + ℜ +   

     = ℜ + + ℜ ℜ     

+ ℜ

 



    

   

    



，

( ) ( ) ( ){ }{
( ) ( ) ( ) ( ) ( ){ }}

* * *

* *4 .

t BC t B C t

E t BC t C t BC t C t

  + 

   + ℜ ℜ   



  

 

Hence Proposition 1 has been proved. □ 
Based on Proposition 1, we can get the conditions under which in very short time the entropy can only in-

crease or decrease, which are shown in Theorem 1. It can be seen that Theorem 1 gives the necessary and suffi-
cient conditions. 

Theorem 1. In very short time, the entropy can only increase when 

( )
( )

0

0

t

t

α

β

>


=
 or 

( ) ( ) ( )
( )
( ) ( )

2

1

2 1

0

0

t t t

t

t t

α β β

α

α β

= = =


>
 = −

 or 
( ) ( )
( )
( ) ( ) ( ) ( )

2

2
2 1 1 2

0

0

4 ,

t t

t

t t t t

α β

β

α β α β

 = = >


+ ≤  

 

and can only decrease when 

( )
( )

0

0

t

t

α

β

<


=
 or 

( ) ( ) ( )
( )
( ) ( )

2

1

2 1

0

0

t t t

t

t t

α β β

α

α β

= = =


<
 = −

 or 
( ) ( )
( )
( ) ( ) ( ) ( )

2

2
2 1 1 2

0

0

4 .

t t

t

t t t t

α β

β

α β α β

 = = <


+ ≤  

 

Proof. Assuming the sampling period is T, ( ) ( ) ( ) ( )1 2t t U t tα α α= +  can be descretized as 

( ) ( ) ( ) ( ) ( )1 2
0

0 0 0
T

U
T

α α
α α

−
= + , 

which gives 

( ) ( ) ( ) ( ) ( )1 20 0 0 0T T Uα α α α= + +   . 

Similarly we can get 

( ) ( ) ( ) ( ) ( )1 20 0 0 0T T Uβ β β β= + +   . 

If ( )U t  remains constant as ( )0U  in the first sampling period T, ( )S T  can be approximated as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )

1 2 1 2

2
2 2 1 1

0 0 [ 0 0 0 ] 0 0 0 0 0

0 0 0 0 0 0 0 0 .

S T T U T T U U T U

T U T U T

α β α α α β β β

β β α β α α

= + = + + + + +  

= + + + + +  



 

Here ( )S T  is a once basic quadratic equation about ( )0U , and the equation’s discriminant 1∆  can be 
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calculated as 

( ) ( ) ( ){ } ( ) ( ) ( )
2

1 2 1 2 10 0 0 4 0 0 0T T Tβ α β β α α∆ = + + − +       . 

If ( )0 0β ≠ , we have ( )0
2

1lim 0 0T β→ ∆ = > . So it is always easy to find ( )0U  to make ( )S T  positive 
or negative, which means in very short time the entropy can both increase and decrease. 

If ( )0 0β = , we can get ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2
2 2 1 10 0 0 0 0 0 0S T T U Uα β α β α= + + + +  

 , which yields 

( ) ( )0lim 0T S T α→ = . If ( )0 0α > , we have ( )0lim 0T S T→ > , which means in very short time the entropy can 

only increase; similarly if ( )0 0α < , the entropy can only decrease; if ( )0 0α = , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2
2 2 1 10 0 0 0 0 0S T T U Uβ α β α= + + +  

 . 

Here ( ) ( ) ( ) ( ) ( ) ( )2
2 2 1 10 0 0 0 0 0U Uβ α β α+ + +    is also a once basic quadratic equation about ( )0U , 

and the equation’s discriminant 2∆  can be calculated as 

( ) ( ) ( ) ( )2
2 2 1 1 20 0 4 0 0α β α β∆ = + −   . 

When ( ) ( ) ( ) ( )2
2 1 1 20 0 4 0 0α β α β+ >   , we have 2 0∆ > , which means the entropy can both increase and 

decrease; when ( ) ( ) ( ) ( )2
2 1 1 20 0 4 0 0α β α β+ ≤   , the discussion can be divided into 3 cases: 

(a) If ( )2 0 0β > , the parabola opens upward, which means the entropy can only increase. 
(b) If ( )2 0 0β < , the parabola opens downward, which means the entropy can only decrease. 

(c) If ( )2 0 0β = , we have ( ) ( ) 2
2 10 0 0α β+ ≤   , which gives ( ) ( )2 10 0 0α β+ =  and ( ) ( )1 0S T Tα= . 

So when ( )1 0 0α > , the entropy can only increase; when ( )1 0 0α < , the entropy can only decrease; when 

( )1 0 0α = , the entropy will remain constant in very short time. 
Above all, we can get the conclusion in Theorem 1. □ 
In quantum mechanics, A is often chosen to be diagonal, thus all the elements in A are pure imaginary since A 

is skew-Hermitian. Assume { }11 22diag , , , ,nnA a a aι ι ι=   , where ( )iia i∈ ∀R  holds. We can get 

( ) ( )

( )
( )

( )

( )
( )

( )

( )

( )

( )

2
* 11 1

11 1 1
2*

22 2 2* 22 2

*
2

0
0

0nn n n
nn n

a c ta c t c t
a c t c t a c tAC t C t

a c t c t a c t

ιι
ι ι

ι
ι

 
       
               ℜ = ℜ = ℜ ≡                               

 

  



       (20) 

From (18) we can see ( ) 0tα ≡ , which gives ( ) ( ) ( ).S t U t tβ=  So we can get the controller 

( ) ( )
( )

S t
U t

tβ
=


                                     (21) 

When ( ) 0tβ ≠ , if the desired trajectory of ( )S t  is known, we can simply use (21) to get the controller. 

When ( ) 0tβ = , the conditions under which in very short time the entropy can only increase or decrease are 
shown in Theorem 2. 

Theorem 2. If A is diagonal, in very short time the entropy can only increase when 

( ) ( )
( )

1

2

0

0,

t t

t

β β

β

= =


>
 

and can only decrease when 
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( ) ( )
( )

1

2

0

0.

t t

t

β β

β

= =


<
 

Proof. From ( ) ( ) ( )S t U t tβ=  we know ( ) ( ) ( )0 0 0S U β= . So when ( )0 0β ≠ , it is always easy to 

choose ( )0U  to make ( )0S  positive or negative. When ( )0 0β = , we can get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )2
1 2 2 10 0 0 0 0 0 0 0 0 0S T U T U T U T U Uβ β β β β β = = + + = +    

 . 

The discussion can be divided into 3 cases: 
(a) ( )2 0 0β = : 
We have ( ) ( ) ( )1 0 0S T T Uβ= . If ( )1 0 0β ≠ , it is easy to choose ( )0U  to make ( )0S  positive or nega-

tive; if ( )1 0 0β = , the entropy will remain constant in very short time. 
(b) ( )2 0 0β > : 
Here ( ) ( ) ( ) ( )2

2 10 0 0 0U Uβ β+  is also a once basic quadratic equation about ( )0U , and the equation’s 
discriminant 3∆  can be calculated as ( )2

3 1 0β∆ = . If ( )1 0 0β = , we have 3 0∆ = , which means the entropy 
can only increase; if ( )1 0 0β ≠ , we have 3 0∆ > , which means the entropy can both increase and decrease in 
very short time. 

(c) ( )2 0 0β < : 
Similarly we know if ( )1 0 0β = , the entropy can only increase; if ( )1 0 0β ≠ , the entropy can both increase 

and decrease in very short time. 
Above all, we can get the conclusion in Theorem 2. □ 
When the entropy has reached the target, it needs to be maintained constant. If A is diagonal, from (21) we 

know we only need ( ) 0U t =  to maintain the entropy constant. If A is non-diagonal, it is difficult to keep the 
entropy constant especially when there exists disturbance. Then we need the discrete control method in Section 
4 to overcome the disturbance. 

4. Simulations 
We present simulations for continuous controller on a five-level quantum system. For the five-level case in 
which the discrete controller is difficult to apply, the continuous controller is adopted to achieve good perfor-
mance, and the controllability result is verified by simulation.  

For five-level quantum system 

( )
( )
( )
( )
( )

( )

( )
( )
( )
( )
( )

1 1

2 2

3 3

4 4

5 5

0 0 0 0 0 0 0
0 1.2 0 0 0 0 0 0
0 0 1.3 0 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2.15 0 0

c t c t
c t c t
c t U t c t
c t c t
c t c t

ι ι ι
ι ι ι

ι ι ι
ι ι ι ι

ι ι ι ι

    − − −    
       − − −              = − + − −        − − − −             − − − −        











        (22) 

the discrete controller is difficult to apply, while the continuous controller can be adopted to achieve good per-

formance. For initial state ( )
T

0 2,1 2,1 2, 2 4, 2 4C ι =    with ( )0 1.56S = , we expect that the entropy  

changes as follows in seven steps: (a) increases to 1.61; (b) keeps constant; (c) increases to 1.66; (d) keeps con-
stant; (e) decreases to 1.61; (f) increases to 1.66; (g) keeps constant. If 0.01T = , the controller can be calcu-
lated by (8) as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )*

5 5 1 0.01 5 1 0.02 5 1 0.03 5 1 0.04 10 1 0.05 5 1 0.06
.

2
t t t t t t

U t
D t BC t C t

− ⋅ − + ⋅ − − ⋅ − − ⋅ − + ⋅ − − ⋅ −
=

 ℜ  

 (23) 

Combining (22) with (23) we can get the simulation results for both ( )S t  and ( )U t , which are shown in 
Figure 1. 

From Figure 1 we can see that for the five-level case which is difficult to apply the discrete controller, the  
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Figure 1. Evolutions of the entropy of system (14) and the controller (15).                

 
continuous method can lead to very accurate tracking. At some instant ( )tβ  may be 0, and such derivative 
discontinuing may prevent precise tracking in the vicinity of the switch point. In practice the most important is-
sue is to keep the tracking process under good control before and after switching. And the simulation shows that 
the entropy can still be driven to go along the desired trajectory. 

Next we verify the controllability result by simulation. For initial state ( ) [ ]T0 1 2,1 2,1 2,1 2,0C =  with 
( )0 ln 4S = , since it satisfies ( ) ( )1 0t tβ β= =  and ( )2 0tβ > , from Theorem 2 we know the entropy can on-

ly increase in very short time. The change of entropy with respect to ( )0S  at time T under different ( )0U  
are shown in Figure 2. For larger ( )0U , T should be smaller to guarantee the accuracy. Here we choose  

( )( )0.1^ 2 int lg 0T U = +   

where ( )int x  is the floor function which denotes the maximum integer which is not more than x. For example, 

when ( )0 50U = − ,  

( ) ( ) ( ) ( )0.1^ 2 int lg50 0.1^ 2 int lg50 0.1^ 2 int 1.70 0.1^ 2 1 0.001.T = + = + = + = + =            

From Figure 2 we can see that no matter how large ( )0U  is, the entropy can only increase at the beginning, 
which coincides with Theorem 2.  
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Figure 2. Change of entropy with respect to ( )0S  at time T for system (14) with 

( ) [ ]T0 1 2,1 2,1 2,1 2,0C =  under different ( )0U .                                     

5. Conclusion 
This paper proposed the continuous controller design method for quantum Shannon entropy. Different from our 
previous work on discretized controller, the new method can continuously drive the entropy to track a 
pre-specified target trajectory. Controllability analysis is also provided. The simulation results verified the vali-
dation of the method.  
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